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Abstract: Inflammation may be a risk factor for atrial fibrillation (AF). Oral infections frequently lead
to chronic inflammation, such as gingivitis, periodontitis, and endodontic lesions. In this narrative
review, we consider five basic pathogenic mechanisms that involve oral infections and inflammations
in the pathogenesis of AF: (1) low level bacteremia by which oral bacteria enter the blood stream
at inflamed sites of the oral cavity and invade the heart; (2) Systemic inflammation induced by
inflammatory mediators, which are released from the sites of oral inflammation into the blood
stream, affecting cardiac remodeling; (3) autoimmunity against molecular structures expressed in the
heart caused by the host immune response to specific components of oral pathogens; (4) potentially
arrhythmic effects mediated by activation of the autonomous nervous system triggered by oral
inflammations; and (5) arrhythmic effects resulting from specific bacterial toxins that are produced
by oral pathogenic bacteria. A number of studies support the involvement of all five mechanisms,
suggesting a potentially complex contribution of oral inflammations to the pathogenesis of AF.

Keywords: oral health; atrial fibrillation; bacteremia; autoimmunity; autonomous nervous system;
bacterial toxins

1. Introduction

Atrial fibrillation (AF) is the most common persistent cardiac arrhythmia occurring in clinical
practice. In Europe, around 6 million people suffer from AF; in the entire western world 1.5–2% of the
population is affected, with more men than women. The prevalence of AF is age-dependent, rising
from <0.5% in 40–50-year-old individuals to 5–15% in 80-year-olds and will continue to increase over
the next 50 years [1,2]. After reaching the age of 40, 25% of men and women are at risk of developing
AF during their later life [3]. Around 70% of affected patients are between 65 and 85 years old [4].
Atrial fibrillation is a risk factor for heart failure, dementia, and stroke [5–7].

Risk factors for AF include age, gender, high body mass index, hypertension, cardiovascular
disease, valvular disease, and heart failure among others [3]. However, these conventional risk factors
explain only a minor fraction of all AF cases, suggesting that additional risk factors may be relevant.
Among these additional risk factors, a substantial heritable component is of note [2]. Large twin studies
estimated the total heritability of AF to be as high as 62% [8] and recent genome-wide association
studies led to the identification of risk variants at over 100 genetic loci [9], many of which located at
genes implicated in heart defects, ion channels, and heart muscle structure and function. In addition
to these genetic markers, there is a contribution of inflammation to AF risk that is likely not sufficiently
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covered by the existing risk models [10]. That inflammation may contribute to AF is supported by
a number of clinical observations: (i) AF is associated with pericarditis [11]; (ii) the incidence of
post-operative AF is influenced by IL-6 genotype and level [12]; and (iii) the observation that 25% to
40% of people develop AF after cardiac surgery [13]. It could be demonstrated that the time course of
AF after cardiac surgery coincides with the activation of the complement system and the release of
pro-inflammatory cytokines [13,14].

Humans are affected by a great number of infections and chronic inflammations. Over a lifetime,
oral infections are important, because of their longstanding nature and high frequency in the
population. Infective endocarditis, for instance, which is caused by bacteria that colonizes the teeth,
often results from bacteremia after toothbrushing [15]. Participants with high plaque and calculus
scores were at a 3.78- and 4.43-fold increased risk of developing bacteremia and bleeding induced by
toothbrushing was associated with an almost eight-fold increased risk for bacteremia [16]. In a recent
study, 14 of 22 cases of pericarditis were positive for endodontitis-related bacteria (63.6%), while eight
were positive for periodontis-related bacteria (36.4%) [17].

It appears conceivable that cardiac arrhythmias could potentially also be affected by the systemic
inflammation, which is known to accompany oral inflammations and/or by autoimmunity against
molecular structures expressed in the heart caused by the host immune response to specific oral
pathogens. Finally, arrhythmic effects resulting from activation of the autonomic nervous system and
from specific bacterial toxins that are produced by oral pathogenic bacteria could also play a role.
To evaluate these potential mechanisms, we screened the published literature and reviewed the most
important findings in this context.

2. Frequent Forms of Chronic Oral Infections Potentially Associated with Atrial Fibrillation

Oral infections potentially associated with AF include infections of the teeth, such as caries, which
may lead to endodontic lesions, and infections of the gingival tissues surrounding the teeth, such as
gingivitis and periodontitis, the latter affecting the tooth-supporting structures [18] (see Figure 1 for
examples). Gingivitis develops when bacteria, which form a biofilm at the tooth surface, infect the
surrounding gingiva and trigger an immune response, resulting in swelling, redness and bleeding of
the gingiva [19]. The inflammation can progress to periodontitis, if the bacteria and the accompanying
inflammation migrate along the root surface and penetrate into the tooth supporting structures [20].
In Europe, almost 50% of over 30 years old individuals are affected by some form of periodontitis and
over 10% have severe chronic periodontitis [21]. In most populations, 5–20% are affected by severe,
generalized periodontitis [22,23]. Endodontic inflammations result mostly from deep dental caries,
when the infection penetrates through the teeth’s root canal to the apex of the teeth’s root where a
periapical abscess is formed [24]. Thirty to sixty percent of middle-aged Scandinavians [25,26] and
Canadians [27] were shown to be affected by at least one periapical abscess, suggesting that a large
fraction of the population is exposed to this kind of inflammation.
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Figure 1. Oral inflammation affecting the teeth, gingiva, and the periodontium. Shown are examples 
of a tooth affected by severe caries, a tooth with abscess formation revealed by orthopantomography, 
a denture with severe periodontitis with evidence of extensive loss of attachment and gingival 
recession at most teeth, and an example of gingivitis with extensive calculus formation and a swollen 
and reddened inflamed gingiva. 

3. Potential Role of Bacteremia 

The oral microbiome, which is composed of more than 700 different bacterial species, populate 
all oral hard and soft surfaces [19]. To prevent bacteria from entering the body, gingival epithelial 
cells provide a mechanical barrier and release antimicrobial peptides (i.e., hBD-2, hBD-3, cathelicidin 
LL-37). If bacteria still invade the tissue, immune cells and monocytes, which can release a wide 
range of pro-inflammatory mediators, are attracted by chemo-attractans, such as interleukins 1 and 8 
(IL-1 and IL-8) [28–31]. The edematous gingival and periodontal tissues are prone to bleeding, which 
facilitates the penetration of oral bacteria into the bloodstream. In addition, the bacteria can enter the 
body after internalization, together with phagocytic immune cells [32,33]. Transient bacteremias 
were demonstrated to occur in patients with periodontitis after tooth brushing and following 
periodontal treatment [33–35]. Oral bacteria and/or their DNA have been detected in human 
atherosclerotic lesions, the pericardial fluid, heart valves, and thrombi in many studies [17,36–40]. A 
recent meta-analysis of 63 studies that included 1791 patients confirmed the presence of 23 oral 
bacterial species in atherosclerotic plaques [41]. Campylobacter rectus, Porphyromonas gingivalis, 
Porphyromonas endodontalis, Prevotella intermedia, and Prevotella nigrescens were only detected in 
cardiac tissue, whereas the other species showed a more widespread distribution. Bacteria from 
endodontic lesions, such as Streptococcus mutans, could be detected in biopsies from heart valves 
(40% positive) and atheromas (48% positive) [42]. The polymerase chain reaction (PCR) signals for 
this bacterium were stronger than those of bacterial species related to periodontitis. Collectively, 
these results provide convincing evidence for the ability of a wide range of oral bacteria to invade 
the body most likely via the blood stream. However, evidence for their presence within the 
myocardium and their association with the cardiac conduction system is still lacking. 
  

Figure 1. Oral inflammation affecting the teeth, gingiva, and the periodontium. Shown are examples
of a tooth affected by severe caries, a tooth with abscess formation revealed by orthopantomography,
a denture with severe periodontitis with evidence of extensive loss of attachment and gingival recession
at most teeth, and an example of gingivitis with extensive calculus formation and a swollen and
reddened inflamed gingiva.

3. Potential Role of Bacteremia

The oral microbiome, which is composed of more than 700 different bacterial species, populate
all oral hard and soft surfaces [19]. To prevent bacteria from entering the body, gingival epithelial
cells provide a mechanical barrier and release antimicrobial peptides (i.e., hBD-2, hBD-3, cathelicidin
LL-37). If bacteria still invade the tissue, immune cells and monocytes, which can release a wide
range of pro-inflammatory mediators, are attracted by chemo-attractans, such as interleukins 1 and 8
(IL-1 and IL-8) [28–31]. The edematous gingival and periodontal tissues are prone to bleeding, which
facilitates the penetration of oral bacteria into the bloodstream. In addition, the bacteria can enter the
body after internalization, together with phagocytic immune cells [32,33]. Transient bacteremias were
demonstrated to occur in patients with periodontitis after tooth brushing and following periodontal
treatment [33–35]. Oral bacteria and/or their DNA have been detected in human atherosclerotic lesions,
the pericardial fluid, heart valves, and thrombi in many studies [17,36–40]. A recent meta-analysis
of 63 studies that included 1791 patients confirmed the presence of 23 oral bacterial species in
atherosclerotic plaques [41]. Campylobacter rectus, Porphyromonas gingivalis, Porphyromonas endodontalis,
Prevotella intermedia, and Prevotella nigrescens were only detected in cardiac tissue, whereas the
other species showed a more widespread distribution. Bacteria from endodontic lesions, such as
Streptococcus mutans, could be detected in biopsies from heart valves (40% positive) and atheromas
(48% positive) [42]. The polymerase chain reaction (PCR) signals for this bacterium were stronger
than those of bacterial species related to periodontitis. Collectively, these results provide convincing
evidence for the ability of a wide range of oral bacteria to invade the body most likely via the blood
stream. However, evidence for their presence within the myocardium and their association with the
cardiac conduction system is still lacking.
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4. Potential Role of Systemic Inflammation

Higher C-reactive protein (CRP), which is a sensitive biomarker for systemic inflammation, was
associated with AF in the Cardiovascular Health Study. More individuals in the fourth CRP quartile
had AF than in the first quartile (7.4% vs. 3.7%, adjusted odds ratio (OR) 1.8, 95% confidence interval
(CI) 1.2 to 2.5; p = 0.002) and baseline CRP level predicted the risk for developing future AF (fourth vs.
first quartile adjusted hazard ratio 1.31, 95% CI 1.08 to 1.58; p = 0.005), indicating that CRP is not only
associated with the presence of AF, but also predicts patients at increased risk for future development
of AF [10].

It is well known that oral infections elevate systemic CRP levels consistently [43–48]. The highest
levels have been observed in patients with acute and chronic endodontic lesions (alveolar
abscesses) [49,50]. In addition to CRP, oral inflammation affects the circulating levels of many other
inflammatory markers and cytokines (see Table 1 for details) [50,51]. The pro-inflammatory mediator
IL-6 stimulates the production of CRP and fibrinogen by the liver, resulting in an acute-phase reaction
that has pro-inflammatory and pro-atherogenic effects [46]. Clinical studies have shown that circulating
IL-6 is not only elevated in patients with periodontitis, but also in patients with heart failure—a major
risk factor for AF (see review by Wollert and Drexler [52]). Interleukin-6 stimulates cardiomyocyte
hypertrophy and apoptosis and may contribute to fibrosis during heart failure thereby altering cardiac
conduction and contributing to AF. In renal failure patients, elevated circulating IL-6 was identified
as a risk factor for AF [53] and increased circulating IL-6 levels have been demonstrated in coronary
heart disease CHD patients with AF [54]. Circulating IL-6 also correlated with the extent of left
ventricular hypertrophy of the heart, which is an important risk factor for AF, in a large group of
971 patients [55]. Finally, it could be shown that polymorphisms in the promoter of the IL-6 gene,
which influence the concentration of circulating IL-6, were associated with the risk of post-operative
AF [12,56]. In conclusion, the published data suggest that IL-6 may favor AF due to its direct effects on
electrophysiological remodeling of the heart.

Table 1. Cytokines Linked to Oral Inflammations

Cytokine Function

IL-8, MIP-1, MCP-1, RANTES Chemotactic
IL-1α, IL-1β, TNFα, IL-6, PAF Pro-inflammatory

IL-1RA, IL-4, IL-10 Anti-inflammatory
IFN-γ, IL-2, IL-4, IL-5, IL-7 Immunoregulatory

PDGF, EGF, FGF, IGF, VEGF Growth factor

EGF, epidermal growth factor; FGF, fibroblast growth factor; IFN, interferon; IGF insulin-like growth factor;
IL, interleukin; IL-1RA, interleukin-1-receptor antagonist; MIP, macrophage inflammatory protein; MCP, monocyte
chemotactic protein; PAF, platelet activating factor; PDGF, platelet derived growth factor; RANTES, regulated upon
activation, normal T cell expressed and secreted; VEGF, vascular endothelial growth factor.

In contrast to IL-6, there is little evidence in the literature for a direct effect on cardiac
electrophysiological remodeling for CRP [57]. Although circulating CRP is associated with AF [58],
it cannot be ruled out that it is merely a bystander of cardiac remodeling involved in disease progression.
Marott et al. were able to show that four CRP gene variants, which, in total, were associated with a 63%
increase in circulating CRP, did not contribute to an increase in AF risk [59]. However, elevated CRP
may predispose patients to persistence of AF via triggering arrhythmogenic foci, which worsen the
arrhythmia over time and lead to worsened outcomes [10]. High CRP could reflect ongoing ventricular
remodeling, as was also suggested previously for acute coronary syndromes, in which high CRP was
associated with worsened mortality and left ventricular dysfunction [60]. The proposed link between
inflammation and AF has potential therapeutic implications, because there are therapeutic strategies
available, which target systemic inflammation (i.e., statins, canakinumab [61,62]). A recent systematic
review of controlled trials with statins, which included six studies comprising 3557 patients in sinus
rhythm, showed that statins led to a decreased risk of AF compared to controls ((OR) 0.39, 95% CI
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0.18 to 0.85, p = 0.02). Statins appeared to be more effective if used in secondary prevention of AF
(OR 0.33, 95% CI 0.10 to 1.03, p = 0.06) than in new-onset or postoperative AF (OR 0.60, 95% CI 0.27 to
1.37, p = 0.23) [63]. However, it could not be differentiated to what degree the potential benefit of statin
treatment in patients with AF were due to lowering low density lipoprotein (LDL) cholesterol and
inhibiting coronary artery disease (CAD) progression as opposed to their anti-inflammatory effects.
Statins were also demonstrated to have beneficial effects on the periodontal status in hyperlipidemic
patients, which were interpreted to be due to their anti-inflammatory effects [64,65].

5. Potential Role of Autoimmunity in Atrial Fibrillation

Atrial fibrillation occurring at young age has been observed in several autoantibody-associated
diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid
syndrome [66–68]. Among the many self-antigens that have been proposed as potential targets of the
self-directed immune responses to the heart [69], heat shock proteins (HSPs) are of special interest,
because changes in cardiac HSP60/65 expression have been observed in patients with AF [70,71] and
auto-reactivity to HSPs has been observed patients with periodontal disease [72].

Heat shock proteins are ubiquitous molecular chaperones functioning in cellular stress protection,
which are evolutionary highly conserved [73]. Porphyromonas gingivalis and many other bacteria
involved in oral infections, express homologs to human HSPs [74]. The HSP60/65 homolog of
Porphyromonas gingivalis (called GroEL) has the ability to induce a humoral and cellular immune
response in humans which is cross-reacting with the endogenous HSPs expressed by the host [75].
An association between antibodies to HSP60/65 and the occurrence of postoperative AF was reported,
suggesting a potential involvement of HSP60/65 antibodies in the pathogenesis of AF. It was postulated
that individuals with high preoperative levels of HSP60/65 antibodies could develop a harmful
autoimmune reaction under the stressful operative conditions leading to induction of HSP expression
and presence of HSPs on the surface of cardiomyocytes [76], which could subsequently cause myocyte
injury and finally AF.

Activation of the HSP autoimmunity mechanism has been firmly established to operate in patients
with periodontitis infected with Porphyromonas gingivalis [77–80]. Humoral and cellular immunity
against HSPs is thought to be a normal feature of healthy humans, which participates in the protection
against microbial infections [81]. The ability of the immune system to induce this potentially dangerous
immune response depends on the strength of the HSP60/65 immunoresponse, which is elevated in
patients with periodontitis. In addition, interaction with highly polymorphic major histocompatibility
complex (MHC) class I and II epitopes on the cells’ surface is required to trigger the response [82].

6. Potential Role of the Autonomic Nervous System

The mechanisms described above link AF to chronic inflammation, leading to a structurally
damaged heart that is prone to developing AF over time. However, AF can also occur spontaneously
in people with a structurally healthy heart, mostly in the form of paroxysmal AF (PAF), which is
characterized by episodes of intermittent AF occurring commonly in younger people. Psychic stress
and infections were among the most common triggering factors of AF episodes identified in a Swedish
survey of hospitalized patients with PAF [83]. One of the many responses of the body to an infection is
activation of the autonomic nervous system. An important functional component of this system is the
inflammatory reflex, a sensory pathway to detect and localize the presence of inflammation by the
body’s autonomic nervous system [84]. Afferent signals are transmitted from the inflamed tissue (i.e.,
the atrium) to the brain via the vagus nerve, which activates the cholinergic anti-inflammatory pathway
by triggering efferent vagus nerve signaling leading to secretion of acetylcholine (ACh) locally in the
vicinity of macrophages at the inflamed sites of the tissue [84]. Acetylcholine binds to nicotinic Ach
receptors that are expressed by macrophages and induces macrophage deactivation to limit the release
of pro-inflammatory cytokines. In the heart, ACh can additionally activate Ach-sensitive potassium
channels, which shortens the duration of action potentials and the effective refractory period locally
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at sites where Ach is released in the atrium, thereby increasing the susceptibility to reentry, which
may contribute to induction and maintenance of AF [85]. The proposed mechanism is illustrated in
Figure 2.
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a higher susceptibility to reentry at sites where acetylcholine is released in the atrium. The atria are 
only sparsely innervated by the sympathetic nervous system, which may also be activated during 
inflammation. 
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instance, which is an endotoxin that is produced by Gram-negative bacteria, down-regulates the 
expression of L-type calcium channels and shortens the effective refractory period in a rat model of 
AF, which is proposed as a mechanism underlying sepsis-induced AF [98]. Streptolysin O, a 
streptococcal toxin, was shown to be involved in cardiomyocyte contractile dysfunction, by 
impairing the response of cardiac cells to electrical pacing by inducing influx of calcium into the 
cytosol through toxin-mediated pores in the plasma membrane [98]. Results from experiments 
performed with isolated guinea pig hearts perfused with streptolysin O were most consistent with a 
defect in the atrioventricular conduction system and atrial release of ACh [99]. 

Aggregatibacter actinomycetemcomitans (a Gram-negative, facultative anaerobe bacterium 
associated with localized aggressive periodontitis) was recently shown to secrete 179 different 
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development, and epigenetic gene regulation [103,104]. Healthy humans are generally immune 
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Figure 2. Potential role of the autonomous nervous system in the pathophysiology of atrial fibrillation.
The cholinergic anti-inflammatory pathway, which is mediated by the parasympathetic nervous system
via the vagus nerve, leads to secretion of acetylcholine, which binds to muscarinic cholinergic receptors.
The receptors open potassium channels through stimulatory G proteins and close funny channels and
T-type calcium channels through an inhibitory G protein. This leads to hyperpolarization, shorter
duration of action potentials, a shortened effective refractory period, and a higher susceptibility to
reentry at sites where acetylcholine is released in the atrium. The atria are only sparsely innervated by
the sympathetic nervous system, which may also be activated during inflammation.

In addition to the cholinergic anti-inflammatory pathway, which is a component of the
parasympathetic nervous system, inflammation is also regulated in a complex manner by its
antagonist, the sympathetic nervous system [86]. Its activation leads, among others, to the release
of catecholamines, such as norepinephrine and epinephrine, at the inflamed sites that can be pro- or
anti-inflammatory depending on the cellular and topological context (for details see [86]). States of
adrenergic stimulation, such as during exercise, were shown to be triggers of AF in some patients [87]
and increased atrial sympathetic innervations were observed in patients with persistent AF [88].
Moreover, ectopic beats arising from the pulmonary veins, which are a frequent cause of AF, can be
inhibited by ablation of the relevant autonomic foci, β-adrenergic receptor blockers, sodium channel
blockers, and calcium channel blockers [89].

The heart has an intrinsic autonomic nervous system with autonomic ganglia, which are mainly
located in the epicardial fat near the pulmonary vein-atrial junction and the ligament of Marshall,
regions that are also densely innervated by the body’s autonomic nervous system [90]. This topological
situation might be of relevance for the interaction between the body’s autonomic and intrinsic cardiac
systems. It could be demonstrated that catheter ablation of these regions could improve outcomes in
some AF patients compared to pulmonary vein isolation alone [91]. Episodes of AF are triggered in
some patients when sympathetic activity is followed by an abrupt change to vagal dominance [92].
An initial increase in sympathetic tone followed by a marked shift towards vagal dominance was also
observed before the onset of AF in some patients with ectopy arising from the pulmonary veins [93].
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Thus, shifting and/or simultaneous activation of sympathetic and parasympathetic signaling, which is
typical during states of inflammation, may be able to provoke AF in susceptible people.

Severe bacteremia, such as that occurring during sepsis, is a very effective inducer of the
autonomic nervous system and can trigger AF in humans [94–96]. However, whether or not the
more moderate forms of bacteremia, which are typically occurring during oral inflammation and
dental surgery, can trigger the autonomic nervous system strongly enough to induce AF is currently
unclear. Although, periodontitis was an independent predictor of arrhythmic events in patients with
AF and arrhythmias occurred in a very large fraction (93.6%) of hospitalized AF patients with severe
periodontitis [97], the contribution of the autonomic nervous system was not addressed in this study.

7. Potential Role of Bacterial Toxins

Patients affected by oral infections are exposed to many toxins, metabolic products, and proteins
of bacterial origin, which may influence the myocardium. Lipopolysaccharide (LPS), for instance,
which is an endotoxin that is produced by Gram-negative bacteria, down-regulates the expression of
L-type calcium channels and shortens the effective refractory period in a rat model of AF, which is
proposed as a mechanism underlying sepsis-induced AF [98]. Streptolysin O, a streptococcal toxin, was
shown to be involved in cardiomyocyte contractile dysfunction, by impairing the response of cardiac
cells to electrical pacing by inducing influx of calcium into the cytosol through toxin-mediated pores
in the plasma membrane [98]. Results from experiments performed with isolated guinea pig hearts
perfused with streptolysin O were most consistent with a defect in the atrioventricular conduction
system and atrial release of ACh [99].

Aggregatibacter actinomycetemcomitans (a Gram-negative, facultative anaerobe bacterium associated
with localized aggressive periodontitis) was recently shown to secrete 179 different proteins [100],
and various strains of Porphyromonas gingivalis were shown to secrete up to 250 proteins [101],
some of which may affect cardiac remodeling and induce AF. One of these proteins is
P. gingivalis peptidylarginine deiminase (PPAD), an enzyme involved in protein citrullination. Protein
citrullination is a post-translational modification by which L-arginine is enzymatically converted
to L-citrulline [102,103]. Humans have five peptidylarginine deiminase (PAD) isoenzymes, which
fulfill important physiological roles during inflammation, apoptosis, embryonic development, and
epigenetic gene regulation [103,104]. Healthy humans are generally immune tolerant to citrullinated
proteins. However, since P. gingivalis PAD citrullinates not only human proteins (i.e., α-enolase and
vimentin), but also some of its own proteins, it was hypothesized that the long-lasting exposure to
highly citrullinated bacterial and host proteins during periodontitis may trigger breakdown of immune
tolerance to citrullinated epitopes in susceptible individuals, thereby favoring autoimmunity and
the development of rheumatoid arthritis [104–107]. In line with this hypothesis, periodontitis was
independently associated with rheumatoid arthritis in multiple epidemiological studies (reviewed in
ref. [108]).

Although Aggregatibacter actinomycetemcomitans has no PAD encoding gene and does not secrete
PAD, changes in citrullination were also observed to occur in infections caused by this periodontal
pathogen, which induced hypercitrullination of a large number of proteins in host neutrophils [109].
The elucidated mechanism involves the pore-forming toxin leukotoxin A (LtxA), which triggers
dysregulated activation of host PADs and export of the hypercitrullinated proteins from neutrophils,
which act as citrullinated autoantigenes, favoring the formation of anticitrullinated protein antibodies
(ACPA) and rheumatoid arthritis. The results suggest that infections with some of the many pathogenic
bacteria, which secrete pore-forming toxins with similar properties as LtxA, may have the more general
ability to induce hypercitrullination and to trigger formation of ACPA in humans.

Hypercitrullination of proteins in cardiomyocytes of the failing heart is likely important, because
rheumatoid arthritis is strongly associated with AF [66]. Anticitrullinated protein antibodies were
significantly associated with altered left ventricular structure and function in a recent study on patients
with rheumatoid arthritis [110], and citrullinated proteins with impaired function could be identified in
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human myocardial samples from healthy and heart failure patients [111]. However, specific effects that
support an ability of LtxA to trigger AF via citrullination or other mechanisms have not been reported.

8. Discussion

The presented findings support that chronic oral inflammations likely affect the pathogenesis
of AF by multiple pathways, suggesting the existence of an oral-heart-axis (schematically illustrated
in Figure 3). Although none of the described mechanisms is specific for oral inflammations, due
to the high prevalence and chronic nature of oral inflammations, they may have a profound public
health impact. Recently, over 100 genetic loci could be identified as functional candidates involved in
AF [112]. Among these genes, a minority, such as IL6, IL19, TGFB1, CARD8, has functions in infection
and inflammation, whereas the majority is likely involved in cardiac and skeletal muscle function
and integrity, cardiac embryonic development, intracellular calcium handling, angiogenesis, and
cardiac ion channeling [112]. Based on the findings described in this review, one might hypothesize
that interaction between the genetic predisposition, which seems to mostly modulate the activity of
pathways involved in structural and functional cardiac aspects, with chronic inflammation may be
crucial for the emergence of the AF-prone heart.
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The presented findings support that chronic oral inflammations likely affect the pathogenesis of 
AF by multiple pathways, suggesting the existence of an oral-heart-axis (schematically illustrated in 
Figure 3). Although none of the described mechanisms is specific for oral inflammations, due to the 
high prevalence and chronic nature of oral inflammations, they may have a profound public health 
impact. Recently, over 100 genetic loci could be identified as functional candidates involved in AF 
[112]. Among these genes, a minority, such as IL6, IL19, TGFB1, CARD8, has functions in infection 
and inflammation, whereas the majority is likely involved in cardiac and skeletal muscle function 
and integrity, cardiac embryonic development, intracellular calcium handling, angiogenesis, and 
cardiac ion channeling [112]. Based on the findings described in this review, one might hypothesize 
that interaction between the genetic predisposition, which seems to mostly modulate the activity of 
pathways involved in structural and functional cardiac aspects, with chronic inflammation may be 
crucial for the emergence of the AF-prone heart. 

 
Figure 3. Potential role of the oral inflammation in the pathogenesis of atrial fibrillation. Chronic oral
inflammation induced by bacterial biofilm (gingivitis, periodontitis, and apical endodontic lesions)
cause a localized inflammation, which affects cardiac structural and electrophysiological remodeling
linked to atrial fibrillation by: (i) low level bacteremia by which oral bacteria enter the blood stream
at inflamed sites of the oral cavity and invade the heart; (ii) systemic inflammation induced by
inflammatory mediators which are released from the sites of oral inflammation into the blood stream,
affecting ventricular remodeling; (iii) autoimmunity against molecular structures expressed in the heart,
such as HSP60/65 and citrullinated cardiac proteins, caused by the host immune response to specific
components of oral pathogens; (iv) arrhythmogenic effects mediated by activation of the autonomic
nervous system during inflammation; (v) effects resulting from specific bacterial proteins and toxins,
such Porphyromonas gingivalis PAP and leukotoxin A (LtxA) that are produced by oral pathogenic
bacteria and induce the formation of anticitrullinated protein antibodies (ACPA). Abbreviations:
CRP: C-reactive protein; IL: interleukin; IFN: interferon; MCP: monocyte chemoattractant protein;
PAF: platelet activating factor; PDGF: platelet-derived growth factor; RANTES: regulated on activation,
normal T cell expressed and secreted; S1P: sphingosine-1-phosphate; TNF: tumor necrosis factor;
VEGF: vascular endothelial growth factor.
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Activation of the HSP60 autoimmunity mechanism has been firmly established to operate in
patients with periodontitis infected with Porphyromonas gingivalis. However, although it has been
demonstrated that the relevant HSPs are induced in the stressed heart, the precise consequences
on cardiac outcomes and the quantitative relevance of the HSP related autoimmune response have
not been sufficiently addressed. Whether the HSPs of endodontic pathogens elicit a similar immune
response as was demonstrated for Porphyromonas gingivalis GroEL, is unknown. The studies concerning
the roles of citrullination and ACPA in the pathogenesis of various forms of heart failure and AF are still
at the very beginning. Thus far, the studies have been restricted to patients with rheumatoid arthritis,
which may be considered to represent an extreme. Since the presence of ACPA in the circulation
precedes the onset of rheumatoid arthritis up to nine years [113], it would be interesting to investigate
ACPA in less extreme cases without rheumatoid arthritis, but with heart failure or AF.

If bacteremia occurring during oral inflammations and dental procedures, such as tooth
extractions, can provide a strong enough stimulus for the autonomic nervous system to trigger
AF it should be addressed in further clinical studies.

Interesting results have recently led to the identification of a vast number of factors that are
secreted by oral pathogens (secretome). These factors warrant further characterization with respect to
their arrhythmogenic effects.
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