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Abstract: Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in
excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration
of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter,
the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically
µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/
mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters
and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and
subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the
glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion
to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase.
On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and
by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and
the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the
glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as
glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is
mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even
under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral
glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the
channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis
of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced
stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may
constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although
the glutamate transporters are briefly discussed, the major emphasis of the present review is on the
enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic
conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate
and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a
brief and selective discussion of neuropathology associated with altered cerebral glutamate levels.

Keywords: Amino acids; ammonia; aspartate; aspartate aminotransferase; glutamate; glutaminase;
glutamate dehydrogenase; glutamine; glutamine synthetase; α-ketoglutarate

1. Introduction

Glutamate is the most abundant of the common protein-coded amino acids in the brain [1]. Table 1
lists the concentration of the more abundant amino acids in cat, rat, and human brain. In addition to
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high concentrations of glutamate, the brain contains mM concentrations of glutamine, aspartate, and
GABA (Table 1). Taurine is included in this table because, although it is not a protein-coded amino acid,
its concentration in brain is high. Taurine plays important roles in the brain as an osmolyte (volume
regulation), calcium homeostasis, and regulation of neurotransmission, e.g., [2–4]. Glutathione (GSH:
a tripeptide, γ-glutamylcysteinylglycine) is also included in this table because it is synthesized from
glutamate. In the brain, GSH is a major redox buffer, water soluble antioxidant (along with ascorbate),
enzyme cofactor and participant in detoxification processes, especially in astrocytes, e.g., [5]. Glutamate
and, to a lesser extent, aspartate are the major excitatory neurotransmitters in the brain, whereas GABA
is the main inhibitory neurotransmitter. Therefore, these amino acids must be maintained at very low
concentrations in the extracellular fluid compartments of the brain. For example, the concentrations of
glutamate and aspartate in human cerebrospinal fluid (CSF) are ~8 and 0.2 µM, respectively [1]. The
concentration of GABA in human CSF is ď0.1 µM [6]. Interestingly, the concentration of glutamine in
human CSF is remarkably high (~50 µM) and greater than that of all the other common amino acids
combined [1]. In point of fact, the concentration of glutamine in human CSF is >50 times greater than
that of glutamate [1]. This high concentration of glutamine is a reflection of the release of glutamine
from astrocytes to the extracellular fluid as a means of maintaining nitrogen balance and as part of the
glutamate-glutamine cycle hereinafter simply referred to as the glutamine cycle (Section 6).

Table 1. Approximate Concentration (µmol/g Wet weight) of Glutathione and the Most Abundant
Amino Acids in the Brain.

Cat Rat Human

Glutamate 7.90 (9.88) 11.6 (14.5) 6.00 (7.50)
Taurine 2.30 (2.88) 6.60 (8.25) 0.93 (1.16)

Glutamine 2.80 (3.50) 4.50 (5.63) 5.80 (7.25)
Aspartate 1.70 (2.13) 2.60 (3.25) 0.96 (1.20)

γ-Aminobutyrate 1.40 (1.75) 2.30 (2.88) 0.42 (0.53)
Glycine 0.78 (0.98) 0.68 (0.85) 0.40 (0.50)
Alanine 0.48 (0.60) 0.65 (0.81) 0.25 (0.31)
Serine 0.48 (0.60) 0.98 (1.23) 0.44 (0.55)

Glutathione 0.49 (0.61) 2.60 (3.25) 0.20 (0.25)

Adapted from [1]. Values in parenthesis are concentrations (mM) assuming a water content of 80%.

The concentration of glutamate in synaptosomal vesicles is very high [7], perhaps as high as
100 mM or greater (ref. [8] and references cited therein), representing 15%–20% of the total glutamate
pool in synaptosomes, consistent with high levels in the nerve endings [7]. The very high concentration
of glutamate in the cytosol and glutamate-containing vesicles requires strict homeostatic mechanisms
for the following reason. Glutamate is the major excitatory neurotransmitter, yet levels of glutamate in
the extracellular fluid must be kept low (<100 µM) to avoid excitotoxicity. In fact, the concentration of
glutamate in the ambient extracellular fluid of the brain is normally 0.5–5 µM [8]. This remarkable
glutamate concentration gradient between the extracellular fluid and nerve cell cytosol is accomplished
by powerful uptake systems for glutamate in neurons, astrocytes and synaptosomal vesicles. (For a
recent review see [9]).

Exclusion of most blood-borne glutamate at the blood-brain barrier (BBB) and a net removal of
glutamine from the brain (see below) indicate that the cerebral pools of glutamate are largely produced
within the brain. Thus, the tricarboxylic acid (TCA) cycle must be an important source of 5-carbon
units for the synthesis of the glutamate backbone in the brain. The nitrogen of the glutamate pool in
the brain is mostly supplied by aminotransferase reactions. Here, we review the central importance
of aminotransferases in maintaining nitrogen homeostasis in the brain, with special emphasis on
glutamate/α-ketoglutarate-linked aminotransferases. We highlight the important role of glutamate
as a precursor for other important metabolites including GSH. We also emphasize the special role of
glutamate in the glutamine- and glutamine-GABA cycles of the brain. The glutamate utilized in these
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pathways is maintained at a remarkably constant level. For example, during hyperammonemia there
is a marked increase in the rate of conversion of cerebral glutamate to glutamine, yet although there is
some depletion in glutamate the decrease is not stoichiometric with the concomitant large increase
in glutamine concentration. There is also no change in the concentration of cerebral α-ketoglutarate
or a modest increase. Thus, there is a considerable net increase in the concentration of 5-carbon units
(i.e., glutamate plus glutamine plus α-ketoglutarate) resulting from an ammonia-induced stimulation
of anaplerosis. An especially prominent anaplerotic enzyme stimulated by hyperammonemia is
pyruvate decarboxylase. The main pathways of glutamate metabolism in normoammonemia and
hyperammonemia are depicted diagrammatically in Figure 1.
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Figure 1. Schematic of the major pathways by which cerebral glutamate levels are maintained
during normoammonemia (top panel) and hyperammonemia (bottom panel). Relative changes
in pool size of cerebral metabolites (α-ketoglutarate, ammonia, glutamate, and glutamine) between
nomoammonemic and hyperammonemic brain are indicated by differences in font size. Enzymes: 1,
glutamate dehydrogenase (GDH); 2, α-ketoglutarate/glutamate-linked aminotransferases (notably
aspartate aminotransferase (AspAT) and branched-chain aminotransferases); 3, glutamine synthetase;
4, glutaminase. Note that despite the ammonia-stimulated increase in glutamine (Gln), glutamate (Glu)
levels are only modestly depleted. This is in large part due to hyperammonemia-induced increase in
the activity of anaplerotic enzymes including pyruvate carboxylase. Note also that for simplicity not
all reactants are shown in the enzyme-catalyzed reactions.

Note that throughout the text we use the term ammonia to refer to the sum of ammonium (NH4
+)

ions and ammonia free base (NH3). Since the pKa of ammonia is ~9.2 at physiological pH values
(7.2–7.4) only ~1% of ammonia will be in the form of NH3.

2. Glutamate Formation in the Brain—Important Roles of Glutaminase and
α-Ketoglutarate-Linked Aminotransferases

An important route for the formation of glutamate carbon and nitrogen in the brain is via the
glutaminase reaction. In this section we describe the reason why the glutaminase reaction and not
the GDH reaction is an important source of brain glutamate. We also discuss the important, but
sometimes overlooked, role of aminotransferases in providing the amine group of glutamate. Finally,
we discuss 5-oxoproline (5-OP, pGlu, 2-pyrrolidone-5-carboxylate, pyroglutamate) as a source of
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glutamate. 5-OP is of considerable interest owing to recent findings regarding the possible relationship
of this compound to neurodegenerative diseases.

2.1. Glutaminase Versus Glutamate Dehydrogenase

Glutamate is present in plasma and could serve as a possible source of cerebral glutamate.
However, in classical experiments carried out in the 1970s, Oldendorf and colleagues showed that
the rat BBB possesses a low capacity system for the transport of glutamate from blood to brain [10].
This low capacity system is therefore unlikely to sustain the high levels of glutamate in normal
brain. Moreover, exclusion of most of the circulating glutamate at the BBB minimizes the possibility of
glutamate excitotoxicity. Thus, most of the cerebral glutamate is synthesized endogenously. The carbon
skeleton of glutamate (and glutamine) is largely obtained from tricarboxylic acid (TCA) cycle-derived
α-ketoglutarate and/or anaplerosis and possibly to a lesser extent from the catabolism of histidine,
arginine, proline, 5-OP, and GSH.

Glutamine is a major source of brain glutamate via the glutaminase reaction: Equation (1) and
reviewed in [11]. Another possible source of cerebral glutamate is the GDH reaction which catalyzes
the reversible reductive amination of α-ketoglutarate: Equation (2). In vitro GDH can utilize either
NADH or NADPH as reductant. The brain contains a considerable amount of GDH although it is
somewhat heterogeneously distributed [12]. Although the forward direction (i.e., in the direction of
glutamate formation) is thermodynamically favorable at physiological pH values (pH 7.2–7.4) the
continuous removal of ammonia by the glutamine synthetase reaction: Equation (3) ensures that the
net direction in vivo is in the direction of glutamate oxidation to α-ketoglutarate (i.e., the backward
direction of Equation (2)) [13–16]. The GDH reaction will be discussed in more detail in Section 3.2.

Glutaminase : L´Glutamine ` H2OÑL´ glutamate ` NH3 (1)

GDH : α´Ketoglutarate ` NH4
+ ` NADpPqH Ô L´ glutamate ` NADpPq+ ` H2O (2)

Glutamine synthetase : L´Glutamate ` NH3 ` ATP Ô L´ glutamine ` ADP ` Pi (3)

Oldendorf and Szabo demonstrated that the rat brain possesses an active transport system for
the uptake of neutral amino acids [10]. Especially strong uptake was noted for the branched-chain
amino acids [10]. Felig and colleagues noted that several amino acids are taken up by the human
brain including the branched-chain amino acids [17]. Thus, these amino acids are a likely source of
the amino group of brain glutamate. How does this occur? To answer this question we begin with a
historical detour.

2.2. α-Ketoglutarate/Glutamate-Linked Aminotransferases

In 1957, Braunstein (the discoverer of aminotransferases (transaminases)) pointed out that
coupling of an aminotransferase reaction: Equation (4) to the GDH reaction: Equation (5), shown as
the reverse direction of Equation (2), provides a means of generating ammonia or of incorporating
ammonia into several of the commonly-occurring amino acids: Equation (6). Braunstein coined
the words “transdeamination” and “transreamination” for the forward and reverse directions of
Equation (6) [18]. (For a review see [19]). These terms are rarely used nowadays, but in our opinion
they serve a useful purpose because they indicate how nature has exquisitely evolved a system
for shuttling nitrogen among ammonia and various amino acids as dictated by the needs of the
cell [20]. However, because as noted above, the GDH reaction is a net source of ammonia in the
brain the transreamination reaction does not occur in this organ to any appreciable extent under
normoammonemic conditions or even under hyperammonemic conditions [14,21]. Nevertheless,
under extreme hyperammonemic conditions resulting from inhibition of glutamine synthetase some
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cerebral ammonia may be incorporated into alanine by the transreamination route (back direction of
Equation (6)), where the α-keto acid substrate is pyruvate [22].

α-Ketoglutarate-linked aminotransferase : L´Amino acid ` α´ ketoglutarate

Ô α´ keto acid ` L´ glutamate (4)

GDH : L´Glutamate ` NADpPq+ ` H2O Ô α´ ketoglutarate ` NH4
+ ` NADpPqH (5)

Net : L´Amino acid ` NADpPq+ ` H2O Ô α´ keto acid ` NH4
+ ` NADpPqH (6)

The brain has relatively high branched-chain aminotransferase (BCAT) activity: Equation (7)
and possesses both mitochondrial (BCATm) and cytosolic (BCATc) isozymes [23]. Indeed, evidence
has recently been presented that BCATc in nerve endings supplies ~30% of the nitrogen for de novo
glutamate synthesis in human brain [24]. We will come back to this point later when discussing
nitrogen shuttles between astrocytes and neurons (Section 8). The salient point we wish to make
here is the importance of linked aminotransferases coupled to the GDH reaction in maintaining
glutamate nitrogen levels, while at the same time the carbon skeleton of glutamate is derived from
TCA cycle-derived α-ketoglutarate.

Branched-chain aminotransferase : Branched´ chain L´ amino acid ` α´ ketoglutarate Ô

branched´ chainα´ keto acid ` L´ glutamate (7)

2.3. Oxoprolinase

Another source of cerebral glutamate is the 5-oxoprolinase reaction: Equation (8) [25,26].
Glutamine is well known to slowly, non-enzymatically cyclize under physiological conditions to 5-OP
with the elimination of ammonia. 5-OP may also be formed in the brain by the action of γ-glutamyl
cyclotransferase [27] or γ-glutamylamine cyclotransferase [28] on γ-glutamyl- and γ-glutamylamine
compounds, respectively. Another source of cerebral 5-OP is that derived from the hydrolysis of
5-OP-containing neuropeptides (e.g., thyrotropin releasing hormone) [29]. Baseline levels of 5-OP in
the mouse brain have been reported to be ~59 nmol/g wet weight (~75 µM) [27]. The concentration of
5-OP in normal human CSF has been reported to be in the range of 10–75 µM [30,31].

5-Oxoprolinase : 5´Oxoproline ` ATP ` 2H2OÑL´ glutamate ` ADP ` Pi (8)

We suggest that, although 5-oxoproline is probably quantitatively a minor source of cerebral
glutamate, this metabolite should not be neglected by neurochemists, especially in studies of neural
cells in culture medium containing glutamine. Moreover, 5-OP should be of interest to neurochemists as
a result of recent findings relating to Alzheimer disease (AD). A portion of Aβ peptide—a contributor to
amyloid formation in the brain and a probable neurotoxin contributing to AD pathology—has recently
been found to be truncated and to contain an N terminal 5-OP [32,33]. The full-length Aβ and the
truncated forms have been designated fl-Aβ and pGlu-Aβ(3-40/42), respectively [32]. The Aβ(3-40/42)
form may be especially pernicious [32]. Interventions to prevent the formation of pGlu-Aβ(3-40/42)
may potentially be of benefit in the treatment of AD [32].

3. Major Routes for the Metabolism of Glutamate in the Brain

Major routes for the metabolism of glutamate in brain involve (1) the glutamine synthetase
reaction and (2) glutamate/α-ketoglutarate-linked aminotransferases coupled to the GDH reaction. As
we discuss in this section, these enzymes provide a means of eliminating excess amino acid nitrogen
from the brain in the form of glutamine. Another route for the metabolism of glutamate that we briefly
discuss here involves decarboxylation to the inhibitory neurotransmitter GABA. We also include in
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this section a brief discussion of GSH. Although the turnover of GSH in the brain is relatively slow this
tripeptide is a major cerebral antioxidant and at a concentration of ~1–3 mM represents a major pool of
peptide bound glutamate in the brain.

3.1. Glutamine Synthetase

A major route for the removal of glutamate in the brain is the glutamine synthetase reaction:
Equation (3). Since glutamine is a precursor of glutamate one could consider that glutamine is a
storage form of glutamate. Glutamine synthetase requires a divalent cation (Mg2+, Mn2+ or Co2+) for
full activity. Levintow and Meister showed that in a reaction mixture containing purified glutamine
synthetase, divalent cation, 10 mM ATP, 10 mM L-glutamate and 10 mM ammonia, equilibrium is
attained when ~90% of the L-glutamate is converted to L-glutamine [34]. Given that the amidation of
glutamate is driven by the hydrolysis of ATP it is perhaps somewhat surprising that the glutamine
synthetase reaction is freely reversible in vitro. However, inasmuch as the concentration of ammonia in
the brain (~0.18 mM; [13]) is much lower than 10 mM it is likely that the glutamine synthetase reaction
in the brain in vivo is largely irreversible (see also Section 4.3).

The human genome contains a single gene (GLUL) that codes for glutamine synthetase and four
GLUL-like genes, one of which is clearly a pseudogene [35]. Two forms of glutamine synthetase have
been isolated from human brain [36,37]. One protein has a molecular weight of ~440,000 whereas the
other (a glutamine synthetase-like protein) has a molecular weight of ~540,000 [36,37]. In addition to
catalyzing a synthesis reaction: Equation (3), glutamine synthetase catalyzes a transferase reaction in
the presence of glutamine, hydroxylamine, a divalent cation and phosphate (or arsenate): Equation (9)
(ref. [38] and references cited therein). Human brain glutamine synthetase also catalyzes this transferase
reaction [36]. Interestingly, the human glutamine synthetase-like protein catalyzes the synthetase
reaction, but less effectively than does the glutamine synthetase enzyme [36]. On the other hand, under
optimal conditions in the presence of Mn2+ the human glutamine synthetase-like enzyme catalyzes
the transferase reaction: Equation (9) several times more rapidly than does the glutamine synthetase
enzyme [36]. Boksha et al. [36] presented evidence that the glutamine synthetase-like protein is present
in the crude mitochondrial fraction of human brain.

Glutamine synthetase (transferase reaction) : L´Glutamine ` NH2OHÑ

L´ γ´ glutamylhydroxamate ` NH3 (9)

Canine brain contains two forms of glutamine synthetase that exhibit somewhat different
enzymatic properties and sensitivity to inhibition by L-methionine-S,R-sulfoximine (MSO) [39].
However, in this case, the larger form is a splice variant [39]. The human glutamine synthetase
enzyme is a decamer of identical subunits. Each subunit consists of 373 amino acids. Five subunits are
arranged in a circular manner over another five subunits. (See ref. [40] and references cited therein for
a discussion of the architecture and some catalytic properties of human glutamine synthetase).

In the rat brain glutamine synthetase is confined mostly to astrocytes, especially in the
perivascular end feet and areas surrounding synapses [41,42]. The cellular compartmentation of
glutamine synthetase in astrocytes is important for the removal of neurotransmitter glutamate
and the recycling of 5-carbon units back to the neurons in the form of glutamine via the brain
glutamine cycle. However, at this point it is worth pointing out that certain neurons, depending
on species/location/disease state, may possess some glutamine synthetase. For example, careful
immunohistochemical analysis by Bernstein et al. [43] provided evidence that, in addition to astrocytes,
subpopulations of oligodendrocytes, microglial cells and neurons in human and mouse brain express
glutamine synthetase. Interestingly, the population of neurons that was shown to be immunopositive
for glutamine synthetase was also shown to be immunopositive for nitric oxide synthase [43]. Moreover,
immunohistochemical studies have shown that glutamine synthetase is present in a subpopulation
of pyramidal neurons in AD brain but not in normal human brain [44]. The presence of neuronal
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glutamine synthetase is more pronounced in AD brain regions where astrocytic glutamine synthetase
is depleted, particularly in the vicinity of plaques [44,45].

3.2. α-Ketoglutarate/Glutamate-Linked Aminotransferases Coupled to the GDH Reaction

In this section we emphasize the central importance of aminotransferases, especially AspAT
(or more precisely mitAspAT): Equation (10) coupled to GDH (a mostly mitochondrial enzyme) in
brain energy metabolism and glutamate homeostasis. Very high activities of both the mitochondrial
(mit) and cytosolic (cyt) isozymes of AspAT are present in brain [46]. These enzymes are important
components of the malate-aspartate shuttle required for the transport of reducing equivalents from
cytosol to mitochondrion in lieu of NADH generated during aerobic glycolysis, e.g., [47,48].

AspAT : L´Glutamate ` oxaloacetate Ô L´ aspartate ` α´ ketoglutarate (10)

The AspAT reaction is so active in vivo that the components of Equation (10) are thought to be
in thermodynamic equilibrium in many tissues as has been demonstrated for rat liver [49,50] and
rat brain [51]. 15N-Tracer studies have also suggested that the components of the reaction are near
equilibrium in synaptosomes and astrocytes [52]. The rapidity of the AspAT-catalyzed reaction in vivo
is exemplified by the fact that administration of [13N]ammonia to anesthetized rats via the portal
vein resulted in extremely rapid (within seconds) labeling of both glutamate and aspartate in the liver
via the consecutive action of GDH and the two isozymes of AspAT [53]. It was demonstrated that
once glutamate was labeled in the cytosol aspartate was almost instantly labeled. Equilibrium of label
between aspartate and glutamate in both cytosolic and mitochondrial compartments of the rat liver
was attained within minutes [53].

Previous work has shown that although most of the label derived from [13N]ammonia on entering
the rat brain via a carotid artery cannula is incorporated into the amide position of glutamine a small
amount is incorporated into glutamate [21]. Labeling of glutamate is accompanied by very rapid
labeling of aspartate [21]. As a result of their high inherent activity the AspAT isozymes (mitAspAT
and cytAspAT) must have very low metabolic rate coefficients: cf. [54] in pathways related to glutamate
turnover. Thus, the enzymes will exert little metabolic control in these pathways and will act largely as
passive conduits directing the flow of nitrogen and carbon as dictated by less active ancillary enzymes
and the needs of the cell [20].

As noted above, there is a net uptake of certain amino acids across the BBB, especially the
branched-chain amino acids. In order to maintain nitrogen homeostasis equivalent amounts of nitrogen
must exit the brain. As mentioned in Section 2.2, α-ketoglutarate/glutamate-linked aminotransferases
can be coupled to the GDH reaction generating ammonia from the transaminated amino acid
(transdeamination: Equation (6)). This ammonia can then be incorporated into glutamine: Equation (3).
A net output of glutamine to the extracellular fluid and to the circulation contributes to the maintenance
of nitrogen balance in the brain (reviewed in refs. [13,55]). The flow of nitrogen is depicted in
Equation (11). This pathway represents an elegant means by the brain of removing excess nitrogen
from certain amino acids (e.g., branched-chain amino acids).

Flow of intracellular amino acid nitrogen to extracellular glutamine : L´Amino acid

pintracellularq Ô L´ glutamate Ô ammoniaÑL´ glutamine pintracellularqÑ

L´ glutamine pextracellularq (11)

Interestingly, humans possess two GDH isozymes, namely hGDH1 and hGDH2 [56]. GDH1 is
common to all mammals, whereas GDH2 arose by gene duplication in the higher primates (ref. [56] and
references cited therein). Among human tissues GDH2 is especially prominent in brain. As pointed out
by Spanaki et al. [56] the evolution of hGDH2 was driven by the bestowal to this enzyme of enhanced
catalytic ability under conditions that are inhibitory to the ancestral enzyme. Immunohistochemical
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studies of human cortex revealed that hGDH1 is expressed in glial cells, including astrocytes, but not
in neuronal cells. On the other hand, immunohistochemical studies revealed the presence of hGDH2
in both astrocytes and neurons [56]. Staining was noted to be especially prominent in the presynaptic
nerve terminals of the large human neurons [56]. According to Spanaki et al., “hGDH2 evolution
bestowed large human neurons with enhanced glutamate metabolizing capacity, thus strengthening
cortical excitatory transmission” [56].

Why does the brain contain high levels of GDH? As noted above GDH linked to aminotransferases
facilitates the flux of excess amino acid nitrogen toward ammonia and glutamine (amide). However,
there is yet another important role for cerebral GDH. Consider, for example, steroidogenesis.
Steroid-producing cells (e.g., cells of the adrenal cortex) contain substantial amounts of both hGDH1
and hGDH2 [57]. Conversion of acetyl-CoA to cholesterol requires the oxidation of many molar
equivalents of NADPH to NADP+. As noted above, GDH can utilize either NAD+ or NADP+ as
cofactor. However, because the concentration of NADPH is greater than that of NADH in most
cells NADPH is generally utilized in preference over NADH in biosynthetic reductions. Thus, it is
perhaps not surprising that the GDH reaction acts as a convenient source of NADPH: Equation (5)
required for steroidogenesis. The role of steroids in the brain was a long neglected area of research,
but recently neurosteroids (i.e., steroids generated from cholesterol in the brain) have become an
intense area of research. For example, some neurosteroids have been shown to (1) be neuroprotective;
(2) directly modulate the channel properties of synaptic neurotransmitter receptors; and (3) regulate
neural function, behavior, and cognition (reviewed in ref. [58]). Thus, the GDH reaction, not only
functions to direct excess amino acid nitrogen toward ammonia in the brain, but at the same time it
also serves as a source of NADPH for important biosynthetic reactions, including steroidogenesis. This
is an excellent example of a case where nature has parsimoniously “engineered” a seemingly simple
reaction to serve two disparate, but extremely important functions.

3.3. Ammonia Generated by Aminotransferase Reactions Coupled to the Purine Nucleotide Cycle

The purine nucleotide cycle (PNC) was described by Lowenstein in the 1960s [59]. The PNC
operates by the consecutive action of three enzymes: adenylosuccinate synthetase: Equation (12),
adenylosuccinate lyase: Equation (13), and AMP deaminase: Equation (14). The net reaction is
shown in Equation (15). Work by Schultz and Lowenstein has established that the PNC is present
in brain [60,61]. These authors suggested that the PNC is a major source of ammonia in the brain.
To our knowledge the proposed role of the PNC in brain nitrogen and energy metabolism has been
little investigated since the seminal publications by Schultz and Lowenstein in the mid-1970s. One
report suggests that nerve terminals have a limited PNC [52]. However, loss of adenylosuccinate lyase
activity is associated with severe neurological problems, e.g., [62], suggesting an important metabolic
role of this enzyme in the brain. Moreover, immunohistochemical analysis and in situ hybridization
showed relatively high levels of AMP deaminase protein and message in rat brain neurons [63]. In
our opinion the importance of the PNC in brain nitrogen and energy metabolism is a neglected area
of research.

Adenylosuccinate synthetase : Inosine monophosphate pIMPq ` L´ aspartate ` GTP

Ñ adenylosuccinate ` GDP ` Pi (12)

Adenylosuccinate lyase : AdenylosuccinateÑAMP ` fumarate (13)

AMP deaminase : AMP ` H2OÑ IMP ` NH3 (14)

Net : L´Aspartate ` GTP ` H2OÑ fumarate ` GDP ` Pi ` NH3 (15)

By linking an α-ketoglutarate-dependent aminotransferase: Equation (4) (e.g., branched-chain
aminotransferase) to the AspAT reaction: Equation (10) and the PNC: Equation (15) the amino acid
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nitrogen is incorporated into ammonia and thence into the amide position of glutamine: Equation (16).
An advantage of this pathway is that coupling of ammonia production to GTP hydrolysis makes the
pathway energetically favorable.

Flow of intracellular amino acid nitrogen to glutamine amide via the PNC :

L´Amino acid pintracellularq Ô L´ glutamate Ô L´ aspartateÑ ammoniaÑ

L´ glutamine pintracellularqÑL´ glutamine pextracellularq (16)

Lowenstein and Goodman [64] have pointed out that coupling of the PNC to an
α-ketoglutarate/glutamate-linked aminotransferase, AspAT, fumarase and malate dehydrogenase
can drive the deamination of an amino acid. The net result of these coupled reactions is shown in
Equation (17). Note that owing to the hydrolysis of GTP the overall reaction shown in Equation (17)
is more favorable for the deamination of an amino acid than is the transdeamination pathway:
Equation (6). Additionally, if Equation (4) is omitted from the sequence then this results in a
deamination of glutamate: Equation (18) that is energetically more favorable than that obtained
by the GDH reaction: Equation (5). For a more detailed discussion of these pathways see ref. [20].

Deamination pathway for an amino acid linked to the PNC (general) : L´Amino

acid ` NADpPq+ ` GTP ` 2H2OÑα´ keto acid ` NH4
+ ` NADpPqH ` GDP ` Pi (17)

Deamination pathway for glutamate linked to the PNC : L´Glutamate ` NADpPq+`

GTP ` 2H2OÑα´ ketoglutarate ` NH4
+ ` NADpPqH ` GDP ` Pi (18)

The importance of the AspAT isozymes in energy metabolism is further underscored by
the fact that the two α-keto acids involved in the transamination reaction—α-ketoglutarate and
oxaloacetate—are entry points into the TCA cycle. Thus, glutamate and aspartate carbon are
interconvertible to a considerable extent in many tissues. By linking mitAspAT to certain enzymes
of the TCA cycle it is possible to construct two routes by which aspartate is converted to glutamate.
The net reactions are shown in Equations (19) and (20). On the other hand, by linking mitAspAT
to the bottom half of the TCA cycle (as usually depicted) it is possible to construct a route for
the net conversion of glutamate to aspartate: Equation (21). The conversion of glutamate carbon
to aspartate carbon in liver mitochondria was first recognized more than 65 years ago and under
certain circumstances may be almost quantitative [65]. Note that the conversion of α-ketoglutarate
to oxaloacetate yields a considerable amount of energy (~9 high energy phosphate bonds). Because
the AspAT reaction is freely reversible (K’ ~7 for the direction shown in Equation (10)) [66] this will
have little impact on energy released by net oxidation of glutamate to aspartate versus that released
by oxidation of α-ketoglutarate to oxaloacetate. Thus, conversion of glutamate to aspartate, which
is in effect a truncated TCA cycle, will also yield a similar amount of energy. For more complete
descriptions of the interconversion of glutamate and aspartate see ref. [67] and [68].

Conversion of aspartate carbon to glutamate carbon via the TCA cycle (1) :

L´Aspartate ` acetyl´CoA ` ½O2ÑL´ glutamate ` CO2 ` CoA (19)

Conversion of aspartate carbon to glutamate carbon via the TCA cycle (2) :

2L´Aspartate ` 1½O2ÑL´ glutamate ` NH3 ` 3CO2 ` H2O (20)

Conversion of glutamate carbon to aspartate carbon via the TCA cycle :

L´Glutamate ` 1½O2ÑL´ aspartate ` CO2 ` H2O (21)
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The equations discussed above serve to emphasize the interrelatedness of nitrogen and energy
metabolism in the brain and the pivotal role of linked aminotransferases (including AspAT) in this
process. Notably, these equations highlight the importance of glutamate as a keystone metabolite in cerebral
nitrogen homeostasis.

3.4. Conversion of L-Glutamate to GABA

The brain contains a considerable amount of glutamate decarboxylase which catalyzes the
decarboxylation of L-glutamate to GABA: Equation (22). The concentration of GABA (the major
inhibitory neurotransmitter) in the brain is ~0.5–3 mM depending on the species (Table 1). Since the
carbon skeleton of GABA is derived from α-ketoglutarate, formation of GABA represents possible
loss of carbon from the cerebral TCA cycle. However, the four carbons of GABA are reincorporated
into the TCA cycle via the GABA shunt (also known as the GABA bypath) which consists of a
GABA aminotransferase: Equation (23) and succinic semialdehyde dehydrogenase: Equation (24).
The succinate thus formed enters the TCA cycle and the electrons associated with NADH enter the
electron transport chain. The net reaction is shown in Equation (25). The GABA shunt was first
elucidated in the 1960s and shown to be compartmentalized in the brain by Balázs and colleagues in
1970 (ref. [69] and references quoted therein). (For a recent review of the possible role of the GABA
shunt/GABA metabolites in AD see ref. [70].) The GABA shunt will be discussed later in regard to the
glutamine-GABA cycle.

Glutamate decarboxylase : L´GlutamateÑGABA ` CO2 (22)

GABA aminotransferase : GABA ` α´ ketoglutarate Ô succinic semialdehyde`

L´ glutamate (23)

Succinic semialdehyde dehydrogenase : Succinic semialdehyde ` NAD+Ñ

succinate ` NADH (24)

Net : α´Ketoglutarate ` NAD+Ñ succinate ` NADH ` H+ (25)

3.5. GSH as a Glutamate Reservoir

The turnover of GSH in the adult brain is relatively slow. For example, Douglas and
Mortenson [71] injected [14C]glycine into adult rats, noted the time of peak appearance of label
in brain GSH and then measured the rate of decline of label in this pool of GSH. From the results of
this experiment the authors estimated a t½ of ~71 h for the turnover of GSH in rat brain [71]. Thus,
the contribution of the turnover the glutamate moiety of brain GSH to the rate of turnover of the
total brain glutamate pool is evidently relatively minor. Nevertheless, a discussion of brain GSH is
included here because GSH, along with ascorbate, are the major water soluble antioxidants of the
brain. Moreover, the concentration of GSH in the brain is such that this antioxidant represents a major
pool of peptide-bound glutamate. The concentration of GSH in the brain ranges from ~0.25 to 3.0 mM
depending on the species compared to 6–12 mM for glutamate (Table 1) [72,73].

GSH is synthesized in two ATP-dependent steps. The first step is catalyzed by γ-glutamylcysteine
ligase: Equation (26); formerly known as γ-glutamylcysteine synthetase. The second step is catalyzed
by glutathione synthetase: Equation (27). The first enzyme-catalyzed step is generally considered as
rate controlling. However, recent work suggests that the uptake of cysteine is the greater determinant
of GSH production in brain [74]. In astrocytes the uptake of cysteine is mediated by the excitatory
amino acid transporter 3 (EAAT-3) and the ASC system that transports alanine, serine, and cysteine [74].
GSH is more prevalent in astrocytes than in neurons [75,76]. A significant portion of the astrocytic
GSH pool is released to the interstitial space where it is hydrolyzed to γ-glutamylcysteine and glycine
by the action of the ectoenzyme γ-glutamyltransferase located on the exofacial leaflet of the astrocyte
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plasmalemma. The peptide linkage of γ-glutamylcysteine is, in turn, hydrolyzed by a neuronal
ectopeptidase to yield glutamate and cysteine that are actively transported into neurons by EAAT-3
and EAAT-2, and thereby, contribute to GSH synthesis in these cells [74,77–79].

At least five Na+-dependent glutamate transporter subtypes have been identified in neural tissues
(ref. [80] and references cited therein). These include GLAST (glutamate aspartate transporter, EAAT-1)
and GLT-1 (glutamate transporter-1, EAAT-2), which are primarily expressed in astrocytes [81,82].
Thus, although some glutamate is taken up into neurons via the EAAT-3 transporter, the bulk of
extracellular glutamate released as a result of neurotransmission is taken up by glutamate transporters
into astrocytes. These transporters are important components of the glutamine cycle (Section 6).

Interestingly, the wild type prion protein (PrP) binds to EAAT-3 and enhances the uptake of
glutamate and cysteine by neuronal EAAT-3 [74]. PrP also associates with, and increases the activity of,
γ-glutamyl transferase [74]. These observations suggest that wild-type PrP regulates GSH synthesis in
the astrocyte-neuron circuit by promoting specific protein-protein interactions that favor the production
of this tripeptide in neurons [74]. Wild-type PrP is expressed throughout the body but is most
abundant in the central nervous system (CNS) where it is thought to be neuroprotective (ref. [74] and
references quoted therein). Wild-type PrP functions as a sensor for oxidative stress [83,84] and triggers
intracellular signal transduction cascades that act on antioxidant systems, such as the GSH system [74].

γ-Glutamylcysteine ligase : L´Glutamate ` L´ cysteine ` ATPÑ

L´ γ´ glutamylcysteine ` ADP ` Pi (26)

Glutathione synthetase : L´ γ´Glutamylcysteine ` glycine ` ATPÑGSH ` ADP ` Pi (27)

Given the central role of GSH as a major water soluble antioxidant it would be greatly
advantageous to be able to measure cerebral GSH in vivo under normal and pathological conditions by,
for example, proton magnetic resonance (MR) spectroscopy. However, detection and quantitation of
brain GSH in vivo by proton MR spectroscopy is challenging owing to the fact that peaks assigned to
GSH overlap with those assigned to glutamate and glutamine. Nevertheless, as the sensitivity of MR
techniques continues to improve in vivo proton MR spectroscopy can now be applied to quantitative
measurements of glutamate, glutamine and GSH in rodent brain and more recently in human brain
(see ref. [85] and references cited therein). This technique will be especially relevant in measuring
changes of human brain GSH under normal and pathological conditions [85].

4. The Glutamate Buffer in the Brain

4.1. Glutamate as a Nitrogen Buffer in the Brain

From the above discussion it is apparent that glutamate is a key buffer/bulwark in mechanisms
by which the brain maintains nitrogen homeostasis. This is exemplified by tracing major sources of
nitrogen input (e.g., ammonia, branched-chain amino acids) and output (e.g., glutamine) as shown in
Figure 2.
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Figure 2. One-compartment model highlighting the central role of glutamate as a nitrogen
buffer/bulwark in the brain. The diagram is greatly simplified to omit cellular and subcellular
compartmentation of enzymes involved in maintaining nitrogen homeostasis. The gray arrows
(left) indicate the major flow of nitrogen from blood to cells and then to interstitial fluids (right)
irrespective of compartmentation. For simplicity other sources of nitrogen such as those involved in the
transamination of glutamine and in purine and pyrimidine catabolism are omitted. Moreover, turnover
of compounds in the brain associate with these pathways is likely to be relatively slow compared
to that of glutamate. Ammonia enters the brain largely by diffusion of NH3. Additional nitrogen
enters the brain via transport of amino acids, especially the branched-chain amino acids (BCAAs).
Enzymes: 1, Glutamine synthetase (ammonia as substrate); 2, glutamine synthetase (glutamate as
substrate); 3, glutaminase; 4, glutamate dehydrogenase; 5, mit and cyt aspartate aminotransferases; 6,
enzymes of the purine nucleotide cycle; 7, branched-chain amino acid aminotransferases; 8, glutamate
decarboxylase; 9, enzymes of the GABA shunt; 10, glutamate cysteine ligase + glutathione synthetase;
11, γ-glutamyltransferase + cysteinylglycine dipeptidase. Cycles between astrocytes and neurons:
i, Glutamine cycle; ii, glutamine-GABA cycle; iii, the three amino acid components of glutathione
synthesized in the astrocytes are recycled and assembled anew in the neurons.

4.2. Glutamate as an Energy Buffer in the Brain

Glutamate is not only a key figure in brain nitrogen homeostasis (Figure 2), but it is also a key
figure in the maintenance of 5-C and 4-C intermediates in brain energy metabolism (Figure 3). A
crucial step in this process is the mitAspAT-catalyzed rapid shuttling of carbon between glutamate
and α-ketoglutarate of the TCA cycle. Indeed, this step is so active that α-ketoglutarate and glutamate
and can be treated as a single combined kinetic pool in MR modeling of the in vivo TCA cycle flux
in the rat brain [86]. By using sophisticated MR techniques Mason et al. estimate that exchange
between α-ketoglutarate carbon and glutamate carbon in the rodent brain is ~100 times faster than
is flux through the TCA cycle [86]. These authors calculated that TCA flux in the rodent brain is
~1.58 µmol/min/g [86]. Estimates of TCA flux using MR technique in the neocortices of healthy, adult
volunteers is ~0.37 µmol/min/g [86]. Recent estimates of carbon flux in the anesthetized mouse brain
using MR techniques indicate a flux through the anesthetized mouse brain of ~1.05 µmol/min/g [87].
This value is slightly higher than estimates for TCA flux in human and rat brain (reviewed in ref. [87]).
In the study of Xin et al., the rate of exchange between mitochondrial α-ketoglutarate and cytosolic
glutamate was found to be ~0.48 µmol/min/g—a value of the same magnitude as that of the TCA
cycle [88]. This finding is reminiscent of our previous findings (noted above) of rapid equilibration of
the components of the AspAT reaction in rat liver.
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Figure 3. One-compartment model highlighting the central role of glutamate as a buffer of C4/C5
intermediates in the brain. The diagram shows the standard depictions of the TCA cycle and
GABA shunt in the brain. In addition the diagram indicates how glutamate acts as a buffer for C5
intermediates (α-ketoglutarate, glutamine) and C4 intermediates (GABA, succinic semialdehyde (SSA),
succinate, fumarate, oxaloacetate, aspartate, and asparagine). Key enzymes/metabolic pathways: 1,
Aerobic glycolysis; 2, alanine aminotransferase; 3, lactate dehydrogenase; 4, pyruvate dehydrogenase
complex; 5, metabolism of leucine and isoleucine (in part) to acetyl-CoA; 6, aspartate aminotransferase;
7, metabolism of histidine, arginine and proline resulting in the incorporation of 5-carbon units
into glutamate; 8, glutamine synthetase; 9, glutaminase; 10, glutamate decarboxylase; 11, GABA
aminotransferase; 12, succinic semialdehyde dehydrogenase; 13, anaplerotic metabolism of isoleucine
(in part) and valine to succinyl-CoA; 14, asparagine synthetase; 15, asparaginase; 16, enzymes of
the purine nucleotide cycle; 17, anaplerotic pyruvate carboxylase. Note that the pentose phosphate
pathway is present in brain but is not included in this diagram. Also not shown are all the reaction
intermediates and cofactors.

4.3. Cerebral Glutamate Buffering during Hyperammonemia

Hyperammonemia occurs in many diseases including urea cycle defects and liver disease
(reviewed in ref. [13]). The Km value for ammonia reported for purified sheep brain glutamine
synthetase is 180 µM [89]. Best estimates for the concentration of ammonia in the normal rat whole
brain are ~180 µM [13]. However, the concentration may be even less in the glutamine synthetase-rich
astrocytes. Thus, it is likely that mammalian brain glutamine synthetase is not saturated with ammonia
under normoammonemic conditions. It is important to note that (1) ammonia enters the brain largely
by diffusion [90]; and (2) the major route for glutamine metabolism is by the glutaminase reaction
which occurs predominantly in a compartment separate from that of the astrocytes (i.e., neurons; see
below). A small decrease in the specific activity of cerebral glutamine synthetase has been reported for
hyperammonemic, portacaval shunted rats [21,91] and for hyperammonemic liver disease patients [92].
On the other hand, an increase in the specific activity of cortex and cerebellum glutamine synthetase
has been reported for hyperammonemic rats with acute liver failure [93]. Overall, it is likely that
hyperammonemia will lead to an increased rate of glutamine synthesis and increased glutamine
concentration in the brain. Indeed, it has long been known that hyperammonemia in experimental
animal leads to increased brain glutamine concentrations [13,94–96]. The concentration of glutamine is
also increased in biopsied brain tissue from patients dying of liver disease [92]. MR experiments have
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also demonstrated large increases in vivo in the concentration of brain glutamine in hyperammonemic
rats [97] and in hyperammonemic patients with liver disease [98,99].

Given that the concentration of brain glutamine greatly increases during hyperammonemia
and that glutamine is synthesized directly from glutamate one might expect that hyperammonemia
will result in a large decrease in brain glutamate. Certainly, brain glutamate levels are decreased in
animal models of hyperammonemia [94–97], and in hyperammonemic cirrhotics [98,99]. However,
the decrease in glutamate concentration is much less than the increase in glutamine concentration.
Moreover, the concentration of the major 5-carbon precursor of both glutamate and glutamine
(i.e., α-ketoglutarate) in the brain is increased in chronically hyperammonemic mice with a defect in
ornithine transcarbamylase [100]. Increased α-ketoglutarate levels may be related in part to a possible
ammonia-induced inhibition of the α-ketoglutarate dehydrogenase complex [101]. Previously we
reported concentration values for brain α-ketoglutarate, glutamate, and glutamine in four groups of
rats: (1) rats infused with sodium acetate (controls); (2) rats infused with ammonium acetate; (3) rats
pretreated with MSO (a potent glutamine synthetase inhibitor) followed by infusion with sodium
acetate, and (4) rats pretreated with MSO followed by infusion with sodium acetate [102]. The findings
are summarized in Table 2. The table shows that infusion of ammonium acetate or inhibition of
brain glutamine synthetase by prior administration of MSO results in marked hyperammonemia. The
hyperammonemia is most pronounced when the rats are pretreated with MSO and then infused with
ammonium acetate. Interestingly, however, the concentration of α-ketoglutarate is either not changed
(in ammonium acetate-treated rats) or is moderately, but significantly elevated (in MSO/sodium
acetate-treated rats and in MSO/ammonium acetate treated rats) (Table 2). These findings provide
additional evidence to that mentioned above that the cerebral GDH reaction does not proceed in the
direction of glutamate formation, but rather in the direction of glutamate oxidation. Of considerable
interest is the very modest decrease in brain glutamate in the rats treated with ammonium acetate
but very large increase in brain glutamine. This finding emphasizes the fact that the total amount
of TCA cycle-derived 5-carbon compounds (i.e., α-ketoglutarate plus glutamate plus glutamine) is
greatly elevated in the hyperammonemic rat brain in the presence of uninhibited glutamine synthetase
(Table 2). How is this possible? One possibility is that anaplerosis resulting from the metabolism
of branched-chain amino acids (especially isoleucine) contributes to the α-ketoglutarate precursor
necessary for the synthesis of hyperammonemia-induced increases in the concentration of glutamate
and glutamine [103]. However, this contribution is likely to be modest [103]. A major route for
anaplerosis in the brain appears to be CO2 fixation and this is discussed in the next section.

Table 2. Metabolite Concentrations (mmol/kg wet eight) in Rat Cerebral Cortex During
Ammonia-Induced and L-Methionine-S,R-Sulfoximine (MSO)-Induced Intoxication.

Metabolite Control
(NaAc-Infused) NH4Ac-Infused MSO-Treated +

NaAc-Infused
MSO-Treated +
NH4Ac-Infused

Ammonia (blood) 0.191 ˘ 0.063 0.710 ˘ 0.150 * 0.432 ˘ 0.089 * 1.02 ˘ 0.07 *
Ammonia 0.326 ˘ 0.063 0.985 ˘ 0.084 0.855 ˘ 0.031 2.48 ˘ 0.06

α-Ketoglutarate 0.096 ˘ 0.011 0.112 ˘ 0.011 0.157 ˘ 0.006 * 0.141 ˘ 0.018 *
L-Glutamate 12.9 ˘ 0.4 11.1 ˘ 0.3 * 10.1 ˘ 0.3 * 11.6 ˘ 0.4 *,†

L-Glutamine 8.04 ˘ 0.019 18.5 ˘ 0.8 * 3.79 ˘ 0.54 * 6.97 ˘ 1.00 *

Adult male Wistar rats were anesthetized and catheters were inserted into a tail artery and one tail vein. The
rats were tracheotomized, curarized and passively ventilated with 30% O2–70% N2O. Blood temperature and
acid-balance were maintained within normal limits. Animals that received MSO were injected with 150 mg/Kg
(a dose designed to substantially inhibit glutamine synthetase by >90% but not to induce seizures) 2.0–2.5 h
before infusions were begun. The rats were then infused intravenously with either 3 M sodium acetate (NaAc) or
3 M ammonium acetate (NH4Ac) for 2 h at a rate of 6.2 µL/min, after which times the animals were euthanized
by freezing the brains in situ with liquid N2. The brains were removed, powdered under liquid N2, weighed at
´20 ˝C and extracted with 3 M perchloric acid. Metabolites in the neutralized perchlorate extract were analyzed
as described in ref. [95]. n = 4 or 5 in each group. * p < 0.01 by Dunett’s test for multiple comparisons; † different
from the value obtained with the MSO/NaAc-treated rats with p < 0.05 by the Student t test. Modified from
ref. [102].
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5. CO2 Fixation in the Brain—Stimulation by Hyperammonemia

5.1. Cerebral CO2 Fixation during Normoammonemia

The brain possesses four enzymes that have the potential to fix CO2, namely pyruvate carboxylase,
malate enzyme, phosphoenolpyruvate carboxykinase, and propionyl-CoA carboxylase (ref. [104] and
references cited therein). Some evidence has been presented that the malic enzyme: Equation (28)
under certain conditions is responsible for some CO2 fixation in neurons [105,106]. However,
McKenna et al. [107] have presented evidence that the malate enzyme in the brain is especially enriched
in synaptic mitochondria where it operates in the direction of pyruvate formation. In that case,
the malate enzyme rather than fixing CO2 acts as a net producer of CO2—the reverse direction of
Equation (28). Under conditions of low aerobic glycolysis in the brain the malate enzyme would
provide pyruvate for continuous operation of the TCA cycle in which carbon from glutamate and
glutamine is directed first toward α-ketoglutarate and then to malate through the TCA cycle and
finally to pyruvate [107].

Malic enzyme : Pyruvate ` CO2 ` NADPH ` H+ Ô pSq ´malate ` NADP+ (28)

Not all glucose taken up by the brain is completely oxidized to CO2. A small portion (~5%) is
normally released during aerobic glycolysis from the brain as lactate (ref. [108] and references cited
therein). As pointed out by Sonnewald [109] anaplerosis in the brain must be exactly balanced by
cataplerosis. Anaplerotic carbon entering the TCA cycle can be offset to some extent by cataplerotic
loss of carbon to the CSF and circulation in the form of glutamine. This process also balances nitrogen
input and export. Aerobic loss of lactate from the brain also represents a cataplerotic process [109].
This lactate is not obtained solely by reduction of pyruvate derived glycolytically from glucose. Rather
much of the lactate released to the circulation originates from cataplerotic loss of CO2 via the conversion
of malate to pyruvate catalyzed by the malate enzyme—the reverse direction of Equation (28) [109,110].

Based on the considerations in the previous paragraph it is unlikely that the malate enzyme
could be a source of increased cerebral CO2 fixation during hyperammonemia. Moreover, the capacity
of phosphoenolpyruvate carboxykinase and propionyl-CoA carboxylase to fix CO2 in the brain is
limited [104]. It has been known for more than 30 years that astrocytes contain the major pool of
pyruvate carboxylase: Equation (29), in the brain and that the carbon fixed by this enzyme is a
source of glutamate and glutamine carbon [110,111]. As noted above, glutamine synthetase activity is
also prominent in astrocytes. The co-localization of these two enzymes in astrocytes has important
ramifications concerning cerebral glutamate and glutamine metabolism as noted below.

Pyruvate carboxylase : Pyruvate ` CO2 ` ATPÑ oxaloacetate ` ADP ` Pi (29)

In agreement with the earlier work several 14C labeling studies and in vivo MR studies
have shown that the importance of the combined action of pyruvate carboxylase and glutamine
synthetase for net glutamine synthesis in the brain (ref. [112] and references cited therein). For
example, using a two-compartment model in awake rats and measurement of label disposition
derived from 14C-bicarbonate and [1-13C]glucose it was shown that TCA cycle activity in glia
(~0.5 µmol/min/g) is about 30% that of the whole brain and on a par with flux through the
glutamine cycle (0.5–0.6 µmol/min/g) (discussed in Section 6 below) [113]. Moreover, the anaplerotic
fixation of CO2 by the pyruvate carboxylase reaction in the glial compartment is remarkably high
(0.14–0.18 µmol/min/g) in the awake rat [113]. The value is somewhat lower in the anesthetized mouse
brain (~0.09 µmol/min/g) [114]. Nevertheless carbon flux through the glial pyruvate carboxylase
reaction is substantial in these animals—calculated to be 37% relative to flux through the glutamine
cycle [114]. These findings build on previous studies showing that a considerable portion of the carbon
incorporated into the glutamine compartment is due to anaplerotic CO2 fixation (20%–35% depending
on species) in humans [115,116], rats [117,118], and rabbits [119].
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5.2. Cerebral CO2 Fixation during Hyperammonemia

It has long been known that hyperammonemia results in considerably increased CO2 fixation into
amino acids in the brains of experimental animals [120,121]. Based on considerations in the previous
paragraph it is probable that CO2 fixation accounts for much of the increase in 5-carbon compounds
(α-ketoglutarate plus glutamate plus glutamine) noted in hyperammonemic brain (Table 2). As shown
by the data in Table 2 most of the hyperammonemia-induced increase in 5-carbon metabolites in animal
models of hyperammonemia is due to glutamine. Increased levels of cerebral glutamine have also been
detected in vivo in hyperammonemic patients with hepatic encephalopathy [98,99,122,123]. Because
hyperammonemia stimulates pyruvate carboxylase (an ATP-dependent reaction) and may inhibit
α-ketoglutarate dehydrogenase complex activity it is theoretically possible that increased glutamine
production will result in a cerebral energy deficit. However, the subject is somewhat controversial
and although aspects of cerebral energy metabolism are clearly altered by hyperammonemia in both
animal models and liver disease patients [124,125] the overall effect on brain energy metabolism is
not pronounced except perhaps in the agonal state. For example, 1H- and 32P MR studies of cerebral
metabolites in rats infused with ammonium acetate showed minimal changes in high energy phosphate
production [126]. Similarly, 1H- and 32P MR studies in a model of chronic hepatic encephalopathy
(bile duct ligation in the rat) suggest minimal interference with cerebral high energy phosphate
production [127]. Nevertheless, some aspect of altered cerebral metabolism must account for the
encephalopathy associated with hyperammonemia. Currently, excess glutamine production is thought
to be a major culprit. This excess glutamine results in disruption of the glutamine cycle (discussed
in the next section), pathological stress in astrocytes, inflammation and brain edema (reviewed in
ref. [128,129]). However, the authors of a recent study of chronically hyperammonemic rats (bile
duct ligation model) have suggested that overproduction of lactate rather than glutamine may be
a more important factor in the production of brain edema [130]. Thus, the mechanism by which
hyperammonemia results in brain edema still remains controversial.

6. Cerebral Glutamine Cycle

Studies of [15N]ammonia metabolism in cat brain [131] and later studies of [13N]ammonia
metabolism in rat brain [14] are consistent with metabolic compartmentation of nitrogen metabolism
in rat brain. Briefly, ammonia entering the brain from the blood is rapidly converted to glutamine
in a glutamate-utilizing compartment that turns over more rapidly than a larger, distinct glutamate
compartment. In part through the important work of Norenberg and colleagues [41,42] the small
compartment is known to be represented by astrocytes and the large compartment by neurons.
Benjamin and Quastel were the first to describe an important role for this compartmentation [132].
These authors suggested that the brain contains a glutamine cycle—astrocytes take up glutamate
released from neurons during transmission and release glutamine to the neurons; the neurons then
accumulate glutamine as a precursor for neurotransmitter glutamate [132]. The glutamine cycle and
important ancillary reactions are shown in Figure 4.
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Figure 4. Cerebral glutamine cycle and ancillary reactions. Under normal conditions ammonia
enters the brain mostly by diffusion of the free base (NH3) [90]. This ammonia, and that derived
from endogenous reactions, is metabolized primarily via incorporation into the amide position of
L-glutamine in a reaction catalyzed by astrocytic glutamine synthetase (reaction 1). Although the
GDH reaction is freely reversible, this enzyme is a net source of ammonia (reaction 2) rather than a net
remover of ammonia. The glutamate required for glutamine synthesis in the astrocytes is derived in
part from glutamate released from neurons during neurotransmission; the nitrogen of this glutamate
may be obtained by transamination of α-ketoglutarate with suitable amino acids (e.g., branched-chain
amino acids, BCAAs) (reaction 3). Some of the glutamine formed in the glutamine synthetase reaction
may be released to the circulation to maintain nitrogen and carbon homeostasis. Another portion may
be returned to the neurons, wherein it is converted back to glutamate by the action of glutaminase(s)
(reaction 4). The sequence Glu (neurons)Ñ Glu (astrocytes)Ñ Gln (astrocytes)Ñ Gln (neurons)Ñ
Glu (neurons) constitutes the cerebral glutamine cycle. As discussed in the text anaplerotic reactions
occur in the brain and may be used to replenish 5-C units. Such anaplerotic reactions include CO2

fixation by pyruvate carboxylase (Ñ, reaction 6) and metabolism in part of branched-chain amino acids
(Ñ, reaction 5). For simplicity the glutamine-GABA cycle is not shown. Although ammonia produced
in neurons is kinetically distinct from that produced in astrocytes, this ammonia must eventually enter
the astrocytes wherein it is a substrate of glutamine synthetase. This is accomplished by diffusion of
the free base (NH3) or by ammonium (NH4

+) transporters [133].

Cleary the cerebral glutamine cycle is not a closed system because as discussed above, anaplerosis
and cataplerosis will add or remove carbon from the cerebral TCA cycle, respectively, which in turn
will affect the flow of individual carbon atoms into and out of the glutamine cycle components.
Nevertheless mass balance must be maintained. Various studies with 14C-labeled precursors (in
rodents) and MR studies (in rodents and humans) have shown that that about 80% of cerebral glutamine
synthesis is normally associated with glutamate neurotransmission and about 20% is associated
with anaplerosis (reviewed in ref. [134]). 13C MR studies have also shown that the glutamatergic
neurotransmitter flux is substantial. For example, the flux though glutamine/glutamate cycling occurs
at ~30%–40% that of the neuronal TCA cycle flux in the brains of anesthetized rats and ~38%–50% in
the brains of awake rats and in human cerebral cortex (reviewed in ref. [135]).
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A further caveat to treating the glutamine cycle as a closed circuit is that as discussed above
(Section 3.1), human and dog brain possess at least two glutamine synthetases. Moreover, although
glutamine synthetase is highly enriched in astrocytes it is now apparent that some subpopulations of
neurons possess glutamine synthetase and that the enzyme is aberrantly expressed in a subpopulation
of neurons in AD brain (Section 3.1). One group found very low glutamine synthetase activity in rat
brain synaptosomes [136]. However, at least two groups have reported the presence of appreciable
glutamine synthetase activity in synaptosomes [137,138]. Glutamine synthetase in neurons may have
a function distinct from the well-established role it plays in the glutamine cycle. Clearly the presence
of multiple forms of glutamine synthetase in some mammalian species and the presence of glutamine
synthetase activity in some neurons (and possibly in nerve endings) and in microglia (next paragraph)
are important areas for further investigation.

As noted above, hyperammonemia is a major contributing factor to the neuropathology associated
with acute and chronic liver failure. As also noted above, hyperammonemia results in increased
cerebral glutamine concentrations. Elevated brain glutamine is associated with brain edema, especially
in acute liver failure, e.g., [128,129,139]. Brain edema in liver disease patients has been demonstrated
directly by MR techniques [98,123]. However, the mechanism by which excess glutamine induces
brain edema is not fully understood. Brusilow and colleagues have strongly championed the
hypothesis that brain edema in hepatic encephalopathy is largely due to an osmotic stress resulting
from a hyperammonemia-induced increase of glutamine concentration in astrocytes (the major
site for the synthesis of glutamine in the brain) [128]. Others have hypothesized that microglia
and neuroinflammation play an important role in promoting the edema associated with hepatic
encephalopathy. However, the two hypotheses are not mutually exclusive—increased astrocyte
swelling may contribute to the neuroinflammatary process or vice versa. It is now recognized
that hyperammonemia produces not only neuroinflammation but also a systemic inflammatory
response. Trannah et al., note “systemic inflammation develops following liver injury, resulting
in hyperammonemia and a ‘cytotoxic soup’ of pro-inflammatory mediators which are released
into the circulation and modulate the impact of ammonia on the brain” [139]. Jayakumar et al.,
have recently summarized the inflammatory mechanisms in acute hepatic encephalopathy by which
activation of endothelial cells and microglia have been suggested to impact on astrocytes, leading to
their dysfunction, ultimately contributing to astrocyte swelling/brain edema [140]. Recently it was
shown that primary cultures of rat microglia possess glutamine synthetase protein [141]. Moreover,
cortical microglia have been shown to possess GLAST, which is upregulated by nicotine [142]. It
was suggest that increased GLAST expression clears glutamate from the synapse and decreases
glutamate neurotransmission [142]. In the quiescent state little conversion of extracellular glutamate to
glutamine by the microglia could be detected [141]. However, when activated by lipopolysaccharide
the cells exhibited lower levels of glutamine synthetase protein yet markedly increased ability to
convert glutamate to glutamine [141], presumably in part due to a strong glutamate transport system.
This ability of activated cerebral microglia to convert extracellular glutamate to glutamine may be
stimulated by hyperammonemia due to the presence of increased substrate (i.e., ammonia). The effect
of increased microglial glutamine synthesis on the functioning of the cerebral glutamine cycle during
liver disease/hyperammonemia is unknown. We suggest that increased conversion of extracellular
glutamate to glutamine in activated microglia may interfere with glutamate transmission thereby
contributing in part to hyperammonemia-induced encephalopathy.

7. Cerebral Glutamine-GABA Cycle

GABAergic neurons are abundant in the mammalian brain. For example, in the cat striatal cortex
11% of synapses are GABA-immunopositive and therefore originate from GABAergic neurons [143].
Once GABA is released from GABAergic neurons it is taken up mostly by astrocytes wherein it is
converted to glutamine. Glutamine is then returned to the neurons wherein it is converted to GABA
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thus completing the glutamine-GABA cycle. (For a recent review see ref. [144]). The basic outline of
the cycle is depicted in Figure 5.
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Figure 5. Flow of carbon through the cerebral glutamine-GABA cycle. For simplicity the glutamine
cycle, GABA/glutamine transporters and anaplerotic reactions are omitted. Enzymes/metabolic
pathways: 1, Glutaminase; 2, glutamate decarboxylase; 3, GABA aminotransferase; 4,
succinic semialdehyde (SSA) dehydrogenase; 5, α-ketoglutarate-linked aminotransferases; 6,
glutamine synthetase.

As with the glutamine cycle the glutamine-GABA cycle is not a closed loop. Carbon is lost at the
glutamate decarboxylase step. Anaplerosis supplies the missing carbon. Moreover, because glutamate
is a key component of both cycles the two cycles are intimately intertwined and sometimes treated
as a single entity—the glutamine-glutamate/GABA cycle, e.g., [134,144]. This is because once GABA
and glutamate are taken up into astrocytes the carbon skeletons of both compounds enter the TCA
cycle and are eventually incorporated into glutamine. Thus, for example, in MR studies of labeling of
glutamine in the 4 position in rat brain after administration of cerebral [1-13C]glucose it is not possible
to determine whether the label in glutamine originated from glutamate or from GABA (ref. [144] and
references cited therein).

However, it is possible to distinguish the two cycles by using appropriately-labeled acetate.
Classical work by Berl, Van den Berg and colleagues showed that, unlike glucose which is metabolized
in both neurons and astrocytes, acetate is metabolized in the small compartment of the brain (i.e.,
astrocytes) [145–147]. (For a review see ref. [148]). MR studies of [13C]acetate in brain slices [149]
and of neural cells in culture [150,151] have confirmed these earlier studies. Studies of disposition
of label derived from [14C]acetate in astrocytes and synaptosomes suggest that metabolism of
acetate in astrocytes but not in neurons is due to preferential transport [152,153]. Thus, in the brain
acetate is metabolized in the same cellular compartment in which carbon atoms originating from
neurotransmitter glutamate and GABA are incorporated into glutamine.
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This preferential uptake and metabolism of acetate in astrocytes was used by Patel et al. [135]
as the basis for distinguishing between the glutamine cycle and the glutamine-GABA cycle.
Patel et al., infused [2-13C]acetate into rats and used MR to detect label in cerebral glutamine and
GABA [135]. By comparing the steady-state fractional enrichments of Glu-C4, GABA-C2, and
Gln-C4 attained during the infusion of [2-13C]acetate to similar measurements following infusion
of ]1,6-13C2]glucose, Patel et al., were able to estimate the relative flux through the glutamine cycle
versus the glutamine-GABA cycle in rat cerebral cortex [135]. Under 1% halothane anesthesia, cerebral
GABA/glutamine cycle flux comprised 23% of total (glutamate plus GABA) neurotransmitter cycling
and 18% of total neuronal tricarboxylic acid cycle flux [135].

8. Nitrogen Balance in the Glutamine and Glutamine-GABA Cycles

Ingress of either glutamate or GABA into astrocytes results in entry of one nitrogen equivalent,
whereas egress of glutamine from astrocytes results in loss of two nitrogen equivalents from these
cells. The glutamine cycle in Figure 4 is depicted by red arrows. In the pathway shown carbon
mass is balanced but not nitrogen mass. Similarly, in the glutamine-GABA cycle one equivalent of
nitrogen enters the astrocytes in the form of GABA, whereas two equivalents exit in the form of
glutamine (Figure 5). This raises the question of how nitrogen balance is maintained in the cerebral
glutamine- and glutamine-GABA cycles. Various nitrogen shuttles from neurons to astrocytes have
recently been analyzed by Calvetti and Somersalo [154]. A commentary of this work has been
published [155] and is summarized here. One possible nitrogen shuttle suggested by Calvetti
and Somersalo [154] involves the transamination of pyruvate with glutamate catalyzed by alanine
aminotransferase in neurons, uptake of alanine by astrocytes, and transamination of alanine in the
astrocytes: Equations (30) and (31). However, the specific activity of alanine aminotransferase in the
brain is relatively low [156], the rat enzyme has a relatively high Km for alanine (~17.5 mM) [157]—much
higher than the concentration in normal rat brain of 3.6 nmol/mg protein («0.4 mM) [158]—and there
is little evidence from 13N-labeling studies that this pathway is prominent in normal rat brain [20].

Alanine aminotransferase (neurons) : Pyruvate ` L´ glutamateÑL´ alanine ` α´ ketoglutarate (30)

Alanine aminotransferase (astrocytes) : L´Alanine ` α´ ketoglutarateÑpyruvate ` L´ glutamate (31)

Another potential shuttle, first proposed by Hutson and colleagues, involves the branched-chain
aminotransferases [159,160]. A branched-chain α-keto acid (e.g., α-ketoisocaproate) is transaminated
with glutamate in the neurons to yield leucine and α-ketoglutarate. The leucine is transported into
astrocytes where it is transaminated with α-ketoglutarate to yield α-ketoisocaproate and leucine:
Equations (32) and (33).

Branched-chain aminotransferase (neurons) : L´Glutamate ` α´ ketoisocaproateÑ

α´ ketoglutarate ` L´ leucine (32)

Branched-chain aminotransferase (astrocytes) : L´ Leucine ` α´ ketoglutarateÑ

α´ ketoisocaproate ` L´ glutamate (33)

The possibility that astrocytes metabolize leucine has strong support. For example, as noted
above (Section 2.1) branched-chain amino acids are readily taken up across the BBB. Moreover, almost
50 years ago Berl and Frigyesi showed that the leucine in the cat brain is preferentially metabolized in
the small compartment (i.e., astrocytes) [161,162]. Other tracer studies with neural cells in culture are
consistent with pronounced leucine metabolism in astrocytes [163,164]. Isoleucine is of interest because
its transamination in astrocytes will not only replenish glutamate nitrogen in that compartment, but
also generate anaplerotic succinyl-CoA [103]. However, flux through this pathway is likely to be
modest [103].
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An analysis by Rothman et al. [165] suggests that a branched-chain amino acid shuttle in brain
is feasible. However, as pointed out by these authors [165] the proposed branched-chain amino acid
shuttle raises some unresolved issues. The GDH reaction is suggested to proceed in the direction of
reductive amination of α-ketoglutarate to glutamate in the neurons, but this is unlikely. Thus, relatively
little label derived from intracarotid administration of [13N]ammonia is incorporated into rat brain
glutamate in MSO-treated rats even when glutamine synthetase is inhibited 85% and the animals are
hyperammonemic [14]. Under these conditions, compartmentalization of ammonia metabolism in the
brain is disrupted such that blood-derived [13N]ammonia, which would normally have been efficiently
trapped as glutamine (amide) in astrocytes, freely mixes with the neuronal ammonia pool [14,155].
If the GDH reaction were important for the net synthesis of glutamate in neurons considerable label
should have been present in brain glutamate in the MSO-treated rats. The fact that this was not
observed suggests that the GDH reaction is not important for the net synthesis of glutamate in neurons
even under hyperammonemic conditions. Thus, although transfer of leucine and other branched-chain
amino acids between neurons and astrocytes is feasible and much evidence suggests that leucine is
transaminated in astrocytes, the GDH reaction is unlikely to play a major role in any nitrogen balance
mechanism between neurons and astrocytes involving the branched-chain amino acids.

In summary, the major source of the amine moiety of glutamate in astrocytes is still unresolved.
As discussed above, a major flow of nitrogen from neurons to astrocytes through alanine is unlikely.
One possibility for the origin of glutamate amine nitrogen in the astrocyte is via transamination of
α-ketoglutarate with leucine entering across the BBB. As noted above, there is considerable evidence
that the leucine carbon skeleton is metabolized in the small compartment; the first step in leucine
metabolism is an obligate transamination step. However, the extent to which transamination of
blood-derived leucine contributes directly to the amine nitrogen in astrocytic glutamate remains
unknown, but is likely to be substantial (see below). Another possibility for replenishment of astrocytic
glutamate (amine) has been suggested by Pardo et al., based on MR studies of aralar-deficient mice
and cultures of neurons and astrocytes derived from these mice [166]. (Aralar is a glutamate-aspartate
mitochondrial transporter found predominantly in neurons in the brain) (ref. [166] and references cited
therein). Pardo et al., suggest that neuronal aspartate is transported to astrocytes wherein it donates
its nitrogen to glutamate via the AspAT reaction [166]. Hertz later suggested a modification [167].
In the Hertz model AspAT-catalyzed transamination of aspartate with α-ketoglutarate in astrocyte
cytosol as envisaged by Pardo et al. [166] is retained. However, the astrocytic aspartate is generated
in the astrocytic mitochondria by transamination of glutamate with oxaloacetate rather than from
the mitochondrial AspAT reaction in neurons as envisaged by Pardo et al. [166]. The overall Hertz
pathway for carbon flow from neuronal-derived aspartate to astrocytic aspartate is summarized in
Equation (34) (N, neurons; A, astrocytes; OAA, oxaloacetate). The aspartate generated in the last step of
this sequence is obtained by transamination of oxaloacetate with glutamate originating from neurons.

Possible route for transfer of nitrogen from cytosolic neuronal aspartate to

astrocytic cytosolic aspartate : Asp pN, cytqÑOAA pA, cytqÑmalate pA, cytqÑ

malate pA, mitqÑOAA pA, mitqÑAsp pA, mitqÑAsppA, cytq (34)

We believe that the utilization of AspAT isozymes to provide the amine group in astrocytic
glutamate is a very reasonable hypothesis based on the high activity of AspAT in neural cells in both
the cytosol and mitochondria. However, despite the elegant suggestions of Pardo et al., and Hertz
the question still remains as to what is the overall origin of the aspartate/glutamate nitrogen in the
brain? As we have discussed above, at least a portion of the astrocyte glutamate nitrogen is obtained
from transamination of blood-derived branched-chain amino acids with α-ketoglutarate. Nevertheless,
the fact that neurons contain considerable branched-chain aminotransferase activity [23,24] suggests
that a portion of the branched-chain amino acids enters the neuronal compartment. In that case, we
suggest a modification of the original branched-chain amino acid shuttle as envisaged by Hutson
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and colleagues [159,160]. The flow of nitrogen according to the branched-chain amino acid shuttle
hypothesis of these authors is depicted in Equation (35). However, as we have discussed above, a
net flow of nitrogen from ammonia to glutamate in neurons is unlikely in normal brain. We propose
here a modification of the branched-chain shuttle which incorporates elements of the Pardo et al.,
and Hertz hypotheses. Thus, we suggest that the presence of branched-chain aminotransferase in
astrocytes allows for the direct transfer of the amino group of blood-derived leucine to glutamate in this
compartment. On the other hand, the presence of this enzyme in neurons allows for the replenishment
of the amine group of glutamate in astrocytes through the sequence shown in Equation (36). Once
again, we cannot emphasize enough the metabolic importance of α-ketoglutarate/glutamate-linked
aminotransferases in maintaining nitrogen homeostasis in the brain.

Proposed involvement of branched-chain aminotransferases in maintaining

nitrogen balance between astrocytes and neurons : Ammonia pNqÑGlu pNqÑ

Leu pNqÑLeu pAqÑGlu pAq (35)

Blood-derived leucine as a possible source of astrocytic glutamate and aspartate nitrogen :

Leu pbloodqÑLeu pNqÑGlu pNqÑAsp pNqÑAsp pAqÑGlu pAq (36)

9. Disruption of Glutamate Homeostasis in Neurological Diseases

The literature on the role of excess glutamate in neurological diseases is vast. Of necessity,
therefore, only a few selected references are presented in this section. As noted in the Introduction
glutamate, and to a lesser extent aspartate, are the major excitatory neurotransmitters in the
brain. Neurotransmitter glutamate acts upon ionotropic (N-methyl-D-aspartate (NMDA) and
α-amino-3-hyroxy-5-methylisoxazole propionic acid (AMPA)) or metabotropic (mGlu1-mGlu8)
receptors [168,169]. Excess production of glutamate at the synapse, or inhibition of its reuptake
from the synaptic cleft, results in toxicity to adjacent neurons as a result of excessive stimulation of
glutamate receptors and calcium overload. Although others had previously noted the neurotoxicity
of excess glutamate Olney was the first (almost 50 years ago) to widely publicize the excitoxicity of
glutamate [170,171]. In sum, it is critically important to maintain the concentration of extracellular
glutamate at a low level to ensure proper neuronal functioning and to prevent excitotoxicity
(for some earlier reviews see, for example, ref. [172–176]). Considerable evidence suggests that
glutamate excitoxicity plays a prominent pathophysiological role in severe, acute insults to the
brain [177], including traumatic brain injury [178,179], stroke/ischemia [180,181], epilepsy [182],
and perinatal brain injury [183]. However, does excitoxicity contribute to neurodegenerative diseases
where neural death occurs slowly? In other words, does chronic glutamate excitoxicity also exist?
The answer according to Lewerenz and Maher from studies, for example, of appropriate animal
models and from downregulation of glutamate transporters is “yes” [177]. Glutamate excitoxicity
is suggested to be a prominent factor in slowly progressing neurodegenerative diseases such as
AD [184,185], amyotrophic lateral sclerosis (ALS) [186–189], Huntington disease [190], and Parkinson
disease [191,192]. Neuroblastomas represent an intriguing situation in which decreased glutamate
transmitter uptake is a contributing factor to neurological disease [80]. This leads to increased
extracellular glutamate. Indeed, neoplastic transformation of human astrocytes to malignant gliomas
is often associated with seizures and neuronal destruction (ref. [80] and references cited therein).

Based on the importance of glutamate excitotoxicity as a contributing factor to many
neurodegenerative diseases, it is not surprising that a great deal of effort has been devoted to the
design of small-molecular-weight compounds that can potentially block or lessen the excitoxicity of
extracellular glutamate. For example, blockers of ion channels associated with glutamate receptors
have been effective in animal models of stroke [193]. Pharmacological activators of EAAT-2/GLT-1
have been explored for decades and are currently emerging as promising tools for protection in a wide



Biomolecules 2016, 6, 16 23 of 33

variety of neurodegenerative diseases [194–196]. In a recent review, Fontana notes that translational
activators of EAAT-2/GLT-1, such as ceftriaxone and LDN/OSU-0212320, have significant protective
effects in animal models of ALS and epilepsy [194].

Despite these promising leads the literature is littered with descriptions of innumerable treatments
designed to block glutamate excitoxicity that were successful in animal models of neurodegeneration,
only to fail in clinical trials (reviewed in ref. [197]). Because of this calamitous situation, some
researchers have begun to consider an alternative approach to minimizing glutamate excitoxicity other
than using traditional pharmacological interventions directed toward glutamate transporters/ion
channels—that is, to use an enzyme-based approach. For example, administration of recombinant
human AspAT in a rat model of ischemic stroke (middle cerebral artery occlusion) was shown by
Pérez-Mato et al., to lower brain and serum glutamate concentrations [198]. The treatment resulted
in a reduction in stroke-induced infarct volume and sensorimotor deficit that was most pronounced
when oxaloacetate was co-administered with the enzyme [198]. Khanna have championed the idea
that interventions designed to upregulate the expression of AspAT in the CNS may be useful in the
treatment of diseases associated with glutamate excitotoxicity [197]. Finally, Brusilow and colleagues
showed that administration of the glutamine synthetase inhibitor MSO in a mouse model of ALS
resulted in a significant increase in survival time [199]. The effect was more pronounced in female mice
than in male mice [200]. The authors used an MR technique to show that glutamine and glutamate
concentrations in the motor cortex and anterior striatum of the ALS mice were reduced by 60% and
30%, respectively, by the MSO treatment [199]. These findings are consistent with our findings for the
effect of MSO on the concentrations of glutamate and glutamine in whole rat brain (Table 2).

10. Conclusions

This review highlights the central importance of glutamate as a nitrogen buffer in the brain
even in the face of severe hyperammonemia. Nitrogen homeostasis in the brain is maintained
in large part by the action of linked glutamate/α-ketoglutarate-dependent aminotransferases. In
association with GDH these enzymes provide an efficient means of channeling excess nitrogen
from several abundant cerebral amino acids (especially the branched-chain amino acids) toward
ammonia. This ammonia and exogenously-derived ammonia are very efficiently incorporated into
glutamine as a means of disposing “waste” nitrogen from the brain and as part of the glutamine- and
glutamine-GABA cycles. As a result of high activity of glutamine synthetase in astrocytes, but not in
most neurons, ammonia metabolism is compartmentalized in the brain. Owing to glutamate-glutamine
and GABA-glutamine cycling between neurons and astrocytes there is an input of approximately
one nitrogen equivalent into the astrocytes (as glutamate or GABA) from neurons and transfer of
approximately two nitrogen equivalents (as glutamine) from astrocytes to neurons. We suggest
that glutamate/α-ketoglutarate-linked aminotransferases maintain the amine group of astrocytic
glutamate. Especially important enzymes in this regard are the mitochondrial and cytosolic isozymes
of AspAT and the branched-chain aminotransferases. Finally, although we have emphasized the fact
that glutamate may act as a nitrogen buffer in the CNS excessive glutamate concentrations in the
“wrong” compartment may be deleterious. Indeed, glutamate excitoxicity is a contributing factor to
many acute and chronic neurodegenerative diseases. Interventions designed to alter key enzyme
levels in vivo (e.g., MSO administration to inhibit glutamine synthetase; administration of AspAT)
and thereby diminish CNS glutamate levels have recently shown promise in animal models of ALS
and stroke, respectively. Although in its infancy, we believe that such enzyme-based therapies are an
interesting and potentially important new approach to combating glutamate excitoxicity.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Alzheimer disease
ALS Amyotrophic lateral sclerosis
AspAT Aspartate aminotransferase
BBB Blood brain barrier
BCAT Branched-chain aminotransferase
BCATc Cytosolic isozyme of BCAT
BCATm Mitochondrial isozyme of BCAT
CNS Central nervous system
CSF Cerebrospinal fluid
cyt Cytosolic
GABA γ-Aminobutyrate
GDH Glutamate dehydrogenase
GLAST Glutamate aspartate transporter
GSH Glutathione
MR Magnetic resonance (also nuclear magnetic resonance)
Mit Mitochondrial
MSO L-Methionine-S,R-sulfoximine
5-OP 5-Oxoproline
PNC Purine nucleotide cycle
PrP wild type prion protein
TCA Tricarboxylic acid
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