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Abstract: The increased expression of pro-inflammatory and pro-angiogenic chemokines 
contributes to ovarian cancer progression through the induction of tumor cell proliferation, 
survival, angiogenesis, and metastasis. The substantial potential of these chemokines to 
facilitate the progression and metastasis of ovarian cancer underscores the need for their 
stringent transcriptional regulation. In this Review, we highlight the key mechanisms that 
regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that 
have important roles in controlling ovarian cancer progression. We further discuss the potential 
mechanisms underlying the increased chemokine expression in drug resistance, along with 
our perspective for future studies. 
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1. Introduction 

Chemokines are a family of cytokines that induce chemotaxis of target cells. Though they were 
originally discovered for their ability to induce leukocyte migration into the infected or injured sites, 
more recently, it became clear that they could also promote cancer progression [1–9]. In addition to 
inducing tumor cell proliferation, angiogenesis and metastasis, chemokines and their receptors regulate 
tumor cell differentiation and survival. Currently, the human chemokine network includes more than  
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45 known chemokines and 20 chemokine receptors. Based on the number and spacing of conserved  
N-terminal cysteine residues that form disulfide bonds, chemokines are divided into four groups: (X)C, 
CC, CXC, and CX3C [10–12]. 

Epithelial ovarian cancer (EOC) is among the leading causes of cancer death in women. Since most 
ovarian cancers relapse and become drug-resistant, the survival rates remain low. Progression of ovarian 
cancer (OC) has been associated with the increased expression and release of pro-inflammatory chemokines, 
which contribute to ovarian cancer development through their induction of tumor cell proliferation, 
survival, migration, and angiogenesis [13–15]. The chemokine expression by ovarian cancer cells is 
controlled at several levels that include transcriptional regulation, post-transcriptional regulation and 
regulation of mRNA stability, translation, and mechanisms regulating the cytokine intracellular storage, 
transport, and release. Table 1 summarizes chemokines produced by ovarian cancer cells. Several 
excellent reviews have addressed the physiological and cellular functions of these chemokines in ovarian 
cancer [9,16,17]. Thus, in this review, we focus instead on the main mechanisms that regulate 
transcription of these chemokines in ovarian cancer cells. 

Table 1. Chemokines released by ovarian cancer cells. 

Systematic Name Alternate Human Names Tissue/Cells Reference 

CCL2 
Monocyte chemotactic 

protein 1 (MCP-1) 
Tumor biopsies,  

serum and ascites 
Negus et al., 1995 [18]  

Milliken et al., 2002 [19] 

CCL5 RANTES 
Tumor ascites, plasma  

and peritoneal fluid 
Milliken et al., 2002 [19] 
Negus et al., 1997 [20] 

CCL11 Eotaxin 
Primary ovarian cancer  

cells obtained from ascites 
Levina et al., 2009 [21] 
Nolen et al., 2010 [22] 

CCL25 
Thymus expressed 
chemokine (TECK) 

Tumor tissue Singh et al., 2011 [23] 

CCL28 
Mucosae-associated 

epithelial chemokine (MEC) 
Tumor tissue 

Facciabene et al.,  
2011 [24] 

CXCL1 
Growth-regulated  
protein � (GRO-�) 

Plasma and  
tumor ascites 

Lee et al., 2006 [25]  
Yang et al., 2006 [26] 

CXCL2 
Growth-regulated  
protein � (GRO-�) 

Ovarian cancer  
cell lines 

Son et al., 2007 [27] 
Kavandi et al., 2012 [28] 

CXCL8 Interleukin 8 (IL-8) 
Tumor tissue, ascites,  
serum and cyst fluid 

Lee et al., 1996 [29] 
Xu et al., 1999 [30] 

CXCL12 
Stromal cell-derived  

factor (SDF-1) 
Tumor biopsies,  

tissues and ascites 
Zou et al., 2001 [31] 

Scotton et al., 2002 [32] 

CXCL16 
Transmembrane  

chemokine CXCL16 
Epithelial ovarian  
carcinoma tissue 

Guo et al., 2011 [33] 
Gooden et al., 2014 [34] 

CX3CL1 Fractalkine 
Epithelial ovarian  
carcinoma tissue 

Gaudin et al., 2011 [35] 

XCL1/2 Lymphotactin 
Tumor ascites and  

ovarian cancer cell lines 
Kim et al., 2012 [36] 
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2. Mechanisms Regulating Chemokine Transcription in Ovarian Cancer Cells 

2.1. Chemokine Regulation by NF�B and Epigenetic Acetylation 

Chemokines are regulated at the transcriptional level by binding of transcription factors and 
repressors to gene promoter and enhancer regions. The transcription factors that control the expression 
of most inflammatory chemokines include the nuclear factor-�B (NF�B), activator protein-1 (AP-1) and 
the signal transducers and activators of transcription (STAT) family. The NF�B activity is constitutively 
increased in aggressive ovarian cancers, and inhibition of NF�B signaling suppresses angiogenesis and 
tumorigenicity of ovarian cancer cells and increases their sensitivity to chemotherapy and apoptosis [37–40]. 
The underlying mechanisms likely involve the NF�B-regulated chemokine expression, since several 
studies have demonstrated that the expression of CCL2, CXCL1, CXCL2, and IL-8/CXCL8 is mediated 
by NF�B in ovarian cancer cells [28–30,41]. 

The increased activity of NF�B in ovarian cancer cells is mediated by enzymes of the I�B kinase 
(IKK) complex, which phosphorylate the NF�B inhibitory protein, I�B�, resulting in I�B� proteasomal 
degradation and nuclear translocation of NF�B subunits [42–45]. In addition to phosphorylating I�B�, 
IKKs can also phosphorylate the NF�B subunits, particularly p65 [46]. While the cytoplasmic degradation 
of I�B�, resulting in the nuclear translocation of NF�B subunits, represents a general step in NF�B 
activation, the specificity of NF�B-regulated responses is mediated by the subunit composition of NF�B 
complexes and their post-translational modifications [47,48]. 

In addition to transcription factor binding to promoter sequences, chemokine expression is regulated 
by epigenetic modifications that include histone modifications as well as post-translational modifications 
of transcription factors, particularly the p65 subunit of NF�B. It is believed that while histone acetylation 
and acetylation of transcription factors induced by histone acetyl transferases (HATs) generally 
promotes transcriptional activation, hypoacetylation induced by histone deacetylase (HDAC) activity is 
associated with transcriptional repression. Since hypoacetylation of tumor suppressor genes by HDACs 
has been linked to tumor development, HDACs inhibitors are now being evaluated for their therapeutic 
effects in cancer, including ovarian cancer [49–51]. Clinical studies using HDAC inhibitors in the 
treatment of ovarian cancer are summarized in the recent elegant review by Khabele [52]. Numerous 
studies have shown that HDACs regulate chemokine expression in different cell types [53–58]; however, 
their role in the regulation of chemokine expression in ovarian cancer has yet to be documented. 

2.2. Chemokine Modulation by Hypoxia and Metabolism 

Ovarian cancer tissues and ascites are characterized by decreased oxygen content, which stabilizes 
the �-subunit of the transcription factor hypoxia-inducible factor-1 (Hif-1) [59]. Hif-1 responds to 
hypoxia by increasing the transcription of genes that promote survival in low-oxygen conditions, thus 
promoting angiogenesis and oncogenesis. Indeed, the increased expression of Hif-1 has been detected 
in epithelial ovarian cancer, and correlates with poor prognosis [60–62]. Hypoxia induces IL-8 [30], 
CXCL12 [63], and CCL28 [24] expression in ovarian cancer cells. The seminal study by Xu et al. [30] 
demonstrated that hypoxic conditions increase the IL-8 expression in ovarian cancer cells by  
increasing NF�B and AP-1 binding to IL-8 promoter. The mechanisms of how hypoxia increases the 
NF�B-dependent IL-8 transcription involve activation of the transforming growth factor beta-activated 



Biomolecules 2015, 5 226 
 
kinase 1 (TAK1), resulting in increased IKK activation, and p65 NF�B recruitment to the IL-8  
promoter [64,65]. In addition, hypoxia induces a direct binding of Hif-1� to the hypoxia-response 
element (HRE) located next to the NF�B binding site in human IL-8 promoter, resulting in the increased 
IL-8 expression [66]. 

One of the consequences of Hif-1 activation is the increased expression of glycolytic genes,  
resulting in increased aerobic glycolysis, glucose consumption, and lactic acid production (Warburg  
effect) [67–69]. The high rate of glucose consumption and lactic acid production contributes to the 
acidification of the tumor environment and cancer progression. Xu et al. showed that acidic pH increases 
the IL-8 transcription by enhancing the binding of AP-1 and NF�B to IL-8 promoter in ovarian cancer 
cells [70]. In addition, in endothelial cells, lactate was shown to activate the NF�B-dependent IL-8 
transcription by inducing degradation of I�B� [71]. The role of lactate and other metabolites of the 
glycolytic pathway in the regulation of pro-angiogenic chemokine expression in ovarian cancer cells is 
yet to be investigated, especially since recent studies have indicated high levels of aerobic glycolysis 
and lactate production in ovarian tumors [72,73]. 

While hyperglycemia and obesity are thought to be contributing factors to cancer development and 
progression, caloric restriction has been associated with reduced cancer incidence [74–77]. During 
reduced calorie intake or exercise, the body switches to obtaining energy from fatty acid oxidation, which 
results in ketone bodies production. Intriguingly, the recent study by Shimazu et al. [78] has demonstrated 
that the ketone body �-hydroxybutyrate (�OHB) is an endogenous and specific inhibitor of HDACs, and 
that administration of exogenous �OHB increases histone acetylation, correlating with changes in 
transcription. Since HDACs regulate chemokine transcription by both deacetylating histones and p65 
NF�B [53–58], it will be important to analyze whether �OHB and other HDAC inhibitors regulate 
chemokine expression in ovarian cancer cells, and whether this is modulated by the metabolic state. 

2.3. Chemokine Modulation by Chemotherapeutic Interventions 

There is growing evidence that the increased chemokine expression by tumor cells modulates not 
only cancer development but also cancer responsiveness and resistance to chemotherapy [79]. A major 
contributor to the acquired chemoresistance of ovarian cancer cells is the increased expression of  
NF�B-dependent chemokines that is induced by the platinum-based drugs carboplatin and cisplatin, and 
by the mitotic inhibitors docetaxel and paclitaxel [29,80–83]. The mechanisms responsible for the 
increased IL-8 expression induced by paclitaxel in ovarian cancer cells involve increased expression of 
toll-like receptors (TLRs) and increased p65 NF�B binding to IL-8 promoter [80,83]. 

Bortezomib (BZ) is the first FDA approved proteasome inhibitor, which has shown a limited 
effectiveness in ovarian cancer treatment as a single agent [84–87]. However, BZ has been considered 
in combination with cisplatin, since BZ prevents the cisplatin-induced degradation of cisplatin influx 
transporter, resulting in enhanced cisplatin uptake and tumor cell killing [88,89]. We have recently 
shown that BZ increases expression of IL-8 and CCL2 in ovarian cancer cells, while it does not affect 
expression of other NF�B-dependent genes. The responsible mechanisms involve a gene specific and 
IKK�-dependent recruitment of S536 phosphorylated p65 NF�B to IL-8 and CCL2 promoters, 
suggesting that anti-inflammatory therapy targeting IKK� might increase the BZ effectiveness in ovarian 
cancer treatment [41]. Since approximately 50% of women diagnosed with ovarian cancer die from 
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chemoresistant metastatic disease, understanding the molecular mechanisms by which chemotherapeutic 
interventions increase the chemokine expression in ovarian cancer cells should lead to the development 
of more effective combination strategies. 

3. Chemokine Transcriptional Regulation in Ovarian Cancer Cells 

Chemokines listed in Table 1 have all been identified in ovarian cancer cells and tissues. Various online 
databases can be used to assess putative transcription factor binding sites. For this review, we have obtained 
chemokine promoter sequences from the NCBI database and used the Alggen promoter-mapping program 
to search for the transcription factor binding sites [90,91]. All found putative binding sites are listed  
in Tables 2–5; the binding sites that have been experimentally confirmed are highlighted in bold and 
labeled with an asterisk. Below, we limit discussion of the transcriptional mechanisms only to the 
chemokines that have been experimentally confirmed in ovarian cancer cells. While the first insights 
into the chemokine transcriptional regulation were obtained by using in vitro electrophoretic mobility 
shift assays (EMSA) or overexpression experiments, chromatin immunoprecipitations (ChIP) generally 
provides a more realistic picture about the transcription factor binding to endogenous promoter sequences 
in living cells. 

Table 2. List of putative transcription factor binding sites in human CCL2 promoter. 

Factor Site Sequence Factor Site Sequence 
SP-1 -54/-44 ACTCCGCCCT c-Fos -1465/-1457 CTGACTCC 

Nkx-1 -65/-58 CCTCCTG p53 -1541/-1534 GGGCAGG 
Elk-1 -76/-71 GGAAG HOX-11 -1571/-1564 CCTAACG 

GATA -88/-82 CTTATC PEA3 -1644/-1636 AAACATCC 
C/EBP -112/-106 TTGCTC GR -1790/-1782 TTGTTCTC 
ELF -143/-130 CTACTTCCTGGAA AR -1789/-1781 TGTTCTCT 

Hif-1 * -127/-122 CACAG  FOXP3 -1959/-1950 AAACATTTT 
AP-1 * -139/-131 TTCCTGGAA C/EBP -1980/-1973 TTGCACA 

STAT1-3 * -139/-131 TTCCTGGAA Pbx-1 -2132/-2120 AGCATGACTGGA 
C-Ets1 -140/-133 CTTCCTG FOXO-3 -2184/-2176 CTTATTTA 
NF-AT -181/-172 GGAAAAAGT CUTL-1 -2309/-2303 ATTGGT 

E47 -239/-232 GTCTGGG PR -2358/-2351 GAACACT 
RP58 -256/-245 GTTCACATCTG Smad3 -2521/-2511 GAGGCAGACA 

HNF-1 -654/-646 TAATATTT ER� -2570/-2562 CTGACCTC 
TMF -708/-701 TATAACA c-Jun -2580/-2574 CATGGG 

HNF-3 -742/-735 CTATTTA NF�B * -2600/-2591 GGAATTTCC 
AP-2 -747/-741 GCAGGC ZDX/BCL6 -2632/-2621 GGGAACTTCC 
c-Jun -942/-935 TGACTTA E47 -2678/-2671 ATCTGGA 

HMG1 -1042/-1035 GGAAATT ETF -2717/-2708 CACAGCCCC 
IRF-3 -1089/-1082 GCTTTCC GATA -2902/-2893 CTTTATCT 

BTEB3 -1287/-1278 AGGAGGAGG PU-1 -3041/-3031 TTACTTCCTC 
NF-Y -1315/-1307 ATTGGGCA YY1 -3264/-3257 AAAATGG 

USF-2b -1447/-1439 GTCATTTG RAR  -3429/-3421 ATCTCACC 
* Experimentally confirmed binding sites, Hif-1; Hypoxia inducible factor-1, AP-1; Activator protein-1, 
STAT1-3; Signal transducer and activator of transcription 1-3, NF�B; Nuclear factor kappa B. 
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Table 3. List of putative transcription factor binding sites in human CXCL1 promoter. 

Factor Site Sequence Factor Site Sequence 
IRF-3 -50/-43 GCTTTCC Elk-1 -771/-766 GGAAG 

HMG I -75/-68 AATTTCC FOXP3 -791/-782 CAACATTTT 
MBP-1 -78/-68 GGGAATTTCC MZF-1 -810/-803 CAGGGGA 
NF�B * -79/-68 CGGGAATTTCC TGIF -870/-862 TGACAACC 
CDP * -97/-87 GGGATCGATC C/EBP -980/-974 TTGCAC 

E47 -90/-83 ATCTGGA YY-1 -1061/-1054 TAAATGG 
E2F-1 -126/-119 GGCGGGG c-Ets -1076/-1069 CAGGAAG 
SP3 -128/-119 GGGGCGGGG AR -1394/-1386 TGTTCTCT 

SP-1 * -130/-121 GGGGGCGGG c-Jun -1491/-1483 TGACTCAT 
R2 -137/-131 TCCACC Pax -1909/-1902 CCTTGAC 

LF-A1 -247/-240 TGGGGCA ER� -2057/-2050 TGGGTCAA 
AP-2 * -279/-273 GCAGGC NF-Y -2060/-2052 ATTGGGTC 
AREB6 -296/-288 CAGGTGGT LEF-1 -2807/-2799 CTTTGTTG 
Smad3 -563/-553 TTCACAGACA HNF-1 -2966/-2958 TAATATTT 

PR -602/-595 GAACATT RAR -3102/-3094 ATGCCTTAG 
GR -605/-596 GCAGAACAT NHP-1 -3103/-3096 TGACCTT 

TMF -739/-732 TGTTATA PEA3 -3110/-3102 GGATGTAT 
GATA -767/-761 GATAAG ATF -3452/-3443 TGACGTAAA 

* Experimentally confirmed binding sites, CDP; CAATT displacement protein, SP-1; Specificity protein 1, 
AP-2; Activator protein 2. 

Table 4. List of putative transcription factor binding sites in human CXCL2 promoter. 

Factor Site Sequence Factor Site Sequence 
NF�B * -76/-67 GGGAATTTCC BTEB3 -862/-853 AAGCGGAGT 
CREB -83/-74 CGGACGTCA NF-Y -970/-962 GAACCAAT 
ATF-2 -83/-74 CGGACGTCA HMG I -999/-992 AATTTCC 
HLF -104/-95 GTTACGCAA IRF -999/-992 AATTTCC 

E2F-1 -111/-104 GGCGGGA NF-AT -1001/-992 AAAATTTCC 
NF-1 -113/-108 TTGGC CUTL1 -1085/-1079 ATTGAT 

LF-A1 -139/-132 CGGGGCA FOXP3 -1115/-1106 CTTAATTTT 
GATA -192/-184 GGTTATCT PR A -1257/-1250 GAACACT 
AP2� -198/-192 GCAGGC C/EBP -1367/-1360 TGAGCAA 

STAT3 * -218/-210 TTGGGGAA MZF1 -1380/-1373 CAGGGGA 
ER� -241/-233 CTGACCCA HNF-1 -1440/-1432 ATATTAAC 

PEA3 -276/-268 GGATGTAG TMF -1880/-1873 TATAACA 
Elk-1 -296/-292 GAAG E47 -1830/-1823 TTCTGGA 

STAT3 * -318/-310 GGGATCGATC Nkx2 -1827/-1820 CTGGAGG 
p53 -339/-332 CTTGCCC HNF -2153/-2146 TAAATGG 
AhR -418/-410 GCGTGCGT YY1 -2153/-2146 TAAATGG 

c-Jun * -437/-430 TGACACA HSF1 -2409/-2401 ATTCTAGG 
c-Fos -451/-443 TGCGTCAT ETF -2505/-2496 GGGGCTGTC 
c-Ets -473/-467 CAGGAAG AP3 -2636/-2629 GAGTTAG 

USF-1 -508/-499 ACACGTGAT Smad3 -3112/-3102 CAGTCAGACA 
AREB6 -574/-566 AACACCTG LEF-1 -3101/-3093 CAACAAAG 
FOXJ2 -621/-611 AAAATAAACA TCF-1 -3102/-3093 ACAACAAAG 

AR -673/-665 TGTTCCAA GR -3256/-3247 ACAGAACAT 
* Experimentally confirmed binding sites, c-Jun; Jun proto-oncogene. 
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Table 5. List of putative transcription factor binding sites in human CXCL8 promoter. 

Factor Site Sequence Factor Site Sequence 
NF�B * -80/-70 GGAATTTCC E47 -859/-852 ATCTGGA 

PU-1 -83/-73 GGAATTTCCTC PR -868/-861 ACTCTTC 
NRF * -88/-77 ATTCCTCTGA HSF1 -867/868 CCTTGAAT 

C/EBP * -94/-87 TTGCAAA IRF -973/-964 TTTCCATTA 
MZF-1 -112/-105 GAGGGA RAR -1068/-1061 AGAGGTC 

EBF -118/-107 TGCCCTGAGGG ER� -1067/-1060 GAGGTCA 
C/EBP * -119/-112 TTGCACA p53 -1258/-1251 CTTGCCC 
AP-1 * -129/-121 TGACTCAG FOXP3 -1304/-1295 AAAATGAAG 
c-Ets -141/-132 TAGGAAGTC RelA -1367/-1357 GGCATTCCCC 
Elk-1 -139/-134 GGAAG YY1 -1372/-1365 AAAATGG 
LEF-1 -187/-179 GATCAAAG Smad3 -1403/-1393 GAAACAGACA 
Hif-1 * -234/-229 GTGCG Nkx1 -1457/-1450 CCTCAAG 

GR� -335/-327 TTGTTCTA AP2� -1473/-1467 CCAGGC 
AREB6 -328/-320 AACACCTG TCF1 -1663/-1654 ACAACAAAG 

AR -334/-326 TGTTCTAA NF-AT -1687/-1677 CTAATTTTCC 
NF -424/-416 ATTGGCTC HMGI -1685/-1677 AATTTTCC 

AP3 -535/-528 TAAATC HLF -1695/-1686 TTGTGTAAC 
HNF-3 -606/-599 TAAATGT CUTL1 -1858/1852 TTGGT 
FOXO3 -651/-641 CTTATCTA PEA3 -2174/-2166 GCACATCC 
GATA -651/-644 CTTTATCT HOX11 -2200/-2193 CGTTAGG 
c-Myb -792/-784 CAACTGCC RAR� -2225/-2217 GGCTCACC 
C/EBP -798/-792 TTGCTC AIRE -2555/-2545 ATGGTTATCT 

GR -847/-838 CTGTTCTCT Oct1 -2744/-2733 TCACTTTGCAT 
* Experimentally confirmed binding sites, C/EBP; CCAAT enhancer binding protein, NRF; NF�B repressing factor. 

3.1. CCL2 

CCL2 (MCP-1) is an important determinant of macrophage infiltration in ovarian tumors [92,93]. 
Although CCL2 has been originally thought to have an inhibitory effect on ovarian cancer  
progression [94–96], recent studies have indicated that CCL2 increases invasion of ovarian cancer cells 
and resistance to chemotherapy [97,98]. The putative transcription factor binding sites identified in 
human CCL2 promoter are listed in Table 2. Experimental studies demonstrated binding of NF�B, 
STAT1, STAT3, AP-1, and Hif-1� to the CCL2 promoter in OC cells (Figure 1). 

Even though the NF�B binding site is located in the distal regulatory region of human CCL2 promoter 
(Figure 1), several studies have demonstrated p65 NF�B involvement in the regulation of CCL2 
expression in OC cells [27,41,99]. In addition, CCL2 expression is regulated by IKK�-dependent 
recruitment of the transcription factor EGR-1, and inhibition of IKK� activity decreases p65 and  
EGR-1 promoter recruitment and CCL2 expression [41]. Interestingly, the NF�B binding site in human 
CCL2 promoter has the same nucleotide sequence as the NF�B site in human IL-8/CXCL8 promoter. 
Curiously, both CCL2 and IL-8 are increased by paclitaxel [83] and bortezomib [41], indicating that  
the paclitaxel and BZ-induced CCL2 (and IL-8) increase is promoter specific. 
  



Biomolecules 2015, 5 230 
 

 

Figure 1. Schematic illustration of human CCL2 promoter. 

Activity of the transcription factors STAT-1 and STAT-3 is also constitutively increased in OC cells, 
where it promotes cell motility and invasiveness [100]. Phosphorylation of STAT3 at tyrosine residues 
705 and 727 increases its transcriptional activity [101]. In OC cells, IL-6 [102] and M-CSF [103] induce 
phosphorylation and activation of STAT3, and increase the CCL2 expression. In addition to NF�B and 
STAT transcription factors, studies in other cell types indicated that the CCL2 expression is positively 
regulated by AP-1 and Hif-1� [104–107]. 

Though no transcription factors have been reported to be involved in the negative regulation of CCL2 
in OC cells, studies involving other cell types have reported negative regulators of CCL2. Specifically, 
NF�B p50/p50 homodimers, HDAC1, and the transcription factors Nrf2 and SMRT have been suggested 
to suppress the CCL2 expression in hepatic cells and adipocytes [108–110]. 

3.2. CXCL1 

CXCL1 (GRO-�) contributes to ovarian cancer progression by inducing endothelial and epithelial 
cell proliferation and migration [25,26]. The putative transcription factor binding sites identified in 
human CXCL1 promoter are listed in Table 3. Experimental studies have demonstrated binding of  
the transcription factors p65 NF�B, AP-2, CCAAT displacement protein (CDP), and the stimulating  
protein-1 (SP-1) to the CXCL1 promoter in human cells (Figure 2). In ovarian cancer cells, though, the 
CXCL1 gene expression was found to be regulated mainly by NF�B pathway, specifically by the p65 
DNA binding [25,27,28,111,112]. 

In addition to the positive regulation by p65 NF�B, AP-2 and SP-1, studies using human melanocytes 
have indicated that the CXCL1 expression is negatively controlled by the transcriptional repressors CDP 
and the poly(ADPribose) polymerase-1 (PARP-1) [113,114]. The exact mechanisms of how CDP and 
PARP-1 inhibit the CXCL1 expression are not fully understood; however, they likely involve displacement 
of trans-activating factors that bind to CXCL1 promoter, resulting in transcriptional repression. 
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Figure 2. Schematic illustration of human CXCL1 promoter. 

3.3. CXCL2 

The putative transcription factor binding sites identified in human CXCL2 (GRO-�) promoter are 
listed in Table 4. However, experimental studies have demonstrated only binding of NF�B, AP-1, and 
STAT3 to human CXCL2 promoter (Figure 3). In ovarian cancer cells, the CXCL2 expression is 
dependent on I�B� [28] and IKK� [44]. In addition, the CXCL2 expression in OC cells is induced  
by TNF, and is inhibited by overexpression of the tumor suppressor p53 [115]. 

 

Figure 3. Schematic illustration of human CXCL2 promoter. 

3.4. CXCL8 

CXCL8 (IL-8), an inflammatory chemokine originally discovered as the neutrophil chemoattractant 
and inducer of leukocyte-mediated inflammation [1–3], contributes to cancer progression through its 
induction of tumor cell proliferation, migration and angiogenesis [4–9]. The expression levels of IL-8 
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directly correlate with ovarian cancer progression, and suppression of IL-8 expression inhibits angiogenesis 
and tumorigenicity of ovarian cancer cells [13,116–118]. A number of studies have identified a minimal 
region in human IL-8 promoter that spans nucleotides -1 to -140, is necessary for IL-8 transcription,  
and contains binding sites for NF�B, AP-1, CCAAT enhancer-binding protein beta (C/EBP or NF-IL6), 
Hif-1, and NF�B-repressing factor (NRF) [119–127]. In addition, the IL-8 transcription in ovarian cancer 
cells is positively regulated by the transcription factor early growth response-1 (EGR-1) binding to  
IL-8 promoter, and by enzymes of IKK complex that phosphorylate both I�B�, leading to its cytoplasmic 
degradation, and p65 NF�B, resulting in its increased transcriptional activity (Figure 4) [41–45]. 

 

Figure 4. Human CXCL8 promoter with the identified transcription factor binding sites. 

NF�B is crucial for the IL-8 expression, and regulates IL-8 in all cell types [128]. The NF�B binding 
sequence (GGAATTTCC) is located between -80 and -70 of the IL-8 gene [120]. In most cell types, the 
IL-8 transcription is regulated predominantly by p65 homodimers [37,121,129–131]. Phosphorylation 
of p65 NF�B on serines 276 and 536 increases its transcriptional activity and interaction with other 
transcription factor and regulators, and decreases its affinity for nuclear I�B� [129–133]. We have 
recently shown that in ovarian cancer cells, the IL-8 transcription is regulated by S536-p65 NF�B,  
IKK�, and EGR-1, and that proteasome inhibition developed as a strategy to inhibit NF�B-dependent 
transcription, paradoxically increases the IL-8 expression in ovarian cancer cells by increasing the  
S536-p65, IKK� and EGR-1 recruitment to IL-8 promoter [41]. 

Adjacent to the NF�B site in the IL-8 promoter are C/EBP and Hif-1 binding sites (Figure 4).  
Even though the direct involvement of C/EBP and Hif-1 in the IL-8 regulation in ovarian cancer cells 
has yet to be demonstrated, the up-regulation of IL-8 expression by hypoxia in ovarian cancer cells has 
been well documented [30,134]. 
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Transcription of IL-8 is also regulated by the transcription factor AP-1 that consists of Fos, FosB, 
Jun, and Jun-B subunits. Activation of AP-1 mediates the increased IL-8 expression in hypoxia, 
paclitaxel, and lysophosphatidic acid (LPA) treated OC cells [30,80,135]. Interestingly, a recent study 
has shown that the stress hormones norepinephrine and epinephrine enhance the IL-8 expression by  
a FosB-dependent mechanism [136]. Table 5 lists all putative transcription factor binding sites identified 
in the human CXCL8/IL-8 promoter. 

Although studies from other cell types have shown that the IL-8 expression is negatively regulated 
by the NF�B repressing factor NRF, nuclear receptor corepressor (NCoR), the silencing mediator for 
retinoic acid and thyroid hormone receptor SMRT, and HDACs [54,137–139], the potential involvement 
of these corepressors in OC cells has yet to be demonstrated. Considering the important role these 
corepressors play in the IL-8 regulation, it will be important to elucidate their function in ovarian  
cancer setting. 

4. Conclusions and Perspectives 

As we continue to improve our understanding of the mechanisms regulating chemokine expression 
in ovarian cancer cells, our knowledge will contribute to the development of new therapeutic strategies 
targeting the increased chemokine expression in chemoresistant metastatic ovarian cancer. Several 
important questions remain to be answered: What are the specific molecular targets and mechanisms 
responsible for the chemokine expression induced by chemotherapeutic drugs and hypoxia? What is the 
role of HDACs and other transcriptional repressors in regulating the chemokine expression in ovarian 
cancer cells? What is the role of the metabolic state of ovarian cancer cells in regulating the chemokine 
expression? Answers to these questions may open new avenues for therapeutic approaches for treating 
ovarian cancer. 
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