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Abstract: Chaperonin GroEL is a complex oligomeric heat shock protein (Hsp60) assisting 
the correct folding and assembly of other proteins in the cell. An intriguing question is how 
GroEL folds itself. According to the literature, GroEL reassembly is dependent on chaperonin 
ligands and solvent composition. Here we demonstrate dependence of GroEL reassembly 
efficiency on concentrations of the essential factors (Mg2+, ADP, ATP, GroES, ammonium 
sulfate, NaCl and glycerol). Besides, kinetics of GroEL oligomerization in various conditions 
was monitored by the light scattering technique and proved to be two-exponential,  
which suggested accumulation of a certain oligomeric intermediate. This intermediate was 
resolved as a heptamer by nondenaturing blue electrophoresis of GroEL monomers during 
their assembly in the presence of both Mg-ATP and co-chaperonin GroES. Presumably, 
this intermediate heptamer plays a key role in formation of the GroEL tetradecameric 
particle. The role of co-chaperonin GroES (Hsp10) in GroEL assembly is also discussed. 
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1. Introduction 

The study of unfolding and refolding of mature proteins mainly confirms Anfinsen’s hypothesis that 
all information about the protein spatial structure is encoded in the protein amino acid sequence [1,2]. 
At the same time, the analysis of vital activity of the cell under stresses reveals a number of proteins 
called molecular chaperones which are involved in either catalysis of protein folding or regulation of 
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distribution of newly synthesized proteins between competing pathways of protein folding and 
aggregation [3–5]. Besides, the chaperones assist assembly of oligomeric complexes, transmembrane 
transport of protein chains and their degradation [3,6–10]. Some of the chaperones are oligomeric 
proteins consisting of many subunits (from 10 kDa up to 100 kDa each) arranged in some cases in 
one- or two-ring quaternary structures [11,12]. An intriguing question arises as to how chaperones 
fold. E. coli heat shock proteins GroEL (Hsp60) and GroES (Hsp10), usually called chaperonins [7,11,12], 
are the best studied both structurally and functionally. The chaperonin GroEL is an oligomeric complex 
consisting of 14 identical subunits (60 kDa each) arranged as two interacting ring-shaped 7-subunit 
structures [13]. Upon functioning, GroEL interacts with another oligomeric protein-co-chaperonin 
GroES consisting of 7 identical subunits (10 kDa each) arranged as a dome-like ring-shaped 
structure [14,15]. GroEL unfolding-refolding studies were initiated more than 20 years ago by  
Lissin et al. [16]. The authors have shown that a complex tetradecameric GroEL particle can be 
reconstructed (refolded) in vitro from its urea-unfolded monomeric state in the presence of Mg-ATP. 
GroEL renaturation in the absence of Mg-ATP results in folded monomers (subunits) which cannot 
specifically oligomerize [16]. These folded monomers have a large content of the secondary structure 
and compactness, but show lower stability than the full-size tetradecameric GroEL (see also [17–19]). 

An assembly of folded monomers is controlled by several factors that are described inconsistently. 
For example, in the original work it was demonstrated that GroEL reassembly occurred in the presence 
of Mg-ATP but not Mg-ADP. Besides, the efficiency of GroEL reassembly increased after addition of 
either native GroEL (self-chaperonining) or co-chaperonin GroES [16]. However, there are reports on 
GroEL reassembly in the presence of Mg-ADP and ammonium sulfate [20,21] and even in the absence 
of adenine nucleotides [19,22,23]. The presence of native GroEL is not obligatory either for 
oligomerization of its subunits [20,21]. Thus, we conclude that GroEL reassembly is determined by 
both its ligands and ambient conditions. Here we clarify the role of ligands and solvent composition in 
GroEL reassembly. Firstly, we show that either at low ionic strength or at low protein concentrations 
both native GroES and Mg-adenine nucleotides (Mg-ATP or Mg-ADP) are necessary for assembly of 
GroEL monomers. Secondly, we have studied in detail dependence of the efficiency of GroEL 
reassembly on concentrations of its ligands (Mg2+, ADP and ATP), as well as on concentrations of 
ammonium sulfate, NaCl and glycerol, to evaluate the minimal concentrations required for initiation of 
GroEL reassembly. Thirdly, we have found an oligomeric intermediate (probably a heptameric ring-shaped 
particle) accumulated on the GroEL reassembly pathway. This oligomeric intermediate is unstable and 
dissociates into monomers when the concentration of essential factors decreases below the minimal 
one until it interacts with another intermediate to form a stable full-size GroEL particle. 

2. Results and Discussion 

2.1. Urea-Induced Unfolding and Refolding of the GroEL Oligomeric Particle 

Figure 1a,b demonstrate urea-induced unfolding of GroEL and its refolding from the urea-unfolded 
state, as monitored by urea traverse gradient electrophoresis. 
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Figure 1. Urea transverse gradient gel-electrophoresis of GroEL. (a) Denaturation. Native 
GroEL (C = 0.5 mg/mL) solution in 20 mM Tris-HCl, pH 7.5 was loaded on the gel;  
(b) Renaturation. Unfolded GroEL (C = 0.5 mg/mL) solution in 20 mM Tris-HCl,  
pH 7.5, 5 mM β-mercaptoethanol (βME), 5 M urea was applied to the gel. 

 

A change in the protein electrophoretic mobility at a constant charge reflects the change in protein 
hydrodynamic volume [24,25]. One can see that the change in GroEL hydrodynamic volume upon
chaperonin urea-induced unfolding occurs in two distinct stages (Figure 1a). The first one corresponds 
to a decrease of the protein hydrodynamic volume to a value above 2 M urea that in general reflects 
disturbance of the GroEL oligomeric structure [20,23,26]. The second one corresponds to an increase 
of the protein hydrodynamic volume obviously due to further unfolding of the partially unfolded 
monomers [23,26]. The decrease of the protein hydrodynamic volume during GroEL renaturation from 
the urea-unfolded state in the absence of protein ligands occurs in two distinct stages (Figure 1b). 
However, these stages obviously reflect successive refolding of the GroEL subunit domains up to a 
folded state (~0.5 M urea) possessing a much higher electrophoretic mobility, and hence, a lower 
hydrodynamic volume than the full-size GroEL particle. Urea-induced unfolding of the folded GroEL 
monomer (subunit) has the same stages as refolding. These stages manifest themselves through
increased hydrodynamic volume (similar to that shown in Figure 1b), as well as through decreased
ellipticity at 220 nm, tyrosine fluorescence intensity and anisotropy (not shown). As follows from
Figure 1a,b, at 2 M urea (where the GroEL oligomeric structure dissociates) the protein monomers are 
essentially unfolded, probably due to unfolding of the equatorial domain responsible for intersubunit 
interactions [26]. The considerable difference in electrophoretic mobility between the full-size GroEL 
and its folded monomer (Figure 1a,b) allows us to use nondenaturing gel electrophoresis for GroEL 
reassembly observation. Figures 2 and 3 represent nondenaturing electrophoresis data on incubation of 
GroEL folded monomers (see Experimental Section) at various combinations of the factors 
required for their assembly. From these data, we can conclude the following. First, in accordance 
with literature [16–19], GroEL reassembly does not occur in the absence of GroEL ligands (Mg2+, 
ADP, ATP, GroES) or in the presence of only one of them at a low or moderate ionic strength (Figure 2,
slot 2). Second, specific oligomerization of monomers starts after addition of a certain combination of 
GroEL ligands dependent on the solvent composition. At a low or moderate ionic strength (~20 mM 
Tris-HCl or 0.2 M NaCl), even high concentrations of Mg-ATP or Mg-ADP (up to 100 mM) do not 
stimulate assembly of monomers in the absence of co-chaperonin GroES (Figure 2, slots 3–5, 15 and 16).
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Ammonium sulfate has a remarkable effect on GroEL reassembly (see also [20–22]). In the presence of 
0.1 M ammonium sulfate, an appreciable GroEL reassembly is observed in the presence of both Mg-ATP 
and Mg-ADP (Figure 2, slots 9–11). Besides, Mg-ATP is more efficient than Mg-ADP. Interestingly, 
addition of a two-molar excess of co-chaperonin GroES (GroEL14:GroES7 = 1:2) essentially stimulates 
GroEL oligomerization in all cases. The upper double bands (Figure 2a, lanes 11 and 14) observed  
at high concentrations of Mg-ATP (100 mM) are probably due to partial association of GroEL 
tetradecamers (possibly dimerization) in these conditions. Third, the effect of ligands on GroEL 
reassembly may also be achieved by a certain solvent composition (Figure 3). Mg2+ can be replaced by 
high ionic strength (~2 M NaCl or KCl) of the solvent (Figure 3a). In the presence of 20% glycerol 
GroEL reassembly occurs in the absence of adenine nucleotides but in the presence of Mg2+ only 
(Figure 3b) (see also [19]). Moreover, in the presence of 1 M ammonium sulfate GroEL reassembly 
does not require any ligands (Figure 3c) (see also [22]). To learn the concentrations of the ligands 
(Mg2+, ATP) and other factors (ammonium sulfate and glycerol) required for specific GroEL 
oligomerization, we studied the effect of these factors on GroEL reassembly from monomers in detail. 
Figure 4 shows the dependence of the GroEL reassembly efficiency on concentrations of various 
factors. The optimal conditions for GroEL oligomerization have been chosen taking into account the 
literature reports [16–22] and the data represented in Figures 2 and 3. These conditions are as follows: 
20 mM Tris-HCl, pH 7.5, 100 mM (NH4)2SO4, 10 mM Mg2+, 10 mM ATP or 10 mM Mg2+ and  
20% glycerol. Keeping some oligomerization-responsible factors unchanged and varying others,  
we found that noticeable oligomerization of GroEL requires the presence of more than 50 mM 
ammonium sulfate, 0.1 mM ATP, 0.5 mM Mg2+ or 10 mM Mg2+ and 18% glycerol. Thus, if the GroEL 
oligomerization reaction starts at the minimal concentrations of the essential factors, it can be stopped 
by dilution to achieve a concentration of the factors below the minimal value. 

2.2. GroEL Time-Resolved Reassembly and the Kinetic Intermediate Oligomer 

GroEL oligomerization kinetics can be monitored by increasing light scattering intensity because 
the large oligomeric particle of GroEL scatters light much stronger than a monomer [17,26]. Figure 5 
represents time-resolved oligomerization of GroEL caused by minimal concentrations of the essential 
factors. As seen, its kinetics appears to be two-exponential and the first phase is an order of magnitude 
faster than the second (final) one. This suggests accumulation of some intermediate oligomer on the 
pathway of protein native structure formation. It should be noted that oligomerization kinetics of  
one-ring structures (for example, mutant GroELSR1 or GroES) is monoexponential (data not shown). 
Untimely termination of the GroEL oligomerization reaction by dilution of the reaction mixture to 
essential factor concentrations below their minimal values and an analysis of the reaction products by 
nondenaturing electrophoresis revealed no intermediate oligomers between the monomers and the  
full-size GroEL particle (inserts in Figure 5). The upper band at the beginning of the gel (inserts in 
Figure 5) may correspond to partial nonspecific aggregation of GroEL monomers upon refolding 
initiation. Equilibrium studies of GroEL unfolding-refolding revealed no noticeable accumulation of 
intermediate oligomers [16,19,20,22]. However, in the presence of a substrate protein an intermediate 
GroEL oligomer (probably heptamer) was shown to be stabilized at moderate concentrations  
of urea [27]. Our data also show that a kinetic intermediate oligomer accumulated on the GroEL 
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reassembly pathway could be a heptamer. Firstly, the linear dependences of the rate constants of 
GroEL oligomerization kinetic stages on the protein concentration have essentially different slopes 
(Figure 6). The increase in the rate of the first stage (presumably reflecting assembly of monomers in 
an intermediate oligomer) is sevenfold that of the last stage (apparently corresponding to formation of 
the full-size GroEL particle). This result permits suggesting that molar concentrations of the molecules 
interacting on these kinetic stages are different, and on the first stage, the molar concentration of interacting 
molecules is essentially larger than that of the last one. Secondly, the rate constant of the first kinetic phase 
grows when the GroES concentration increases, while the last kinetic phase is much less sensitive  
to GroES (data not shown). Thirdly, at low GroEL monomer concentrations (less than 0.1 mg/mL) 
oligomerization occurs only in the presence of GroES, while at large concentrations (~1 mg/mL)  
the effect of GroES on GroEL oligomerization kinetics is much less pronounced (Figure 7). The data 
above allow us to suppose that the intermediate oligomer accumulated on the GroEL particle formation 
pathway is unstable when concentrations of the essential factors are below critical ones, but it 
stabilizes when it interacts with another one or with GroES to form a full tetradecameric structure.  
The most preferable candidate on the role of the intermediate oligomer important for GroEL 
reassembly is a one-ring heptamer capable of binding to GroES and to the substrate protein [28–30]. 

This assumption is confirmed by the analysis of GroEL reassembly kinetics using nondenaturing 
blue electrophoresis in the presence of Mg-ATP (Figure 8). The blue electrophoresis technique allows 
us to evaluate the molecular weight of the native protein molecules [31]. Figure 8 represents the  
blue native electrophoresis analysis of products of the GroEL reassembly reaction in the presence of 
Mg-ATP and GroES at various time-intervals. From these data one can conclude the following.  
Firstly, the dye (Coomassie brilliant blue G250) used for the separation and visualization of proteins 
by blue native electrophoresis inhibits GroEL reassembly when it is added at the reaction start (slot 3). 
Thus, it is impossible to study GroEL reassembly in the presence of this dye. At the same time,  
this phenomenon allows preventing protein oligomerization during blue electrophoresis in the presence 
of Mg-ATP in the gel and electrode buffer. Secondly, with the dye added at various time intervals 
before GroEL loading on the gel, only a few protein bands were observed. According to the evaluated 
molecular weight and the corresponding markers, these bands have been attributed (from bottom  
to top) to GroEL monomer, GroES heptamer (M.W. 67.5 ± 0.3 kDa), GroEL intermediate oligomer  
(M.W. 412 ± 2 kDa, corresponding to GroEL heptamer), complex of the intermediate oligomer with  
GroES (M.W. 507 ± 1 kDa), full-size GroEL tetradecamer (M.W. 815 ± 2 kDa), and complex of the 
full-size GroEL14 with GroES7 (M.W. 856 ± 2 kDa). The second-dimension SDS-electrophoresis  
of the corresponding bands (see “Experimental” section) confirms this identification (Figure 9).  
The time-resolved change of the corresponding conformations during GroEL reassembly in the 
presence of Mg-ATP and GroES (Figure 8b) shows that there is an appreciable difference in their 
rates. At the first stage changes of the population of GroEL monomers and the intermediate oligomer 
were faster than that of full-size GroEL. This is a partial evidence that on the first stage of the GroEL 
reassembly reaction the intermediate oligomer is formed, while the full-size GroEL particle is formed 
on the last stage (see Figures 5 and 6). 
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Figure 2. Nondenaturing gel electrophoresis of folded GroEL monomers incubated before 
applying to the gel during 180 min at 20–22 °C in the presence of Mg-ATP (a), Mg-ADP 
(b), and GroES (GroEL14:GroES7 = 1:2). Slots: 1—the mixture of native GroEL14 and 
GroES7; 2—folded monomer GroELm incubated in buffers both used independently and  
in the presence of individual ligands; 3—1 mM Mg-nucleotide; 4—10 mM Mg-nucleotide; 
5—100 mM Mg-nucleotide; 6, 7 and 8—1 mM Mg-nucleotide, 10 mM Mg-nucleotide and 
100 mM Mg-nucleotide in the presence of GroES (all in the buffer 20 mM Tris-HCl,  
pH 7.5, 5 mM βME, 0.4 M urea); 9, 10 and 11—1 mM, 10 mM and 100 mM Mg-nucleotide; 
12, 13 and 14—1 mM, 10 mM and 100 mM Mg-nucleotide in the presence of GroES  
(all in the buffer 20 mM Tris-HCl, pH 7.5, 5 mM βME, 100 mM (NH4)2SO4, 0.4 M urea); 
15 and 16—10 mM and 100 mM Mg-nucleotide; 17, 18 and 19—1 mM, 10 mM and  
100 mM Mg-nucleotide in the presence of GroES (all in the buffer 20 mM Tris-HCl,  
pH 7.5, 5 mM βME, 200 mM NaCl, 0.4 M urea). The concentration of folded monomers in 
incubation mixtures was 0.4 mg/mL. 
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Figure 3. Nondenaturing gel-electrophoresis of folded GroEL monomers incubated before 
applying to the gel during 180 min at 20–22 °C: (a) in the presence of 2 M NaCl or KCl 
(slot 1), 2 M NaCl or KCl and 10 mM ATP (slot 2); (b) in the presence of 20% glycerol 
(slot 3), 20% glycerol and 10 mM ATP (slot 4), 20% glycerol and 10 mM MgCl2 (slot 5); 
(c) in the presence of ammonium sulfate: 100 mM (slot 6) and 1 M (slot 7). The concentration 
of folded monomers in incubation mixtures was 0.4 mg/mL. Buffer—20 mM Tris-HCl,  
pH 7.5, 5 mM βME. 

 

Figure 4. The effect of the factors stimulating GroEL reassembly. Nondenaturing electrophoresis 
of GroEL monomers after 180 min incubation: (a) in 20 mM Tris-HCl, pH 7.5, 5 mM βME, 
100 mM (NH4)2SO4, 0.4 M urea, 10 mM ATP and at various concentrations of MgCl2 
(slots: 2—0.1 mM, 3—0.5 mM, 4—1 mM, 5—5 mM, and 6—10 mM). Slot 1–the mixture of 
GroEL14 and GroEL1 in 20 mM Tris-HCl, pH 7.5; (b) in 20 mM Tris-HCl, pH 7.5, 5 mM 
βME, 0.4 M urea, 10 mM MgCl2, 10 mM ATP and at various concentrations of (NH4)2SO4 
(slots: 1–0 M, 2–1 mM, 3–5 mM, 4–10 mM, 5–50 mM, 6–100 mM, and 7–200 mM);  
(c) in 20 mM Tris-HCl, pH 7.5, 5 mM βME, 0.4 M urea, 100 mM (NH4)2SO4, 10 mM 
MgCl2 and at various concentrations of ATP (slots: 1–0.001 mM, 2–0.01 mM, 3–0.1 mM, 
4–0.5 mM, 5–1 mM, 6–5 mM, and 7–10 mM); (d) in 20 mM Tris-HCl, pH 7.5, 5 mM βME, 
0.4 M urea, 10 mM MgCl2 and at various concentrations of glycerol (slots: 1%–14%,  
2%–16%, 3%–18%, 4%–20%, 5%–26%, 6%–28%, and 7%–30%). The concentration of 
folded monomers in incubation mixtures was 0.4 mg/mL. 
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Figure 5. GroEL reassembly kinetics monitored by light scattering at 330 nm. (a) in 20 mM 
Tris-HCl, pH 7.5, 5 mM βME, 10 mM MgCl2, 20% glycerol, 0.4 M urea; (b) in 20 mM 
Tris-HCl, pH 7.5, 5 mM βME, 50 mM (NH4)2SO4, 1 mM MgCl2, 0.5 mM ATP, 0.4 M urea. 
Rate constants and amplitudes of the protein oligomerization kinetic phases are shown at 
corresponding parts of the kinetics. Inserts represent nondenaturing electrophoresis of  
the products after termination of the oligomerization reaction by 10-fold dilution of  
the reaction mixture components at various time intervals (slots: 1—full-size GroEL14;  
2—folded monomer GroEL1; 3–500 s; 4–2700 s; 5–5400 s after oligomerization start).  
The staining of the gels was performed using silver. 
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Figure 6. Dependence of the rate constants of GroEL oligomerization kinetic phases on the 
protein concentration. Buffer: 20 mM Tris-HCl, pH 7.5, 5 mM βME, 100 mM (NH4)2SO4, 
0.4 M urea and 10 mM Mg-ATP. 

 

Figure 7. GroEL reassembly kinetics monitored by light scattering at 330 nm in the buffer 
containing 20 mM Tris-HCl, pH 7.5, 5 mM βME, 100 mM (NH4)2SO4, 0.4 M urea and 10 mM 
Mg-ATP at a protein concentration of 0.1 mg/mL (a) and 1.05 mg/mL (b). 1—in the absence 
and 2—in the presence of GroES (GroEL14:GroES7 = 1:2). 
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Figure 8. Nondenaturing blue electrophoresis analysis of GroEL oligomerization kinetics: 
a—the products of GroEL oligomerization kinetics visualized by Coomassie brilliant blue 
G250 (slots: 1—SR1 one ring mutant of GroEL, 2—GroES heptamer, 3—60 min after GroEL 
oligomerization reaction was started in the presence of Coomassie brilliant blue G250 dye, 
4—1 min, 5—5 min, 6—15 min, 7—30 min, 8—60 min, 9—120 min, 10—240 min and 
11—1200 min after the GroEL oligomerization reaction started in the presence of Mg-ATP 
and two molar excess of GroES, 12—GroEL tetradecamer, 13—GroEL monomer, 14—180 min 
after the GroEL oligomerization reaction was started in the absence of GroES); b—the 
time-resolved change of GroEL monomer (○), intermediate oligomer (▲) and full-size 
GroEL particle (■) during the GroEL oligomerization reaction in the presence of GroES and 
Mg-ATP. The data were obtained by an analysis of electrophoretic band intensities (Figure 8a) 
using the computer program TatalLab TL120 1Dv 2009 (Nonlinear Dynamics Ltd., 
Newcastle upon Tyne, UK). Intensities of the bands corresponding to the intermediate 
oligomer, the full-size GroEL, and their complexes with GroES were summarized and 
represented as the intermediate oligomer (▲) and the full-size GroEL particle (■). 
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Figure 9. The second-dimension SDS-electrophoresis of the protein bands which are present at 
nondenaturing blue electrophoresis of GroEL reassembly reaction mixture (see Figure 8). 
Slots: 1—SR1 mutant of GroEL, 2—complex GroEL14 with GroES7, 3—GroEL14, 4—complex 
of the intermediate oligomer with GroES7, 5—the intermediate oligomer, 6—a GroEL 
monomer (a few GroES are present because of some difficulty with separation of the 
corresponding bands– see Figure 8a), 7—the GroES heptamer. 

 

At least three facts from blue electrophoresis (Figure 8a) are still unclear and may require further 
study. First, electrophoretic mobility of the GroES heptamer is lower than that of a GroEL monomer in 
the presence of Mg-ATP, while in the absence of Mg-ATP from the gel and electrode buffer, a GroEL 
monomer is more slow than GroES (cf. Figures 2 and 8a). This may be explained by ATP-to-GroEL 
monomer binding and acquisition by the latter a more compact conformation [18]; alternatively,  
the GroES conformation may become less compact in the presence of ATP. Second, the most diffuse 
bands are between the intermediate oligomer and the full size GroEL tetradecamer. A possible reason 
for this may be the fast exchange between these GroEL conformations. Third, there is an inexpressive 
diffuse band between the GroEL monomer and the heptamer (slots 3–10 and 12). Such a band is absent 
from the electrophoresis run performed without ATP and dye (Figure 2). Probably, this band is a result of 
stabilization of some intermediate oligomer (likely a trimer) in the presence of ATP and Coomassie dye. 

The data obtained can explain the fact that the GroES gene precedes the GroEL gene within the 
GroE operon in the E. coli genome [7]. Obviously, GroES is necessary for more effective assembly of 
GroEL, especially at its low concentrations at the initial step of biosynthesis. Moreover, our 
unpublished kinetic data show that GroES refolding and reassembly occur much faster than those of 
GroEL and do not require any additional factors. 
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3. Experimental 

3.1. Solutions 

For buffer preparations we used ATP- and ADP-Na-salts, phenylmethylsulfonyl fluoride (PMSF), 
L-histidine (all “Sigma-Aldrich”, St. Louis, MO, USA); white egg lysozyme, NaCl, KCl, (NH4)2SO4, 
urea, MgCl2, MgCO3 (all “Reakhim”, Moscow, Russia); β-mercaptoethanol (βME), Coomassie 
brilliant blue G250, and Tris (all “Serva”, Heidelberg, Germany). All solutions were prepared using 
bidistillated water. 

3.2. Proteins 

GroEL and GroES were purified from Escherichia coli cells (strain HB101) transformed with 
multicopy plasmid pGroE4 (GroE operon E. coli cloned at the EcoR I site of the pACYC 184 vector) 
according to the published protocols [16–18,32]. The cells were harvested by centrifugation and 
resuspended in 20 mM Tris-HCl (pH 7.5) containing 1 mM EDTA (ethylenediaminetetraacetic acid),  
1 mM βME and 0.2 mM PMSF. The cells were disrupted by lysozyme (1 mg per g of cells) and 
incubated on ice during 10 min. The solution was sonicated five times at 22 kHz during 45 s and the 
cell debris was removed by centrifugation at 14,000× g and 35,000× g for 30 min. The supernatant was 
applied to the DEAE-Toyopearl column (Toyo Soda, Tokyo, Japan) equilibrated with 20 mM Tris-HCl, 
pH 8.0. The proteins were eluted with linear gradient of NaCl (0 M–0.7 M). GroES was eluted within 
the first third while GroEL—in the middle of the gradient. Further purification of the proteins was 
performed using ion-exchange chromatography Mono-Q (Pharmacia, Stockholm, Sweden) and Mono-S 
(Pharmacia) as well as gel-chromatography on Superose 6 (GroEL) and Superose 12 (GroES).  
The pET-based construct, including T7SR1, as well as the SR1 purification protocol were kindly given 
by Dr. Arthur L. Horwich and Dr. Wayne A. Fenton (Yale School of Medicine, New Haven, CT, 
USA), and are mainly described in [30,33]. The folded monomeric form of GroEL was prepared by 
size-exclusion chromatography on Superose 6 of the protein incubated in 6 M urea for 40 min [16]. The 
elution buffer contained 20 mM Tris-HCl, pH 7.5, 100 mM (NH4)2SO4, 5 mM βME, and 10 mM MgCl2. 
The protein purity was controlled by denaturing and nondenaturing electrophoresis as well as by 
fluorescence and absorption spectra. Refolding and reassembly of GroEL were performed by the 
dilution of the protein solution in 6 M urea up to 0.4 M urea in the presence of various factors at 
intensive mixing. In some cases, GroEL refolding was started at 0 °C to diminish the protein 
nonspecific aggregation with following incubation at 20 °C–22 °C. 

3.3. Electrophoresis 

SDS-PAGE was performed according to the well-known Laemmli method [34]. Urea transverse 
gradient electrophoresis was performed mainly according to [24,25]. Polyacrylamide gel of the 
acrylamide concentration gradient from 7% up to 9% contained 380 mM Tris-HCl, pH 8.8, 5% glycerol, 
7.5% riboflavin, 0.03% TEMED (tetramethylethylenediamine), 2 mM DTT and the urea gradient  
from 0 M up to 8 M. Nondenaturing electrophoresis was performed in 9% polyacrylamide gel 
containing two parts. The separating part contained 9% acrylamide, 380 mM Tris-HCl, pH 8.8,  
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5% glycerol, 0.1% APS (ammonium persulfate), and 0.05% TEMED. The concentrating part contained 
5% acrylamide, 126 mM Tris-HCl, pH 6.8, 0.1% APS, and 0.05% TEMED. The buffer containing  
400 mM Tris-HCl, pH 6.8, 50% glycerol and 0.006% bromphenol blue was added in the protein 
solution before applying to the gel. The electrode buffer contained 1.44% glycerol, 0.3% Tris, pH 8.3–8.5. 
In special cases, 5 mM ATP and 10 mM MgCl2 were added to the gel and electrode buffer. 

Blue native electrophoresis allowing evaluation of the native protein molecular weight was 
performed according to [31] using Coomassie brilliant blue G250 dye. The second-dimension 
SDS-PAGE was performed after cutting out of the corresponding bands from the blue native 
electrophoresis and SDS-extraction. In this case, the visualization of the individual polypeptides was 
executed using silver staining. 

3.4. Circular Dichroism, Fluorescence and Light Scattering 

Far-UV circular dichroism spectra were followed with a Chirascan spectropolarimeter (Applied 
Photophysics, Leatherhead, UK) at a range of 190–250 nm with a light path length of 0.1 mm. Protein 
concentration was 0.5 mg/mL. Fluorescence intensity and anisotropy as well as light scattering at 90� 
were measured with a Cary Eclipse spectrofluorimeter (Varian, Palo Alto, CA, USA) at protein 
concentrations 0.1–1.0 mg/mL (light scattering) and 0.05 mg/mL (fluorescence). Before the measurements, 
the protein solution was centrifuged for 10 min at 20,000× g and filtered through a 0.22 μm filter 
(Millipore, Billerica, MA, USA). Kinetic measurements were performed in a standard 1 × 1 × 4 cm 
quartz cell with magnetic stirrer mixing. The approximation of the kinetic curves was made using  
the computer program Sigma Plot (Systat Software, Inc., San Jose, CA, USA) and equation  
f = A1exp(k1t) + A2exp(k2t). The protein concentration was determined from the absorption spectra at 
wavelength of 280 nm using a Cary 100 Bio spectrophotometer (Varian) and extinction coefficients 
(A0.1%

1 cm): 0.22 for full-size GroEL14, 0.19 for the GroEL1 folded monomer and 0.14 for GroES [16]. 

4. Conclusions 

The data presented here, together with previous information from the scientific literature, allow us 
to make the following conclusions. First, despite its complex oligomeric and multidomain structure, 
GroEL is able to adopt the native functionally active conformation from the urea-unfolded state. 
Second, GroEL urea-induced unfolding starts out from dissociation of its oligomeric structure down to 
monomers, which in these denaturing conditions are essentially unfolded (Figure 1). Third, GroEL 
refolding (renaturation) begins with refolding of its subunits up to a conformational state able to 
oligomerize specifically. For this event, certain conditions are required. We propose that the ability of 
GroEL subunits to undergo specific oligomerization is based on two major points. On the one hand, it is 
important to reduce electrostatic repulsion of strong negatively charged subunits (−19 per each, as seen 
from the amino acid sequence [7]). This results either from Mg2+ binding or a high ionic strength 
(Figure 3). On the other hand, it is necessary to stabilize the structural unit important for intersubunit 
interactions (our preliminary data suggest that it should be some secondary structure unit). This probably 
may be achieved through interaction with adenine nucleotides or solvent composition (the presence of 
ammonium sulfate, glycerol). Fourth, it is necessary to emphasize the key role of co-chaperonin GroES 
in GroEL reassembly at low chaperonin concentrations (Figure 7) or low and moderate ionic strength 
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(Figure 2). We suppose that this is caused by low stability (low probability of formation) of an intermediate 
oligomer which is the indispensable condition for assembly of full-size GroEL. Apparently, the GroEL 
intermediate oligomer becomes stable after its interaction with heptameric GroES (Figures 8 and 9), 
and therefore, the probability of full-size GroEL formation increases greatly. Thus, GroEL ligands 
actively participate not only in chaperonin functioning [3,5,9,35] but also in chaperonin folding  
(see also [36]). 
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