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Abstract: Plants have evolved a sophisticated system to respond to various stresses. Fungal attack 
or infection is one of the most important biotic stresses for most plants. During the defense response 
to fungal infection, the plant hormones jasmonic acid (JA) and salicylic acid (SA) play critical roles. 
Here, gene expression data on JA/SA treatments and Melampsora larici-populina (MLP) infection were 
generated. Integrated transcriptome analyses of these data were performed, and 943 genes in total 
were identified as common responsive genes (CRG). Gene ontology (GO) term analysis revealed 
that the genes from CRG are generally involved in the processes of stress responses, metabolism, 
and growth and development. The further cluster analysis of the CRG identified a set of core genes 
that are involved in the JA/SA-mediated response to fungal defense with distinct gene expression 
profiles upon JA/SA treatment, which highlighted the different effects of these two hormones on 
plant fungal defenses. The modifications of several pathways relative to metabolism, biotic stress, 
and plant hormone signal pathways suggest the possible roles of JA/SA on the regulation of growth 
and defense responses. Co-expression modules (CMs) were also constructed using the poplar 
expression data on JA, SA, M. larici-populina, Septoria musiva, and Marssonina brunnea treatment or 
infection. A total of 23 CMs were constructed, and different CMs clearly exhibited distinct biological 
functions, which conformably regulated the concerted processes in response to fungal defense. 
Furthermore, the GO term analysis of different CMs confirmed the roles of JA and SA in regulating 
growth and defense responses, and their expression profiles suggested that the growth ability was 
reduced when poplar deployed defense responses. Several transcription factors (TFs) among the 
CRG in the co-expression network were proposed as hub genes in regulating these processes. 
According to this study, our data finely uncovered the possible roles of JA/SA in regulating the 
balance between growth and defense responses by integrating multiple hormone signaling 
pathways. We were also able to provide more knowledge on how the plant hormones JA/SA are 
involved in the regulation of the balance between growth and plant defense. 
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1. Introduction 

Plants have evolved a sophisticated system to respond to various abiotic and biotic stresses. 
Fungal attack or infection is one of the most important biotic stresses for most plants. When 
encountering fungal attack or infection, plants typically produce a number of small chemical 
compounds to activate their self-protection system. Recently, a number of studies have reported that 
jasmonic acid (JA) and salicylic acid (SA) are two important small chemical compounds that play 
important roles in activating the plant self-protection system [1,2]. Both of these small chemical 
compounds are also plant hormones, which regulate plant growth [3–5]. These two plant hormones 
typically play different roles against fungal attack or infection. Jasmonic acid is induced by the 
lipoxygenase pathway when plants are challenged by stress [6–8]. A number of genes are 
subsequently activated by JA signals through two distinct branches [2]. The first branch is the MYC 
branch, in which MYC-related transcription factors and JA-responsive genes are activated. The 
second branch is the ERF branch, in which apetala2/ethylene response factor (AP2/ERF) transcription 
factors are the key regulators. Once one of the two branches is activated, downstream defensive or 
resistance genes are downregulated or upregulated by genes in the branch pathways. Unlike JA, SA 
is induced upon the perception of microbe-associated molecular patterns, and is required for 
hypersensitivity and immune responses in plants [9,10]. The critical role of SA as an immune signal 
has also been well studied. In general, pathogens with a biotrophic lifestyle are more sensitive to SA-
induced defenses, whereas necrotrophic pathogens and herbivorous insects are combatted through 
JA-mediated defenses [2]. Moreover, pathways regulated by JA and SA also interact when plants 
encounter biotic stresses [11–13]. Although there have been many studies characterizing the 
mechanisms underlying the JA/SA regulation of plant defense, detailed biological processes that are 
activated by JA/SA remain unknown. 

Given the development of high-throughput sequencing technology, increasingly large genomic 
data are publicly available. Of these genomic data, short reads produced from RNA-Seq and gene 
intensity data produced in microarray assays are the two most important for gene expression. Given 
that large amounts of these data were generated for similar plants and treatments, it is therefore 
possible to integrate all of these data together and unearth more information for further studies. In 
soybean, an integrated transcriptome analysis was performed to reveal the utility of different types 
of transcriptomic data for comparison [14]. Of the methods used for integrating transcriptomes, co-
expression network construction is one of the most popular strategies that is used for analysis. The 
basic idea of co-expression networks is that genes that participate in similar biological processes 
could have similar expression profiles in a given set of expression samples [15]. In plants, a number 
of studies have been conducted to dissect the complexity of gene–trait regulation. For example, in 
Arabidopsis, the co-expression of genes in six accessions identified 53 genes that are responsible for 
aluminum tolerance [16]; the co-expression of seed maturation also identified regulators linking seed 
storability to biotic defense-related pathways [17]. Therefore, with increasing amounts of available 
genomic data, integrated transcriptome analysis, especially for co-expression network construction, 
is very powerful for plant genomic studies. 

Poplar (Populus spp.) is one of the most important tree species. In 2006, the genome of Populus. 
trichocarpa was released [18]. Given the characteristics of this tree, including its small genome size, 
high-quality genome sequence, easy propensity for producing transgenic plants, and its use as a 
common source of wood, poplar is considered a model plant for tree species. Fungal diseases, 
including leaf rust, spots, and stem canker, highly reduce the value of poplar. Recently, a number of 
studies have been performed to uncover how poplar trees deploy their defense system in response 
to fungal attack. Due to its high-quality genome, transcriptome analysis would be one of the fastest 
methods to identify the genes that are involved in the poplar defense system. Two typical studies 
reported hundreds of genes that were responsive to Melampsora defense regulation in poplar using a 
Populus 15.5 K complementary DNA microarray [19,20]. RNA-Seq data were also generated for 
poplar infected by Melampsora larici-populina, Septoria musiva, and Marssonina brunnea [21–23]. All of 
these data were generated in different individual experiments, and no comparison was performed. 
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In this study, we generated a large set of gene expression data for poplar responses to JA/SA/M. 
larici-populina (MLP) treatments. Using an integrated transcriptome analysis of all these data, a 
number of mechanisms underlying poplar defense regulation was uncovered. A large portion of 
JA/SA-responsive genes also exhibited responses to fungal infection in poplar, which revealed that 
JA/SA play important roles in the regulation of plant defense. Moreover, a set of common responsive 
genes (CRG) were identified, and were enriched in the key pathways that are important for plant 
growth, metabolism, stress responses, and plant hormone signaling transduction. Co-expression 
analysis of a number of transcriptomic datasets from public databases confirmed the results that are 
obtained in the current study, collectively demonstrating the roles of JA/SA on regulating the balance 
between growth and defense responses by integrating multiple hormone signaling transduction 
processes. Therefore, according to the results of this study, we were able to provide more knowledge 
on how the plant hormones JA/SA are involved in the balance between growth and plant defense 
regulation. 

2. Materials and Methods 

2.1. Plant Materials and Phytohormone Treatments 

The Chinese poplar hybrid variety “NL895” (P. × euramericana) was used as plant material in this 
study. The “NL895” variety was produced from the hybridization between Populus. deltoides cv. 
“Lux” (I-69) and “I-45” (P. × euramericana). Three-leaf tissue culture plants of “NL895” that exhibited 
similar growth were grown in three-liter pots containing a sand:peat (50:50, v/v) mixture. These 
“NL895” plants were grown in a greenhouse with a 16/eight-hour photoperiod, and the light intensity 
was 12,000 Lx. The temperatures of the greenhouse were set at 28 °C and 25 °C for day and night, 
respectively. Plants were watered twice weekly and fertilized with Hoagland’s solution every other 
week. 

To apply phytohormone treatments to poplar leaves, a procedure was performed that was 
similar to that reported in our previous study [24]. Briefly, 10-leaf plants that exhibited similar growth 
were selected as the plant materials, and leaves with LPIs (leaf plastochron indices) ranging from 
four to six on each plant were treated with methyl jasmonate (MeJA) or SA solution. The solutions 
were prepared to final concentrations of 0.2 mM and 0.5 mM for MeJA and SA, respectively. Leaves 
were sprayed on both sides until the leaf surfaces began to form small drops. Leaf samples were 
collected at 0 hours, 2 hours, 6 hours, 12 hours, and 24 hours after treatment, and were immediately 
stored at −80 °C. Treated leaves from each individual plant were pooled and considered one 
biological sample, and three replicates were performed for each treatment. To avoid plant day/night 
rhythms affecting gene transcription, we initiated all treatments at 8:00 to allow collecting all of the 
samples during the daytime in the greenhouse (the lights were activated at 6:00 and deactivated at 
22:00). Samples collected at 2 hours, 6 hours, 12 hours, and 24 hours after MeJA treatment were 
referred to as JA2, JA6, JA12, and JA24, respectively, and samples collected at two hours, six hours, 
12 hours, and 24 hours after SA treatment were referred to as SA2, SA6, SA12, and SA24, respectively. 
Samples collected from untreated plants and at the treatment start were referred to as controls. 

2.2. RNA Extraction and Transcriptome Sequencing 

Total RNA was isolated using an RNeasy Plant Mini Kit (DP432, TIANGEN Biotech (Beijing) 
Co., Ltd., Beijing, China) according to the manufacturer’s protocol. The quality of RNA was first 
tested by agarose gel electrophoresis to ensure that clear bands were visible. The RNA integrity 
number (RIN) of all of the samples was also tested using an Agilent Bioanalyzer 2100 (Agilent 
Technologies, Santa Clara, CA, USA). Samples with sufficient quality were sent for RNA-Seq library 
construction and submitted to an Illumina HiSeq 2500 (Illumina, Inc., San Diego, CA, USA) 
sequencing platform. All of the raw data were deposited in the National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/) under bioproject 
accession PRJNA511770. Copies of the above RNA samples were also stored at −80 °C for further gene 
expression analysis. 
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2.3. Quantitative Real-time PCR Assay 

To confirm the RNA-Seq results, 10 genes were selected to examine the consistency of their 
expression profiles after MeJA and SA treatments using RNA-Seq and Quantitative Real-time PCR 
(qRT-PCR) assays. The gene information and corresponding primers are listed in Table S1. A One-
Step genomic DNA Removal and cDNA Synthesis SuperMix kit (Trans, Beijing, China) were used for 
cDNA synthesis. To confirm the correct amplification of primer pairs, the cDNA PCR products of the 
primers listed in Table S1 were also sequenced before qRT-PCR assays. The LightCycler 96 (Roche, 
Basel, Switzerland) platform and the FastStart Essential DNA Green Master mix (Roche) were used 
for all of the qRT-PCR assays. All of the PCRs were performed using the two-step qRT-PCR 
procedure, and three replications per sample were performed to reduce the experimental error. 
Sample quantification cycle (Cq) values were determined and standardized relative to the two 
reference genes (ACTIN and UBQL, Table S1). The 2−ΔΔCq method was used to calculate the relative 
gene expression based on the qRT-PCR data [25]. 

2.4. Bioinformatic Analysis 

In the integrated transcriptome analysis, the information regarding Melampsora-responsive 
genes was downloaded from the original installment [19,20]. All of the IDs of the responsive genes 
were transferred from V1 to V3 by the correspondence between poplar genome annotation version 
one and three. The raw RNA-Seq data were quality-trimmed and quality-filtered using Trimmomatic 
software with default parameter settings [26]. Clean reads for each sample were mapped onto poplar 
genome annotation version 3 by Tophat2 software with default parameter settings [27]. To identify 
JA-responsive and SA-responsive genes, a two-step analysis procedure was conducted. First, values 
of fragments per kilobase per million mapped reads (FPKM) were calculated using Cufflinks 
software [27]. Second, the differentially expressed genes were identified using EdgeR software with 
a false discovery rate (FDR) that was less than 0.05 under the ‘glm’ model [28]. To avoid low-
expression genes in both treatments and in the control, only genes with FPKM values greater than 
five in at least one sample were retained for further analyses.  

The poplar genes were annotated based on their homologous genes from Arabidopsis, which 
were provided by the Phytozome database (version 12.0) [29] . The gene ontology (GO) term and 
KEGG analyses were conducted in R with packages named “clusterProfiler” and “pathview” [30,31]. 
The significant GO terms of CRG in biological process were further reduced with REVIGO 
(http://revigo.irb.hr/) [32] and visualized in Cytoscape (version 3.5.0) [33] The subcellular location 
analysis of CRG was performed within the SUBA4 (http://suba.live/) [34]. The heatmap was drawn 
in R with the package “pheatmap” [35]. The gene expression levels of different clusters were 
generated with the vioplot package in R [36]. Gene classification and the pathway visualization of 
metabolism and biotic stress were conducted using Mapman software (version 3.0.0) according to the 
user manual (version 3.0.0) [37]. Bubble diagrams representing the enriched GO terms were 
generated in R with the package “ggplot2” [38]. 

For co-expression network construction, four datasets were used in this analysis. The first 
dataset was obtained from our above RNA-Seq experiment and included 18 individual samples; the 
corresponding bioproject accession number is PRJNA511770. The second dataset was obtained from 
our previous study in which four samples were used for poplar lncRNA identification during 
Melampsora infection of poplar leaves. RNA samples isolated from leaves treated with the Melampsora 
uredospore suspension or diluted water after 48 hours. The corresponding bioproject accession 
number is PRJNA354475 [23]. The third dataset was obtained from a study on the comparative 
expression analysis of resistant and susceptible Populus clones inoculated with S. musiva. Briefly, 
leaves of the two resistant (DN34, P. deltoides × P. nigra; NM6, P. nigra × maximowiczii) and two 
susceptible clones (DN164, P. deltoides × nigra; NC11505, P. maximowiczii × trichocarpa) were inoculated 
with S. musiva, and then RNA was isolated from leaf samples harvested after 48 hours of inoculation. 
This study included 16 samples, and the original data are deposited in the Sequence Read Archive 
under bioproject accession number PRJNA229492 [21]. The fourth dataset was obtained from the 
analysis of the transcriptomes of M. brunnea and infected poplar [22]. Conidia of M. brunnea were 
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sprayed onto the abaxial surface of the poplar “NL895” leaves, and RNA was isolated from leaf 
samples harvested after 48 hours of inoculation. This study released data on nine individual samples; 
the corresponding bioproject accession number is PRJNA248151. All of the above original RNA-Seq 
reads were quality-trimmed and quality-filtered using Trimmomatic software with default 
parameter settings [26]. Clean reads were used for gene FPKM calculation using RESM software [39]. 
Genes with FPKM values greater than five in at least one sample were used for co-expression network 
construction. The FPKM of genes with no FPKM data in a given sample was set to 0. The WGCNA 
(weighted gene correlation network analysis) R package was then used to perform the co-expression 
network construction [15]. A soft threshold was determined by which >80% of the model fit to scale-
free topology and low mean connectivity. The gene number in each module was set from 30 to 5000. 
The co-expression network of individual co-expression modules (CMs) was visualized using 
Cytoscape (version 3.5.0) [33]. 

3. Results and Discussion 

3.1. Identification of Jasmonic Acid-Responsive and Salicylic Acid-Responsive Genes 

The JA and SA phytohormones are involved in plant biotic defense regulation. Treating plants 
with JA, SA, or their derivatives, MeJA and methyl salicylic acid (MeSA), respectively, could 
modulate the gene expression profiles regarding pathogenic or herbivore damage to plants. 
Therefore, we performed a transcriptome assay by treating leaves of the poplar hybrid “NL895” with 
MeJA and SA. Gene expression profiles upon treatment with MeJA and SA were generated from 
RNA-Seq data. To improve the understanding of this work, JA2, JA6, JA12, and JA24 represented 
samples treated with MeJA after 2 hours, 6 hours, 12 hours, and 24 hours, respectively, and SA2, SA6, 
SA12, and SA24 represented samples treated with SA after 2 hours, 6 hours, 12 hours, and 24 hours, 
respectively. 

Compared with control samples, a number of genes exhibited different regulation upon MeJA 
or SA treatment within 24 hours. For example, the number of differentially expressed genes (fold 
change greater than two for at least one time point and q-value <0.05) was 3930 after MeJA treatment, 
whereas 6226 genes were differentially expressed genes after SA treatment (Table S2). Thus, the 
differentially expressed genes upon the time series under MeJA and SA treatments were defined as 
JA-responsive and SA-responsive genes, respectively. 

To confirm the gene expression of JA-responsive and SA-responsive genes, qRT-PCR assays 
were performed to test the gene expression profiles upon MeJA and SA treatments for nine genes. 
The relative fold-changes between each treatment and the control samples were calculated for both 
RNA-Seq and qRT-PCR data. The consistency between these two types of expression data was 
revealed based on correlation coefficient number, with an r2 value equal to 0.85 and a p-value of less 
than 0.0001 (Figure S1). Clearly, this high r2 value suggested that our RNA-Seq data were very reliable 
for further analyses. 

Gene ontology term analysis of JA-responsive and SA-responsive genes revealed that these two 
exogenous stimuli were enriched in a large number of common pathways, which were involved in 
responses to diverse environmental stimuli, hormone-related metabolism processes, and regulation 
processes (Table S3). Thus, it’s highly possible that these two phytohormones may share common 
pathways to regulate biotic and abiotic stresses, including fungal defense. 

3.2. Characterization of the Roles of Jasmonic Acid-Responsive and Salicylic Acid-Responsive Genes in the 
Regulation of Melampsora Defense by Comparative Transcriptome Analysis 

To test the possible roles of JA-responsive and SA-responsive genes in the regulation of 
Melampsora defense, we compared JA-responsive and SA-responsive genes with Melampsora-
responsive genes. After 48 hours of infection with M. larici-populina, gene-reprogramming events 
resulted in 2676 and 4439 upregulated and downregulated genes, respectively (Table S4). Then, these 
genes were defined as MLP-responsive genes. To identify JA/SA-responsive genes that participated 
in the fungal defense, Venn analysis was performed to obtain the list of genes that commonly exist in 
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the JA-responsive, SA-responsive, and MLP-responsive genes (Figure 1A). Among the 7115 MLP-
responsive genes, 943 genes exhibited a response to JA and SA treatments, and were designated as 
CRG. In addition, 979 genes were exclusively responsive to JA treatment; meanwhile, 2327 genes 
were exclusively responsive to SA treatment (Figure 1A, Table S5). Thus, the CRG may represent the 
core machinery of the JA/SA-responsive genes that are involved in fugal defense, and the list of CRG 
was used for further analysis. 

 
Figure 1. Venn diagram represented the number of specific and overlapping genes identified as 
jasmonic acid (JA)-responsive, salicylic acid (SA)-responsive, and Melampsora larici-populina (MLP)-
responsive genes (A). The proportion of cellular locations of proteins encoded by common responsive 
genes (CRG, (B)). The star behind the cellular location indicates that the p-value of the hypergeometric 
distribution test was less than 0.05. The gene numbers in each transcription factor family were showed 
in CRG(C). 

Interestingly, the cellular location analysis of CRG revealed that proteins encoded by CRG 
largely accumulated in the nucleus (about 26%), implying that the list of CRG may include a large 
number of transcription factors (Figure 1B). To verify this hypothesis, transcription factors were 
screened in the CRG according to PlantTFDB [40], which allowed us to identify 95 (ca. 10% of CRG) 
transcription factors in total (Figure 1C). These transcription factors belonged to 21 gene families, and 
ERF, MYB/MYB-related genes, and bHLH include the highest number of represented genes 
compared with other gene families (Figure 1C, Table S6). These results highlight the roles that these 
transcription factor gene families (e.g., ERF, MYB/MYB-related genes, and bHLH) play in the 
phytohormone-mediated fugal defense. 

Indeed, according to previous studies, these several types of transcription factors (TFs) play 
important roles in plant disease resistance. For example, ERF is involved in JA-mediated defense 
responses [41,42]. A large number of ERFs has been identified as regulators of disease resistance in 
many plant species, such as AtERF2, AtERF4 AtERF6, AtERF14, and ORA59 in Arabidopsis [43–47]; 
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TaERF3 and TaPIEP1 in wheat [48,49]; GmERF3 in soybean [50]; and OsERF3, OsERF922, and 
OsEREBP1 in rice [51–53]. Regarding bHLH, the subgroup bHLH IIId transcription factors (bHLH3, 
bHLH13, bHLH14, and bHLH17) in Arabidopsis were found to act as targets of JAZ proteins and 
negatively regulate JA-mediated plant defense and development [54]. PtrWRKY23, PtrWRKY73, and 
PtWRKY89 are involved in disease resistance or defense regulation when overexpressed in transgenic 
poplar or Arabidopsis [55–57]. These results suggest the potential effectiveness for identifying 
candidate genes for given biological processes. Moreover, we also found that the majority of the 95 
TFs were novel genes in poplar, and these genes have not been cited in previous reports or have not 
been functionally characterized. For example, the three WRKY genes, Potri.017G088300, 
Potri.011G070100, and Potri.018G008500, were not PtrWRKY23, PtrWRKY73, and PtWRKY89. 
Therefore, these results suggest that the TFs that were identified in this study could be considered 
candidate genes in poplar disease resistance. The functional characterization of these TFs is a 
necessary next step in poplar disease-resistant studies. 

To further understand the function of CRG, GO functional analysis was performed. Regarding 
the 943 CRG, 144 biological GO processes were enriched with an “FDR” <0.05 (Table S7). These 144 
biological processes were reassigned to 68 terms using REVIGO software based on their relationships 
(Figure 2). Interestingly, these terms can be roughly divided into three subgroups, i.e., response to 
stress, metabolism, and growth and development. In the group of responses to stress, many key terms 
relative to phytohormone and fugal stimuli were significantly enriched, such as “regulation of 
immune system process”, “defense response to fungus”, “response to ethylene”, “host programmed 
cell death induced by symbiont”, “response to jasmonic acid”, “response to extracellular stimulus”, 
“respiratory burst involved in defense response”, “systemic acquired resistance”, and “response to 
wounding” (Figure 2, Table S7). The systemic acquired resistance in plants involved contributions 
induced by JA and SA upon pathogenic attacks [58]. In the category of metabolism, many pathways 
involved in hormone and secondary metabolism were significantly enriched (Figure 2, Table S7). 
Regarding growth and development, the terms relative to cell division and tissue formation were 
enriched (Figure 2, Table S7). Interestingly, several genes encoding essential auxin signaling 
components, such as SAUR, GH3, and PIN proteins, were found in the CRG (Table S5). In line with 
this, the processes that were enriched in the category of growth and development were consistent 
with the roles of auxin in plant growth and development [59,60]. This may represent the crosstalk 
between auxin and JA/SA that regulates plant growth and development upon biotic and abiotic 
stresses. 
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Figure 2. Significantly enriched gene ontology (GO) terms in biological process. The results were 
obtained in R using the “clusterProfiler” package, reduced with REVIGO (http://revigo.irb.hr/) and 
visualized in Cytoscape. The color indicated the significance of GO terms, and node size represented 
the frequency of the GO term. Only significant GO terms were shown. FDR, false discovery rate. 

Regarding cellular components in GO terms, “plant-type cell wall”, “anchored component of 
membrane”, and “apoplast” were enriched (Table S7). These results were consistent with the cellular 
location analysis, indicating that proteins encoded by CRG were enriched in the extracellular 
compartment (Figure 1B). Forty-eight hours after infection is the key time point for poplar deploying 
defense regulation against Melampsora in poplar [19,20]; thus, the recruitment of cell wall-related 
components and proteins may help plants defend against the fungal infection of the cell. 

The GO terms analysis clearly demonstrated that the CRG identified in this study might function 
as coordinators in balancing the processes of stress response and growth and development upon 
fungal infection.  

3.3. Jasmonic Acid and Salicylic Acid May Exhibit Different Effects on Plant Fungal Defense 

As mentioned above, we identified a group of JA/SA-responsive genes that may be important 
for plant resistance of fungal infection. As reported previously, JA and SA initiate different signaling 
pathways and have distinct roles in fungal defense processes. However, interactions between these 
two phytohormones also contribute to the plant fungal defense [61]. Here, we identified 943 genes 
that are potentially involved in fungal defense; however, their expression profiles were distinctly 
different among different treatments (Figure 3A). As shown in Figure 3A, the gene expression levels 
of MLP were generally inhibited, and were distinct from those of JA/SA treatments. These CRG can 
be divided into three major clusters based on their expression levels upon treatments (Figure 3A). 
Cluster Ⅰ included 186 genes, which were globally downregulated under both JA and SA treatment 
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along the time series, and slightly upregulated by MLP (Figure 3A,B, Table S5). According to their 
gene expression profiles in MLP, genes clustered into Cluster Ⅰ can be further divided into four 
subgroups, i.e., Cluster Ⅰa–d (Figure 3A). In Cluster Ⅱ, 408 genes displayed different reprograming 
profiles during the experimental time course under JA and SA treatments (Figure 3A,B, Table S5). 
More specifically, these genes were stimulated and inhibited by JA and SA, respectively, during the 
experimental time course (Figure 3A,B). However, these genes were generally inhibited by MLP 
(Figure 3A,B). In Cluster Ⅲ, gene expression levels of JA/SA exhibited the same trends and were 
globally stimulated (Figure 3A,B). This cluster can be further separated into two distinct subgroups 
based on the gene expression levels of MLP, and genes from Cluster Ⅲb were consistently 
upregulated under all of the detected conditions (Figure 3A). 

Gene ontology term analysis further confirmed that genes from Cluster Ⅱ were more related to 
the roles that CRG played in plant fungal defense, as they shared 106 terms with CRG (Figure 3C, 
Table S7). Thus, the genes from Cluster Ⅱ represent the core machinery of JA/SA in response to plant 
fungal defense. No significant GO terms were detected in the genes from Cluster Ⅰ; meanwhile, 
genes in this cluster exhibited similar behaviors as JA and SA in the time series (Figure 3A–C, Table 
S7). However, some significant GO terms were found in its subgroups, for instance, two GO terms 
that were relative to water response were enriched in Cluster Ⅰa, and several genes that participated 
in plant hormone signal transduction were identified in Cluster Ⅰd by KEGG analysis (Table S7). 
Cluster Ⅲ shared 11 significant GO terms with Cluster Ⅱ and CRG, and these shared common GO 
terms that were related to the core machinery of hormone-mediated plant fungal defense (Figure 
3C,D, Table S7). Moreover, the genes from Cluster Ⅲb were more likely relative to defense response 
than those from Cluster Ⅲa, as revealed by GO enrichment analysis (Table S7). Thus, considering the 
uniform gene reprograming profiles and significant enriched pathway uncovered by GO term 
analysis, the genes from Cluster Ⅲb may represent the common machinery of JA and SA in plant 
fungal defense. 
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Figure 3. Heatmap clustered the CRG into three clusters based on their gene expression profiles (A). 
The average expression levels of genes from different clusters under different treatments (B). Venn 
diagram presents the overlapping GO term detected from CRG, Cluster Ⅰ, Cluster Ⅱ, and Cluster Ⅲ 
(C). The significantly enriched GO terms commonly detected in CRG, Cluster Ⅱ, and Cluster Ⅲ (D). 
FDR, false discovery rate; FC, folds change. 

In conclusion, the identification of CRG suggest that JA and SA may mount similar pathways 
regulating plant fungal defense; thus, the different gene expression profiles upon time-series JA and 
SA treatments in the core list may explain the distinct effects of JA and SA on plant fungal defense. 
This conclusion was consistent with the previous results obtained from Arabidopsis, which revealed 
the antagonistic roles played by JA and SA in regulating plant immune signaling through the same 
regulatory pathway [11]. On the other hand, attention should be given to the genes from Cluster Ⅲb, 
as they exhibited similar response profiles among different times and treatments. The consistent 
behaviors highlighted the notion that these genes potentially participate in defense processes, which 
are important for plants to gain systemic acquired resistance. The GO term analysis further confirmed 
this notion given that all of the significant GO terms are correlated with the roles of hormones in 
biotic and abiotic stresses. 
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3.4. Common Responsive Genes are Involved in Key Pathways that are Important for Plant Fitness 

As revealed by GO term analysis, the processes enriched in the CRG generally belonged to stress 
responses, metabolism, and growth and development. Thus, using Mapman software, genes 
involved in metabolism and biotic stress were assigned (Figure 4). A total of 331 (ca. 35%) genes 
played roles in biotic stress (Figure 4A). A large number of CRG was assigned to subgroups of 
signaling, transcription factor, secondary metabolites, proteolysis, the cell wall, and hormone 
signaling (Figure 4A, Table S5). In total, 154 genes were assigned to metabolism categories using 
Mapman (Figure 4B). Consist with this result, KEGG analysis revealed that CRG are enriched in 
several metabolism pathways, e.g., “starch and sucrose metabolism”, “phenylpropanoid 
biosynthesis”, “diterpenoid biosynthesis”, and “carotenoid biosynthesis” (Table S7). Coincidently, 
these pathways or relative pathways were involved in phytohormone metabolism. For example, 
“diterpenoid biosynthesis” and “carotenoid biosynthesis” represent the metabolism pathways for 
gibberellin and abscisic acid (Figure 5). In addition, “phenylpropanoid biosynthesis” is a pathway 
that is closely related to “phenylalanine metabolism” and is responsible for SA synthesis (Figure 5). 
Thus, the changes in exogenous phytohormones are eventually transformed into gene programming 
events that integrate multiple hormone signals to regulate plant responses to fungal infection. For 
instance, the changes in several genes encoding essential components of auxin signaling, such as 
AUX/IAA, GH3, and SAUR [60], potentially modified the growth and development processes 
mediated by auxin during the duration of the plant fungal defense. Consistent with this hypothesis, 
the GO term analysis identified a set of auxin-related growth and development processes (Table S7). 
Furthermore, JA interacts with GA to balance plant growth and defense processes through their 
common JAZ and DELLA regulatory proteins [62,63]. JAR1 (GH3.11) in CRG is an auxin-induced 
gene that participates in pathogen defense. JAR1 converts JA into the biologically active jasmonoyl -
isoleucine (JA-Ile) form, which affects the functions of JAZ. In addition, several genes involved in the 
GA signaling pathway were also changed, for example, two genes encoding GID1 and one encoding 
PIF3 (Figure 5, Table S5). Taken together, our data suggest that the modifications of the metabolism 
and signal transduction of the key phytohormones may regulate the balance between plant growth 
and the defense capacities against pathogen infection by integrating multiple phytohormone signals. 
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Figure 4. Common responsive genes assigned to biotic stress (A) and metabolism (B) categories based 
on Mapman software. The red to blue color indicates the fold changes of Melampsora larici-populina 
(MLP)-responsive genes. The biotic stress pathway consisted of the genes that participated in abiotic 
stress, redox, signaling, transcription factors, heat shock proteins, Pathogenesis protein, hormone 
relative genes, as well as the genes implicated in cell wall and proteolysis. For metabolism pathway, 
genes involved in carbon fixation and metabolism, cell wall, lipids metabolism, major nutrition 
uptake, and metabolism, as well as second metabolism, were included. 

A 

B 
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Figure 5. Common responsive genes assigned to plant hormone signal transduction and their 
upstream metabolism pathways. This figure was adapted from the KEGG pathway of plant hormone 
signal transduction. The gene expression levels of each treatment were shown in different columns as 
indicated in figure; the different rows represent the different genes. The colors indicate the gene 
expression levels. 

3.5. Co-Expression Networks Confirmed the Possible Roles of Jasmonic Acid and Salicylic Acid in Response 
to Fungal Defense by Balancing Growth and Biotic Stress Responses 

Recently, co-expression network construction has become a powerful integrated transcriptome 
tool to analyze a large microarray of RNA-Seq datasets [64,65]. A meta-based transcriptomic 
approach was performed to construct a co-expression network using 47 individual samples collected 
from RNA-Seq public data, and all of the samples were produced for fungal infection or JA/SA 
treatments (see Materials and Methods (M&M)). Therefore, we performed a co-expression network 
construction to investigate the roles of JA-responsive and SA-responsive genes in the regulation of 
fungal defense. Using the 11827 JA/SA/MLP-responsive genes from the above RNA-Seq experiments 
as edge genes, we calculated their expression levels for each sample collected from four datasets (See 
M&M). Weighted gene correlation network analysis was employed to perform the co-expression 
network construction [15]. In total, 23 CMs were constructed, and 7333 genes were arranged into 
these 23 modules (Figure S2A, Table S8). The gene numbers in the 23 CMs ranged from 37 to 1561, 
and co-expression module 1 (CM1) and co-expression module 23 (CM23) contained the highest and 
lowest gene numbers (Table 8), respectively. In the 23 CMs, JA/SA/MLP-responsive genes and CRG 
were majorly distributed in CM1 and co-expression module 2 (CM2), and JA-responsive genes were 
enriched in CM5 as expected (Figure S2B). Thus, CM1 and CM2 represented the major influence of 
JA, SA, and MLP on reprogramming gene expression profiles. The co-expression networks of CM1 
(removing the genes without edges) and CM2 contain 1245 and 917 genes with 60259 and 14324 
edges, respectively (Figure 6A,B). The GO term analysis clearly demonstrated the roles of CM1 and 
CM2 in growth and stress responses, respectively (Figure 6C,D, and Table S9). In addition, GO terms 
relative to metabolism were also significantly enriched in both CM1 and CM2 (Table S9). 
Interestingly, GO terms related to transport, such as “nitrate transport”, “proline transport”, 
“ammonium transport”, and “amino acid import”, were enriched in CM2 (Table S9). Consistent with 
this finding, the GO terms of CRG were also enriched in several nitrogen starvation-related terms 
(Table S7). Collectively, these data clearly suggested a role of nitrogen metabolism in fungal defense 
[66]. In summary, the co-expression network analysis clearly confirmed the roles of JA/SA in fungal 
defense via regulating the balance between plant growth and defense response. 
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Figure 6. Gene co-expression networks of co-expression module 1 (CM1, (A)) and co-expression 
module 2 (CM2, (B)). The nodes and edges represented the genes and the significant correlations 
between genes, respectively. The top 10 significantly enriched GO terms in biological process in CM1 
(C) and CM2 (D). 

To further understand the regulatory mechanism underlying the coordinated regulation 
between plant growth and defense response in poplar, the centered regulatory network of two TFs, 
Potri.003G093200 (known as PtrbHLH71) and Potri.004G060400 (known as PtrWRKY65), were 
constructed. These two TFs were also classified as CRG and were derived from CM1 and CM2, 
respectively (Figure 7A,B). The PtrbHLH71-centered network included 976 out of 1245 genes from 
the co-expression network of CM1 (Figure 7A). GO term analysis of the first and second co-expressed 
genes confirmed the roles of this PtrbHLH71 in regulating growth and development (Table S10). The 
significant GO terms of the PtrbHLH71-centered network shared 185 common terms with those of 
CM1, and almost all of the shared terms were related to growth and metabolism (Figure 7C, tables 
S7 and S10). Clearly, the significantly enriched GO terms in the PtrbHLH71-centered network related 
to growth were affected by the phytohormone auxin, which was consistent with the previous 
conclusions. Indeed, the PtrbHLH71 homologous gene AtbHLH71 in Arabidopsis was involved in the 
auxin signaling pathway, which can be targeted by ARF3 [67]. Here, genes from the PtrbHLH71-
centered network were enriched in auxin-mediated growth processes, suggesting the possible roles 
of this gene in regulating growth via the auxin signaling pathway in poplar. Given that this gene was 
also in the CRG list, its roles in regulating both plant growth and defense response could be proposed. 
Similar results were also obtained from the PtrWRKY65-centered network, and GO term analysis 
revealed that similar pathways were found both in the PtrWRKY65-centered network and co-
expression gene network of CM2 (Figure 7D, tables S7 and S10). Interestingly, the first co-expressed 
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genes of PtrWRKY65 were enriched in transport, which may explain why numerous GO terms in 
CM2 were related to transport (Table S9). Previous studies demonstrated the roles of AtWRKY65 in 
carbon starvation [68]. Furthermore, transport regulation is considered the common regulatory 
mechanism of plants in response to diverse nutritional deficiency responses [65,69,70]. Similarly, we 
identified several GO terms related to nutrition starvation in CRG (Table S7), such as “response to 
starvation”, “cellular response to nutrient levels”, and “cellular response to nitrogen starvation”. 
Thus, the defense responses regulated by PtrWRKY65-centered gene networks may be closely linked 
to changes in carbon and nitrogen metabolism. Taken together, our data clearly suggest that several 
TFs in the CRG might act as hub genes in the co-expressed gene network by integrating multiple 
hormone signaling to regulate plant defense response and growth in JA/SA-dependent manners. 

 

Figure 7. PtrbHLH71-centered (A) and (B) PtrWRKY65-centered gene regulatory networks derived 
from CM1 and CM2, respectively. The transcription factors and their first and second co-expressed 
genes are presented. The edges were hidden for the better visualization. The represented significant 
GO terms for the first/second co-expressed genes in the PtbHLH71-centered and PtWRKY65-centered 
gene regulatory networks are indicated. Venn diagram representing the overlapping significant GO 
terms in biological processes between CM1 and the PtbHLH71-centered network (C) and between 
CM2 and the PtWRKY65-centered network (D). 

In addition to CM1 and CM2, numerous genes were also assigned to CM4 (Figure S2B, Table 
S8). The gene co-expression network of CM4 contained 397 genes with 5349 edges (Figure 8A). The 
GO term analysis of CM4 confirmed its roles in controlling photosynthesis upon fungal infection. For 
example, GO terms relative to the photosynthesis and biosynthesis of pigment precursors were 
significantly enriched in genes from CM4 (Figure 8B). Indeed, the pathways of glyceraldehyde-3-
phosphate metabolic process, methylerythritol 4-phosphate, isopentenyl diphosphate biosynthetic 
process, and isoprenoid metabolic processes that are presented are considered as the key metabolism 
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pathways involved in the synthesis of precursors of chlorophyll [71–73]. Further analyses identified 
56 CRG in CM4, and their gene expression levels were globally inhibited upon MLP infection (Figure 
8C). Gene ontology term analysis of these CRG from CM4 revealed consistent results, indicating that 
these genes generally played certain roles in controlling pigment biosynthesis (Table S11). Therefore, 
the significant downregulation of expression of genes that are involved in photosynthesis and the 
upstream pigment metabolism processes indicated reduced photosynthetic capacities upon fungal 
infection. These results were consistent with previous data obtained in numerous plants, including 
poplar [74,75]. The reduction in photosynthesis upon fungal infection is considered as an adaptive 
strategy for plants to switch off assimilation processes in favor of respiration processes that generate 
products that are required for defense [74]. Thus, the reduced photosynthetic capacities eventually 
resulted in constrained growth that may help plants improve their defense abilities upon pathogen 
attack. Again, the knowledge obtained from the co-expression analysis verified the roles of CRG in 
growth and defense. Taken together, our data revealed the roles of JA/SA-responsive genes in 
mediating photosynthesis capacities that coordinated growth and defense responses upon fungal 
infection. 

 

Figure 8. Gene co-expression networks of co-expression module four (A). The nodes and edges 
represented the genes and the significant correlations between genes, respectively. Genes without any 
edges were not presented in the network. The top 10 significantly enriched GO terms in biological 
processes in CM4 (B). The average expression levels of CRG from CM4 upon different treatments (C). 

4. Conclusions 

As summarized in Figure 9, the roles of plant hormones JA and SA during the regulation of 
poplar defense were characterized through integrated transcriptome analyses in this study. In total, 
943 genes were identified as CRG, and these genes are generally involved in the processes of stress 
responses, metabolism, and growth and development. Further cluster analysis of the CRG allowed 
us to identify a set of core genes that are involved in the JA/SA-mediated responses to fungal defense. 
The different gene reprogramming profiles of the core genes upon JA/SA and MLP treatments 
highlighted the different roles of JA and SA on plant fungal defense regulation. The CRG modified 
the key pathways that are important for plant defense, such as metabolism, biotic stress, and plant 
signal pathways. Furthermore, co-expression analysis of JA-/SA-/MLP-responsive genes confirmed 
the roles of JA and SA in regulating both growth and defense responses, and their different 



Biomolecules 2019, 9, 12 17 of 21 

 

expression profiles suggested that growth ability was reduced when poplar deployed defense 
responses. Several TFs of CRG in the co-expression network were proposed as hub genes in 
regulating these processes. Taken together, our data demonstrate the possible roles of JA/SA in 
regulating the balance between growth and defense responses by integrating multiple hormone 
signaling pathways.  

 

Figure 9. Schematic model representing the possible roles of CRG in regulating plant defense. 

With the development of sequencing technology, increasing amounts of data will be released 
publicly. Therefore, it is increasingly important for researchers to make use of public data. Here, we 
performed a case study on how to combine experimental data with valuable information from free 
publicly available data. The result of this study also demonstrated the potential value of public data. 
However, we only collected transcriptomic data in this study. Currently, a number of different types 
of genomic data are available; therefore, the development of new and system-based strategies should 
be a major task for scientists in the future. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-273X/9/1/12/s1, Figure 
S1: Correlation of qRT-PCR/RNA-Seq data for nine tested genes, Figure S2: Cluster dendrogram of 18 CMs for 
JA/SA/MLP-responsive genes during poplar fungal defense, Table S1: Primers used for qRT-PCR assay, Table 
S2: Identification of JA- and SA-responsive genes upon JA and SA treatments, Table S3: GO term and KEGG 
analysis of JA- and SA-responsive genes, Table S4: Identification of MLP-responsive genes, Table S5: Genes 
identified as the common responsive genes (CRG), Table S6: Transcription factors identified in the common 
responsive genes, Table S7: GO term and KEGG analysis of genes from the common responsive genes and 
subclusters, Table S8: Coexpression modules of JA/SA/MLP-responsive genes during poplar defense, Table S9: 
GO term and KEGG analysis of genes from different CMs in the coexpression network, Table S10: GO term and 
KEGG analysis of the PtrbHLH71- and PtrWRKY65-centered gene networks, Table S11: GO term and KEGG 
analysis of the CRG in CM4. 
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