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Abstract: Cyclophilin D (CyPD) is an important mitochondrial chaperone protein whose 

mechanism of action remains a mystery. It is well known for regulating mitochondrial function and 

coupling of the electron transport chain and ATP synthesis by controlling the mitochondrial 

permeability transition pore (PTP), but more recent evidence suggests that it may regulate electron 

transport chain activity. Given its identification as a peptidyl-prolyl, cis-trans isomerase (PPIase), 

CyPD, is thought to be involved in mitochondrial protein folding, but very few reports 

demonstrate the presence of this activity. By contrast, CyPD may also perform a scaffolding 

function, as it binds to a number of important proteins in the mitochondrial matrix and inner 

mitochondrial membrane. From a clinical perspective, inhibiting CyPD to inhibit PTP opening 

protects against ischemia–reperfusion injury, making modulation of CyPD activity a potentially 

important therapeutic goal, but the lack of knowledge about the mechanisms of CyPD’s actions 

remains problematic for such therapies. Thus, the important yet enigmatic nature of CyPD 

somehow makes it a master regulator, yet a troublemaker, for mitochondrial function. 
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1. Introduction 

Cyclophilin D (CyPD, see Table 1 for list of abbreviations) is a member of the cyclophilin family 

of peptidyl-prolyl, cis-trans isomerases (PPIases) that resides in the mitochondrial matrix. Despite it 

first being reported in 1990 [1,2], the exact mechanisms by which CyPD regulates and is regulated by 

mitochondrial function, remain enigmatic. Cyclophilin D is the product of the Ppif gene and has a 

number of aliases, including mitochondrial cyclophilin, cyclophilin F, cyclophilin 3, and cyclophilin 

20. It should not be confused with cytoplasmic cyclophilin D, the product of the Ppid gene. 

Cyclophilin D is an ~22 kDa protein with a mitochondrial targeting sequence that is cleaved as it is 

imported into the mitochondrial matrix, creating an ~19 kDa final product. 

Traditionally, CyPD has been thought to regulate the opening of the permeability transition 

pore (PTP), a large conductance pore whose opening depolarizes the inner mitochondrial membrane 

(IMM) to decrease ATP and increase reactive oxygen species production, and drugs that inhibit 

CyPD have been used in animal and human studies to protect tissues against various insults, such as 

ischemia–reperfusion injury (IRI). The presence of a number of CyPD binding partners associated 

with ATP synthase (complex V), such as the adenine nucleotide translocator (ANT), phosphate 

carrier (PiC), and oligomycin sensitivity conferral protein (OSCP), support the idea that CyPD 

modulates the PTP through ATP synthase, but this is controversial (Figure 1a). In addition, CyPD 

may control assembly of the electron transport chain (ETC), making CyPD a central node for control 

of mitochondrial function (Figure 1b). How CyPD’s PPIase activity is involved in this process 
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remains unclear, as there are very few reports on the mitochondrial targets of this activity (Figure 

1c). Finally, recent evidence suggests that the interaction of CyPD with other proteins may also be 

important for regulating mitochondrial function (Figure 1d). This review builds upon excellent 

previous reviews of this molecule [3-7] and will discuss these aspects of CyPD and present a model 

of known CyPD roles in the mitochondrial matrix. 

Table 1. List of abbreviations. 

Abbreviation Full Name Gene Name 1 

AMPK AMP kinase  

ANT adenine nucleotide translocator Slc25a4-6 

ATP5PB ATP synthase peripheral stalk-membrane subunit B Atp5pb 

ATP5PD ATP synthase peripheral stalk-membrane subunit D Atp5pd 

BCL2 B-cell lymphoma 2 Bcl2 

C1QBP complement 1q-binding protein C1qbp 

CNP 2',3'-Cyclic Nucleotide 3' phosphodiesterase Cnp 

CsA cyclosporin A  

CyPD cyclophilin D Ppif 

DNAJC15 DnaJ heat shock protein family (Hsp40) member C15 Dnajc15 

ERK mitogen-activated protein kinase 1 Mapk1 

ETC electron transport chain  

GSK-3β glycogen synthase kinase-3β Gsk3b 

HK hexokinase Hk1-4 

HSP60 heat shock protein 60 Hsp60 

HSP70 heat shock protein 70 Hsp70 

HSP90 heat shock protein 90 Hsp90 

IMM inner mitochondrial membrane  

IRI ischemia–reperfusion injury  

kDa kilodaltons  

MST1 mammalian sterile 20-like kinase 1 Stk4 

mtCK mitochondrial creatine kinase Ckmt1,2 

OMM outer mitochondrial membrane  

OSCP oligomycin sensitivity conferral protein Atp5po 

OXPHOS oxidative phosphorylation  

PiC mitochondrial phosphate carrier Slc25a3 

PMSF phenylmethylsulfonyl fluoride  

PPARα peroxisome proliferator-activated receptor-α Ppara 

PPIase peptidyl-prolyl, cis-trans isomerase  

PTP mitochondrial permeability transition pore  

SIRT3 sirtuin 3 Sirt3 

SPG7 spastic paraplegia 7 Spg7 

STAT3 signal transducer and activator of transcription 3 Stat3 

TRAP-1 tumor necrosis factor type 1 receptor-associated protein Trap1 

tBID BH3 interacting domain death agonist Bid 

TSPO translocator protein of 18 kDa Tspo 

VDAC voltage-dependent anion channel Vdac1-3 
1 If applicable, human gene nomenclature is from GeneCards ([8,9]). 

2. Mitochondrial Function and the Mitochondrial Permeability Transition Pore 

Mitochondria are traditionally known as the powerhouses of the cell, creating energy in the 

form of ATP through the process of oxidative phosphorylation (OXPHOS). Reducing equivalents 

from glycolysis, fatty acid oxidation, other substrates, and the Krebs cycle enter complexes I 

(NADH-ubiquinone oxidoreductase/dehydrogenase) and II (succinate oxidoreductase/ 
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dehydrogenase, also part of the Krebs cycle). Electrons are transferred successively to ubiquinone, 

complex III (ubiquinol-cytochrome c oxidoreductase/dehydrogenase), cytochrome c, and complex IV 

(cytochrome c oxidase), which transfers the electron to oxygen, the final electron acceptor (Figure 

1b). Driven by these redox reactions, complexes I, III, and IV pump protons from the mitochondrial 

matrix to the intermembrane space, creating an electrochemical gradient, called the proton motive 

force (composed of a membrane potential and a proton gradient), across the IMM. ATP synthase 

uses the energy of the proton motive force to create ATP from ADP and inorganic phosphate. 

Presumably to increase the efficiency of OXPHOS, the ETC can dynamically form supercomplexes: 

complexes I, III, and IV can combine with ubiquinone and cytochrome c to form respirasomes that 

may increase the efficiency of proton motive force generation, while ATP synthase can oligomerize 

with ANT and PiC to form synthasomes that increase the efficiency of ATP production and 

translocation into the cytoplasm (Figure 1b) [10-15]. The proton motive force also controls a number 

of other transporters within the IMM, including ANT and PiC, which are required to provide the 

substrates for ATP production and its transport into the cytoplasm. 

Mitochondrial coupling is defined as a coordinated link between the activity of the ETC to 

create the proton motive forces and the activity of ATP synthase to produce ATP, and this requires 

tight control of IMM electrical resistance; uncoupled mitochondrial have low IMM resistance, such 

that the proton motive force is dissipated, thus preventing ATP production. This coupling can be 

regulated to control substrate utilization and mitochondrial ATP production. For example, to 

generate heat, uncoupling proteins in the IMM can increase the activity of complexes I–IV of the 

ETC, leading to increased utilization of fuels, such as fats and sugars, without significant increase in 

ATP production [16]. Mitochondrial coupling also regulates cellular physiology and health, as 

collapse of the electrochemical gradient initiates apoptosis and/or necrosis by various signals [17]. 

 

Figure 1. A model of the molecular and physiologic mechanisms of cyclophilin D (CyPD)’s action 

and regulation. (a) The major known physiologic function of CyPD is regulation of the mitochondrial 

permeability transition pore (PTP). It remains unclear how CyPD regulates the three models of the 

PTP presented: the c ring of ATP synthase (left), dimers of ATP synthase (middle), and an unknown 

entity in the inner mitochondrial membrane (right). (b) Data also suggests that CyPD may regulate 

oxidative phosphorylation (OXPHOS) activity, perhaps altering the activity of the respiratory chain 

and respirasome assembly and inhibiting the activity of ATP synthase and synthasome assembly 

(electron transport chain (ETC) complexes and ATP synthase are labeled with their complex number, 
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while q and c designate coenzyme q/ubiquinone and cytochrome c, respectively. (c) CyPD is a 

peptidyl-prolyl, cis-trans isomerase (PPIase) that resides in the mitochondrial matrix, but the targets 

of this PPIase activity are poorly defined. (d) CyPD also functions as a scaffold protein, bringing 

various structural and signaling molecules together to effect changes in mitochondrial physiology. 

(e) CyPD’s activity is regulated by its expression, which is developmentally regulated in some 

organs, and its post-translational modification, shown as phosphorylation (P), acetylation (Ac), 

S-nitrosation (SNO), oxidation (Ox), and S-glutathionylation (Glu). 

The PTP is a well-known regulator of mitochondrial IMM coupling, and the history of early 

research on it is reviewed in more detail in [11,17-19]. The phenomenon of an IMM permeability 

transition was discovered in the 1950s. The term “permeability transition” and the biophysical 

properties of the PTP were described in 1979 by Hunter and Hayworth [20-22] and reviewed in [23]. 

They and others defined it as a relatively unselective and large pore that allows molecules of up to 

1.5 kDa to cross the IMM. It is well-established that sustained opening of the PTP stimulates 

mitophagy and cellular necrosis [24], but data from many laboratories, including ours, suggests the 

both sustained and transient opening of the PTP can serve a signaling role in the cell, likely through 

the regulation of oxidative stress [17,23,25-28]. Despite much work over the years, understanding the 

physiology and regulation of the PTP has been hampered by the lack of molecular identification of 

the PTP, and studies of CyPD have played a central role in this search for the molecule or molecules 

that create, and do not merely regulate, the PTP. 

3. Cyclophilin D Regulates the Mitochondrial Permeability Transition Pore 

A number of entities have been proposed to create the PTP, and many of these models have 

been partially or fully discounted so that the real identity of the PTP remains controversial 

(reviewed in [11,18,29]). Many mitochondrial proteins have been proposed to be the PTP, including 

ANT and PiC in the IMM, mitochondrial creatine kinase (mtCK) in the intramembrane space, and 

hexokinase (HK), the translocator protein of 18 kDa (TSPO), and the voltage-dependent anion 

channel (VDAC) in the outer mitochondrial membrane (OMM), but these were eventually 

eliminated from consideration [15,30-36]. In addition, it was proposed that unfolded proteins could 

create the PTP [37] and that polyphosphate chains and polyhydroxybutyrate could participate in 

PTP formation [38,39]. 

Cyclophilin D has also been considered a candidate to form the PTP. In the 1980s, 

mitochondrial structure, respiration, and calcium levels were found to be affected by cyclosporin A 

(CsA) [40-42]. Eventually, the PTP was found to be inhibited by some cyclosporins, a class of 

immunosuppressant molecules that inhibit cyclophilins [43,44]. In 1990, the mitochondrial target of 

CsA was described as a PPIase, whose inhibition also inhibits the PTP [1], and this was confirmed 

and CyPD was identified as the PPIase within a few years [2,45]. Cyclophilin D was found to be an 

important regulator of the PTP, but, as with many other potential candidates, the deletion of CyPD 

merely altered this regulation, and did not eliminate PTP activity, thus eliminating CyPD as a 

candidate for forming the pore of the PTP [46-49]. Cyclophilin D appears to control opening of the 

PTP by sensitizing it to calcium, inorganic phosphate, and perhaps reactive oxygen species, but 

deletion of CyPD did not alter responses to other PTP stimuli, such as adenine nucleotides, 

membrane depolarization, pH, thiol oxidants, and ubiquinones [46-50]. 

Cyclophilin D expression is associated with sensitivity to opening of the PTP. In the rat brain, 

decreasing expression of CyPD is associated with decreasing sensitivity to PTP opening during 

neuronal differentiation [51]. In agreement with previous work [1,51], we found that CyPD 

expression levels are similar in mouse heart and liver, but significantly lower in brain, and these 

expression levels roughly correlate with CyPD PPIase activity [52]. Although we did not correlate 

CyPD expression or activity to PTP opening in these tissues, others have shown that sensitivity to 

PTP opening is highest in liver compared to heart and much lower in brain mitochondria [51,53,54]. 
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4. Cyclophilin D Regulates Mitochondrial Function 

Both the PTP and CyPD are involved in the regulation of mitochondrial function, but 

determining independent effects of CyPD is difficult. For example, there is a correlation of decreased 

CyPD expression with levels of respiration in various organs and during development, but this 

could be due to direct effects on the PTP [51,55]. In addition, in the aging brain, increased CyPD 

levels are associated with decreased ATP synthase activity, but there is also increased IMM 

uncoupling, perhaps from PTP activity, that could explain this effect [56]. However, changes in ATP 

synthase activity could be due to non-PTP mechanisms. For example, in well-coupled (e.g., PTP 

closed) heart mitochondria, CsA treatment displaced CyPD from the IMM to the matrix, and this led 

to increased ATP synthase enzymatic rates, while ATP synthase reaction rates were 50% higher in 

CyPD null compared to wild type mitochondria [57]. An additional study found similar changes in 

heart and liver ATP synthase activity when CyPD was inhibited or deleted [58]. 

We recently studied the correlation of CyPD expression and PPIase activity with synthasome 

assembly in the mouse heart, liver, and brain [52]. In heart mitochondria, we found that increased 

respiration and decreased CyPD activity and PTP opening were associated with an increase in 

synthasome assembly. However, neither CyPD expression nor its total or specific PPIase activity 

correlated with these changes in different tissues. Instead, and similar to the effects of dissociation of 

CyPD from the IMM on ATP synthase activity [56-58], we found that the CyPD’s PPIase activity 

relative to ATP synthase protein expression correlate with synthasome assembly [52]. 

The rest of the ETC may also be affected by CyPD. First, CyPD may mask or otherwise interact 

with the rotenone inhibition site on complex I [59,60]. Second, overexpression of CyPD in HEK293 

cell mitochondria increased respiratory activity, particularly the activity of complex III. In addition, 

this led to increased assembly of supercomplexes containing complexes I, III, and IV, and faster 

incorporation of complex III into these supercomplexes, while CyPD was found to bind to complex 

III and supercomplexes containing complex III [61]. Third, we found that increased activity of ETC 

complexes I and II and the assembly of respirasomes occurred in the mouse mid-embryonic heart at 

about mouse embryonic day 11.5 [62], and that this was accelerated by deletion of CyPD [63]. 

However, one must be careful when evaluating the effects of CyPD inhibition on mitochondrial 

function and PTP activity when using tissues from animals where CyPD is deleted. These mice have 

a normal lifespan but are obese [64], but we have seen increased variability in apparent embryonic 

stage although there are normal litter sizes [26]. This chronic “inhibition” of CyPD can activate 

compensatory mechanisms that disrupt normal cellular physiology. For example, CyPD null mice 

have altered mitochondrial calcium levels that activate calcium-dependent mitochondrial 

dehydrogenases and alter the balance of glucose versus fatty acid oxidation in the heart [65] and 

increase glucose metabolism throughout the animal [66]. In addition, CyPD deletion in the heart has 

been found to alter the expression of proteins in the Krebs cycle, and branch chain amino acid and 

pyruvate metabolism [67]. Furthermore, cardiac CyPD deletion alters mitochondrial protein 

acetylation patterns that may significantly affect cellular metabolism [68]. One might debate which 

of these effects are primary and which are secondary to CyPD deletion, but these changes must be 

taken into account when using CyPD null mouse models. 

Therefore, although there may be some experimental caveats, CyPD does appear to regulate 

mitochondrial OXPHOS, perhaps through both proton motive force generation by complexes I–IV 

and the utilization of this force by ATP synthase to create ATP. These effects may be caused, in part, 

by the activation of the PTP, but there are also likely to be PTP-independent effects on mitochondria. 

5. Cyclophilin D’s Binding Partners 

Cyclophilin D has been found to bind to an increasing number of classical and non-classical 

mitochondrial proteins (see Figure 1d and Table 2 for a summary). Early work suggested an 

interaction between CyPD, ANT, PiC, and VDAC to create the PTP. Numerous laboratories reported 

that CyPD complexes with ANT and VDAC to create the PTP [1,69-71], and the PiC is also found to 

bind to CyPD with ANT [72]. Cyclophilin D was associated with complexes of ANT and VDAC with 

or without HK that had PTP-like electrophysiologic properties, while it was not associated with 
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complexes of ANT, VDAC, and mtCK, which did not have these PTP-like properties [73,74]. 

However, subsequent deletions of ANT, VDAC, and PiC suggested that they regulated, and did not 

form, the PTP [30-34]. Therefore, although none of these proteins create the PTP, the interaction of 

CyPD with ANT, PiC, and other associated proteins is a major regulator of the PTP, but the 

mechanisms of this regulation remain unclear. 

Interactions between CyPD and ATP synthase suggest that the PTP may reside within this 

important complex. Cyclophilin D interacts closely with the ATP synthase subunits b (ATP5B), d 

(ATP5D), and OSCP, the latter in a pH-sensitive manner [56,57,75,76], but PTP properties remain 

despite deletions of subunits b and OSCP [77]. Cyclophilin D binding to OSCP may facilitate 

deacetylation of CyPD by Sirtuin 3 (SIRT3), as this protein also binds to OSCP [78], while this CyPD–

OSCP interaction is inhibited by OSCP’s interaction with estrogen receptor beta [79]. Furthermore, 

ATP synthase can form synthasomes that also contain ANT, PiC, and mtCK [12,15], which were 

found to contain PTP-like activity, as discussed above, and we recently reported that CyPD binds to 

these synthasomes [52]. Further linking CyPD to multimeric complexes of ANT and PiC, a report 

suggested that the IMM protein, spastic paraplegia 7 (SPG7), may link CypD to VDAC in the OMM 

[80], but these data have not been confirmed and are controversial [81]. 

Cyclophilin D is required to elicit PTP-like activity in electrophysiologic experiments using 

mitochondrial inner membranes and purified components of ATP synthase. The Bernardi group 

found that a CsA-insensitive, PTP-like activity was present in purified ATP synthase dimers, but not 

monomers, and that the lack of CyPD in these preparations may explain the insensitivity to CsA [76]. 

With the Jonas laboratory, we showed that purified ATP synthase monomers displayed PTP-like 

activity that was sensitive to CsA only if purified CyPD was added to the preparation, and this 

CyPD/CsA-sensitivity disappeared when purified ATP synthase c-subunits were examined, or if 

peripheral membrane components of ATP synthase were denatured using urea [82]. Additional data 

from other laboratories support the idea that the PTP is derived from monomers or dimers of ATP 

synthase [38,76,82-85], but others have presented data suggesting that this is not the case [77,86]. 

This controversy is the subject of many recent reviews [28,29,87–94].  

A few other classic mitochondrial proteins have been shown to bind to CyPD. As discussed in 

Section 4, both complex I and complex III of the electron transport chain have been shown to bind 

CyPD [61]. In addition, AMP kinase (AMPK) induces a dissociation of peroxisome 

proliferator-activated receptor-α (PPARα) from CyPD, thus inhibiting PTP opening [95]. 

A number of proteins involved in various cellular signaling pathways have been found to 

interact with CyPD. Cyclophilin D binds to both mitogen-activated protein kinase 1 (ERK) and 

glycogen synthase kinase-3β (GSK-3β) in the mitochondrial matrix [96,97], and the 

phosphorylation/deactivation and mitochondrial translocation of GSK-3β decreases the interaction 

of CyPD and ANT and suppresses PTP opening in a developmentally regulated manner [55,98]. 

Mammalian sterile 20-like kinase 1 (MST1) lies upstream of protein kinase pathways, and was 

shown to enter mitochondria and bind to CyPD to enhance cell death [99]. 

Protective and stress response pathway proteins can also bind to CyPD. In cancer cells, CyPD 

binds to a complex of tumor necrosis factor type 1 receptor-associated protein (TRAP-1) and its 

related proteins heat shock protein 90 (HSP60) and heat shock protein 90 (HSP90) in the 

mitochondrial matrix; this binding sequesters CyPD and prevents it from opening the PTP, while an 

HSP90 inhibitor releases CyPD and causes PTP opening [100-102]. In contrast, the cell-stress 

response protein, p53, binds to CyPD to induce the PTP in various cell types [103,104]. This 

important protein may enter the mitochondrial matrix via as many as three redox/respiration 

dependent import pathways, unfolding as it enters [105,106]. The p53 and TRAP-1 pathways may be 

linked, as a model in which oxidative stress induces p53 translocation into the mitochondrial matrix 

where unfolded p53 then binds to and displaces CyPD from TRAP-1, increasing CyPD’s PPIase and 

PTP-opening activity [105]. Perhaps in a related pathway, overexpression of the DnaJ heat shock 

protein family (HSP40) member C15 (DNAJC15) increased PTP opening and, in stressed cells, 

DnaJC15 and heat shock protein 70 (HSP70) were found to bind to CyPD [102]. 
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Cyclophilin D binds to B-cell lymphoma 2 (BCL2) in a CsA-sensitive manner but independent 

to its binding to ANT and changes in calcium levels. This interaction increases BCL2’s prevention of 

BH3 Interacting Domain Death Agonist (tBID)-mediated cytochrome c release from mitochondria, 

an initiating event in apoptosis that is not related to the PTP [107]. Signal transducer and activator of 

transcription 3 (STAT3) binds to CyPD and induces cardioprotection, although the mechanisms by 

which this occurs are unclear [108,109]. Tissue kallikrein also induces cardioprotection, perhaps by 

association with CyPD and VDAC, as demonstrated by proximity ligation assays [110]. 

Finally, a few other proteins that have been shown to modify PTP activity can bind to CyPD. 

Complement 1q-binding protein (C1QBP), which may inhibit the PTP, may protect cells from injury 

by binding to CyPD, but not ANT or VDAC, in the mitochondrial matrix [111]. The enzyme 

2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP) can bind to CyPD, perhaps indirectly via binding 

to ANT, to increase PTP opening [112]. 

Table 2. CyPD binding partners. 

Protein Binding to CyPD 1 References 

ANT Direct [1,69–71] 

ATP5PB Possibly direct [57,75] 

ATP5PD Possibly direct [57,75] 

BCL2 Direct [107] 

C1QBP Direct [111] 

CNP Indirect [112] 

DNAJC15 Direct [102] 

ERK Direct [96] 

GSK-3β Direct [55,96,97] 

HK Indirect [73,74] 

Hsp60 Direct [100,101] 

Hsp70 Direct [102] 

Hsp90 Direct [100,101] 

MST1 Direct [99] 

mtCK Indirect [73,74] 

OCSP Direct [56,57,75] 

p53 Direct [103,104] 

PiC Direct [72] 

PPARα Direct [95] 

SIRT3 Indirect [78] 

SPG7 Direct [80] 

STAT3 Direct [108,109] 

Tissue kallikrein Possibly direct [110] 

TRAP-1 Direct [100-102] 

VDAC Indirect [69,80] 
1 Binding associations are listed as ‘Direct’ if immunoprecipitation or affinity matrix assays were 

used, ‘Possibly Direct’ if proximity assays were used, and ‘Indirect’ if there is no clear direct binding 

but the protein has been physically associated with CyPD. 

6. Cyclophilin D’s Enzymatic Activity 

Cyclophilin D was initially identified by the ability of CsA to inhibit its PPIase activity 

[1,2,40,44], and a working model of the molecular mechanism of CyPD’s PPIase activity based on its 

similarity to cyclophilin A was recently presented [6]. Therefore, the general consensus is that this 

PPIase activity is important for CyPD’s control of mitochondrial function. However, there is very 

little data confirming that CyPD participates in protein folding. Some reports demonstrated that the 

mitochondrial cyclophilins of yeast/molds participate in mitochondrial protein folding upon 

importation in cooperation with HSP60 and HSP70 [113,114]. One manuscript showed that CyPD’s 
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isomerization from trans to cis of proline residue 61 maintains rat liver ANT in its cytoplasmic (“c”) 

facing conformation to cause opening of the PTP [115], while a study of mouse embryonic fibroblasts 

and a human cell line found that CyPD may isomerize unfolded p53 to create fibrils in the 

mitochondrial matrix [105]. 

Cyclophilin D’s PPIase activity has been shown to protect cells from apoptotic stimuli, but this 

protective effect of CyPD on cellular viability is not widely reported outside of cancer cells and may 

be unrelated to CyPD’s control of the PTP [107,116]. In addition, re-expression of an 

isomerase-inactive CyPD did not rescue the wildtype phenotype in CyPD null fibroblasts [46]. 

However, it has also been suggested that CyPD’s control of the PTP may be independent of its 

PPIase activity [117], as has been found for the inhibition of calcineurin by cyclophilin A [118,119]. In 

addition, ablation of CyPD’s PPIase activity and/or substrate binding does not affect its ability to 

bind to ANT, an important mechanism in PTP regulation [116], although ANT is reported to be a 

target of CyPD’s PPIase activity [115]. 

We recently suggested that CyPD may control ATP synthase-containing synthasome assembly, 

but we did not find that the expression levels or absolute or specific activity of CyPD correlated with 

synthasome assembly [52]. Therefore, CyPD’s regulation of synthasome assembly may not be 

related to CyPD’s PPIase activity. However, CyPD’s PPIase activity relative to ATP synthase protein 

expression was associated with changes in synthasome assembly [52]. These findings may be 

important for the PTP, as we presented a model in which increased synthasome assembly decreases 

the probability of PTP formation from ATP synthase monomers or dimers. If this model is correct, 

then it remains undetermined whether and how CyPD PPIase activity controls this process. 

The standard assay for measuring PPIase activity was first reported by the Fischer group in the 

early 1980 [120,121] and has been used in many publications since with minor alterations [122,123]. 

In addition, a newer, fluorescence-based assay was recently reported [105]. We have employed the 

older assay [52] and find that, to discern the specific activity of mitochondrial CyPD, purified 

mitochondria must be used to eliminate the measurement of non-mitochondrial PPIases. In addition, 

it is important to include controls containing CsA, as other PPIases are present in mitochondria. One 

should also avoid the use of protease inhibitors during processing of the tissue, as we found that 

phenylmethylsulfonyl fluoride (PMSF) and commercial protease inhibitor cocktails inhibit PPIase 

activity but not the ability of CyPD to bind or remain bound to its target protein [63]. Finally, using a 

spectrophotometer with fast reading rates make is easier to measure the rapid upstroke of 

absorbance that occurs when the reaction is initiated [63]. 

7. Physiologic Regulation of Cyclophilin D 

Most early experimental dissection of CyPD’s function involved its deletion, inhibition, or 

overexpression, but more recent work has defined the physiologic regulation of CyPD by 

post-translational modifications, including acetylation, oxidation, S-nitrosation, S-glutathionylation, and 

phosphorylation. A better understanding of the mechanisms by which CyPD undergoes these 

post-translational modifications could provide therapeutic targets to modulate CyPD activity in patients. 

7.1. Acetylation 

Acetylation is an important post-translational modification that responds to the metabolic state 

of the cell. Spontaneous acetylation can occur in conditions observed in the mitochondrial matrix (an 

alkaline environment and abundance of acetyl-CoA [124]), while one mitochondrial transacetylase 

has been described [125-127]. Acetylation of cyclophilin A at lysine 125 inhibits its PPIase activity 

and cyclosporin binding, leading to increased calcineurin activity [128]. Cyclophilin D can be 

acetylated at lysine residue 166, which is close to the PPIase catalytic site, and this residue can be 

deacetylated by SIRT3, the major deacetylase in mitochondria [129]. Two manuscripts showed that 

acetylation of this residue increases CyPD’s PPIase activity but, unfortunately, they were retracted, 

and the data supporting this finding was difficult to interpret. Since then, no studies have been 

published that confirm this finding. 
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Other circumstantial evidence suggests that CyPD acetylation is an important physiologic 

mechanism. Inhibition of this deacetylation using SIRT3 deletion caused increased death when mice 

were subject to stress by transaortic constriction [129], while heart failure decreased the expression 

of SIRT3 and increased CyPD acetylation [130]. An additional report demonstrated that 

hypoxia/ischemia increased CyPD acetylation but that overexpression of SIRT3 attenuated this 

acetylation and the resulting pathology in vitro. Furthermore, expressing a CyPD acetylation mimic 

decreased calcium retention and increased cell death while expression of a deacetylated CyPD 

mimic had the opposite effects in this cardiac cell line. In vivo, IRI increased CyPD acetylation, while 

ischemic conditioning, which decreased injury, decreased this acetylation in the heart, presumably 

via SIRT3, as these effects were lost in SIRT3 null mice [131]. Similar effects of IRI in the heart and 

brain were rescued by hypothermia and CyPD inhibition [132]. Finally, IRI in liver increased CyPD 

acetylation levels and treatment with NAD+, a SIRT3 substrate, ameliorated this effect [133]. 

7.2. Oxidation/Nitrosation/Glutathionylation 

As with acetylation, oxidation is an important post-translational modification in mitochondria, 

as much of the cellular reactive oxygen species is produced by the ETC. The cysteine residue 203 

(human sequence) of CyPD is redox-sensitive, and its oxidation does not alter PPIase activity [134]. 

This residue was found to undergo S-nitrosation in vivo [135], and treatment of mouse embryonic 

fibroblasts with a nitric oxide donor protected from PTP opening induced by oxidative stress [136]. 

In addition, expression of CyPD that was mutated to prevent modification of this reside (C203S) also 

protected cells from PTP opening in vivo and in vitro [136]. Furthermore, tachycardia 

preconditioning decreased PTP opening and increased S-glutathionylation of CyPD [137]. These 

results suggest that these modifications prevent oxidation of C203S residue, a deleterious 

modification that could help activate the PTP, although it should be noted that Bos taurus CyPD lacks 

this particular residue, yet displays a canonical CsA-sensitive PTP. 

7.3. Phosphorylation 

The importance of phosphorylation in the regulation of mitochondrial proteins has been 

questioned; although kinases have been shown in mitochondrial preparations, it is unclear how they 

translocate into the mitochondrial matrix from the cytoplasm without an obvious mitochondrial 

targeting sequence, and there are no known phosphatases to counteract their activity. However, 

there are some reports that suggest that CyPD can be phosphorylated to enhance its activity. 

Cyclophilin D can be phosphorylated by GSK-3β, and this is associated with increased PTP opening 

in a cell line [96]. In a rat liver model, increased CyPD phosphorylation was induced after IRI was 

decreased after treatment with an inhibitor of GSK-3β [133]. The serine/threonine kinase 2 was also 

shown to phosphorylate CyPD at serine residue 31, and CyPD null cells expressing a 

dephosphorylation mimic (S31A) lacked PPIase activity and exhibited disruption of multiple 

bioenergetic pathways and, in contrast to the above, evidence of PTP opening [138]. Finally, it was 

reported that deletion of the calcium uniporter increased CyPD phosphorylation at S42, CyPD’s 

association with ATP synthase, and sensitivity of the PTP to calcium [139]. 

8. Therapeutic Potential of Targeting Cyclophilin D 

Since the PTP is an important mediator of cell necrosis, a major goal of research over the last 30 

years has been to design pharmacologic reagents to prevent opening of the PTP and the subsequent 

organ pathophysiology. Much of this work has focused on IRI, although models of different 

pathologic states have been studied. From the beginning, this work has focused on inhibiting CyPD 

using CsA, its analogues, and unrelated reagents. 

The beneficial effects of CyPD inhibition on IRI have been reported in too many manuscripts to 

be addressed completely in this review, but a few notable examples will be discussed. Cyclosporin A 

was first found to be protective in IRI in vivo in 1993 [140]. Inhibition or deletion of CyPD has been 

used to show a similar protection from IRI in the heart [141], skeletal muscle [142], lung [143], brain 
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[144], and kidney [145]. Regarding the heart, the Ovize laboratory translated this idea into the clinic 

by treating patients with acute myocardial ischemia with CsA during percutaneous coronary 

intervention. Although initial studies suggested that this therapy was somewhat effective [3,146], a 

larger study failed to show substantial benefit from this therapy [147], perhaps due to the 

formulation of CsA used [148,149]. 

Further work must be done to determine if these treatments can be used clinically in the 

ischemic heart and in other models of human disease. For example, we recently published data 

suggesting that inhibition of CyPD may increase cardiac function in the neonatal heart [27]. 

Cyclophilin D inhibition using CsA or its analogue, NIM811, increased mitochondrial maturity and 

myocyte differentiation in cultured neonatal myocytes. Treatment of neonatal mice with daily 

injections of these reagents significantly increased cardiac function at 7 days of age. Cyclophilin D 

null mice had similar findings both in vivo and in vitro [27]. Therefore, it is possible that CyPD 

inhibition could be used to increase cardiac function in neonates who have cardiomyopathy due to a 

variety of conditions. 

For these treatments to be effective, appropriate drugs must be available. Cyclosporin A is the 

prototypical CyPD inhibitor, but it also inhibits cyclophilin A and the calcineurin pathway, an effect 

that has long been used for immunosuppression in humans. A number of non-immunosuppressive 

analogues of CsA, which do inhibit CyPD, have been developed, including NIM811 

(N-methyl-4-isoleucine-cyclosporin), Alisporivir (Debio025), and MeVal-4-cyclosporin 

(N-methylvaline-4-cyclosporin A) (Figure 2a) [19,150–152]. In addition, mitochondrial-targeted 

analogues have been developed to increase the relative concentration of CsA in mitochondria 

(Figure 2b) [153–155]. Additional CyPD inhibitors, not related to CsA, include Sanglifehrin A, 

antamanide, ER-000444793, and urea-derived compounds (Figure 2c) [156–160], while small 

molecule screens have identified other inhibitors of CyPD [161]. In addition, given the many CyPD 

binding partners and post-translational modifications, it is possible that inhibitors of pathways that 

regulate CyPD might also be used to modulate its action. For example, an inhibitor of the 

TRAP-1/HSP90 complex, Gamitrinib, may also modulate CyPD activity [138]. 

9. Conclusions 

Cyclophilin D is a small but complex molecule that appears to play an important role in 

mitochondrial biology, but the mechanisms by which it does this are still obscure (Figure 1). It is a 

chaperone protein that can help fold other proteins, but there is scant evidence that it does this in the 

mitochondrial matrix. Alternatively, CyPD may play a role as a scaffolding protein, as evidence 

suggests that it binds to many proteins in the matrix, particularly those involved in stress responses. 

Finally, it undergoes post-translational modifications that likely regulate its activity. 

How these aspects of CyPD control and/or participate in its recognized function of PTP 

regulation remains a mystery. Data is conflicting on the role of PPIase activity in PTP regulation, 

although it is likely that this enzymatic activity is important for this function. In addition, the 

multiple binding partners for CyPD suggest a complex regulation of its control of the PTP, as would 

be expected for such an important cellular phenomenon. Finally, the PPIase and scaffolding 

activities of CyPD are not mutually exclusive, as protein folding may affect CyPD’s binding to some 

proteins, e.g., p53, while binding to protein complexes may control whether active CyPD is free to 

fold proteins in the matrix. 

Finally, although CyPD likely has other functions in the mitochondrial matrix, its main function 

is thought to be regulation of the PTP. First, more work must be done to discover and dissect these 

non-PTP functions. Experiments must also be done to determine the importance and mechanisms of 

CyPD’s regulation of synthasome assembly and ETC activity. Finally, until the identity of the PTP is 

determined, it will remain difficult to fully understand how CyPD controls the PTP, and if this is 

related to its regulation of the ETC. Thus, despite all of the work demonstrating the importance of 

CyPD as a master regulator of mitochondrial function, our lack of knowledge of this phenomenon 

makes it also a troublemaker when trying to understand mitochondrial function. 
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Figure 2. Structures of various CyPD inhibitors. (a) Cyclosporin A (CsA) and two of its common 

derivatives, NIM811 ((Me-Ile-4)cyclosporin A), and Alisporivir (Debio-025, 

MeAla(3)EtVal(4)-cyclosporin). (b) To increase its concentration in the mitochondrial matrix, a 

positively charged, quinolinium cation was tethered to CsA to create compound JW47 [155]. (c) 

CyPD inhibitors not derived from CsA include Sanglifehrin A [158], antamanide [156], 

ER-000444793 [157], and compound 7fb (1-(3-(3-chlorobenzyloxy)pyridin-2-yl)-3-(2-fluorophenyl)) 

[159]. Structures were drawn using the program “Marvin JS” by ChemAxon at the Fischer Scientific 

website [162] and based on structures in [163] (a,b) and the references given (b,c). 

10. Patents 

G.A.P.J. has a patent pending entitled “Compositions and methods for enhancing cardiac 

function in the neonate” that is related to this subject. 
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