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Abstract: The carbonic anhydrases (CAs) are mostly zinc-containing metalloenzymes 

which catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. The 

CAs have been extensively studied because of their broad physiological importance in all 

kingdoms of life and clinical relevance as drug targets. In particular, human CA isoform II 

(HCA II) has a catalytic efficiency of 10
8
 M

−1
 s

−1
, approaching the diffusion limit. The high 

catalytic rate, relatively simple procedure of expression and purification, relative stability 

and extensive biophysical studies of HCA II has made it an exciting candidate to be 

incorporated into various biomedical applications such as artificial lungs, biosensors and 

CO2 sequestration systems, among others. This review highlights the current state of these 

applications, lists their advantages and limitations, and discusses their future development. 
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1. Introduction 

Three analogous families of carbonic anhydrases (CA) exist within nature: α-CAs (predominant 

within animals), β-CAs (predominant within plants), and the γ-CAs (predominant within Archaea) [1–5]. 

In total, there are 15 human α-CA isoforms, all of which differ in their catalytic rates, inhibitor 

sensitivity and selectivity, cellular localization and tissue distribution [1,6,7]. The 12 catalytically 

active human isoforms (HCAI–VA, VB–VII, IX, XII–XIV) exhibit a wide range of catalytic 

efficiencies (kcat/KM = 10
3
−10

8
 M

−1
 s

−1
). The acatalytic human CA-related proteins (HCA-RPs VIII, X 
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and XI) are inactive due to the evolutionarily loss of one or more of the zinc-coordinating histidine 

residues, leading to loss of the zinc metal from the active site [1,8]. 

CAs are involved in various physiological roles fluid secretion, acid/base balance and thus pH 

regulation, gluconeogenesis, ureagenesis, gastric acid production, and transport of CO2 from tissues to 

the lungs (in the form of bicarbonate) through blood [4,9,10]. CO2 released as a part of respiration  

by tissues is not very soluble in blood and thus, in order to be transported, is converted to HCO3
−
 by  

HCA II. Furthermore, the role of CA in diseases such as glaucoma has long been known. Over 

secretion of aqueous humor in the eye causes increased intra-ocular pressures consequently leading  

to a condition called glaucoma. Reduction in CA activity decreases the secretion of HCO3
−
 and 

aqueous humor, thereby reducing the pressure [1,7,11,12]. 

The best characterized of these enzymes is HCA II, found within the cytosol of many cells and 

organs [9,13–15]. Known to possess a remarkably high catalytic efficiency, with a kcat of 1.4 × 10
6
 s

−1
 

and a kcat/KM of 1.5 × 10
8
 M

−1
s

−1
 [6,16,17], HCA II aids in the conversion of water and carbon dioxide 

into bicarbonate and a proton through a two-step ping pong mechanism: 

     H2O 

E:Zn-OH
-
 + CO2  E:Zn-H2O + HCO3

−
      (reaction 1) 

E:Zn-H2O + B  E:ZnOH
−
 + BH

+
       (reaction 2) 

In the hydration direction shown, in the first step the zinc-bound hydroxide acts as a nucleophile, 

attacking the carbon dioxide and ultimately forming bicarbonate. This leads to a water molecule bound 

to the zinc (reaction 1). The second step (reaction 2) regenerates the zinc-bound hydroxide through a 

proton transfer mechanism via His64 in HCA II [18] to solvent, B [19–22]. 

This review will discuss the current state of utilizing HCA II in the biomedical field to aid in the 

development of an artificial lung system, as a biosensor for trace elements in complex media and in 

CO2 sequestration among confined spaces, followed by a short discussion on other systems. HCA II is 

a particularly attractive candidate for these applications because of its relatively high stability [23], 

ability to be expressed in large quantities from E. coli [24], and the relatively easy purification from 

either affinity or conventional chromatography [25,26]. Additionally, the available high-resolution  

X-ray and medium neutron crystallographic structures of HCA II [27–30] allow for the rational 

engineering via site-directed mutagenesis for enhanced catalytic activity [31,32] and stability [33–35] 

for various industrial [36,37] and medical [1,38–40] applications. 

2. Artificial Lungs 

One of the current prevailing health problems within the United States is respiratory failure [41]. A 

common treatment for this condition is the utilization of mechanical ventilators [42]. Unfortunately, 

these ventilators can create many problems for patients who are treated with them, including decreased 

lung efficacy because of over-pressurized or over-distended lung tissue [43]. An artificial lung is a 

device capable of assisting with respiration without input from the lungs. This technology could 

supersede ventilators in treating respiratory failure. There are still many challenges facing this new 

technology, however, that must be dealt with before artificial lungs replace mechanical ventilators [44]. 
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As of now, the main issue preventing effective artificial lungs concerns inadequate transfer of CO2 

per square inch across the polymetric hollow fiber membranes (HFM) present within this technology. 

Currently, a 1–2 m
2
 surface area is required to sufficiently transfer CO2 through the membrane [45–48]. 

A surface area of this size lacks the practicalities of functioning effectively within the human  

body [49,50]. One way that has been effective at increasing the transfer of CO2 lies in immobilizing 

CA onto the HFM. The enzyme, dissolved in a phosphate buffer, is added to the surface of the HFM. 

Cyanogen bromide within acetonitrile activates the HFM, allowing covalent bonds to form between 

CA and the HFM. Transfer rates of CO2 measured with CA treated compared to untreated HFM show a 

75% higher rate of CO2 removal rate present in with the treated HFM. This finding indicates the 

possibilities for smaller artificial lungs to be engineered with CA incorporation, which could function 

effectively within the human body [51]. 

Another method that has been shown to also increase CO2 transfer across the HFM of artificial 

lungs relies on impeller devices that increase the rate of blood mixing. Unfortunately, this method 

cannot be combined with the CA method at this time. When these two methods were combined, the 

shear forces of the impeller device denatured CA, leading to a loss of enzyme function. This creates 

the need for a more stable form of CA that will not be denatured by the shear forces. If such a stable 

CA variant can be engineered, these methods might be combined, which could lead to smaller more 

efficient artificial lungs [52]. 

3. Biosensors 

Quantification of trace analytes in complex media containing chemically similar molecules is 

lacking in many traditional chemical systems. As such, the development of sensors based on biological 

molecules, termed biosensors, can achieve such specificity and sensitivity [53]. The high affinity  

of HCA II for zinc (4 pM) [54] has been used to quantify trace amounts of zinc in sea and waste  

water [55] for concerns over toxicity to certain plants, invertebrates and fish [56,57]. Optimally, this 

biosensor would operate along the sea bed and relay a fluorescence signal up to the ocean surface that 

is released upon binding of a strong inhibitor, dansylamide, upon binding of zinc in the active site of 

apo-CA [58]. However, the slow dissociation rate of zinc from the CA active site (t1/2 ≈ 90 days [54]) 

limits the reusability and efficiency of the system. The relative abundance of natural zinc in the 

environment compared to that of the binding affinity also limits the production of apo-HCA II [23]. As 

such, an HCA II variant (E117Q) that contained both a lowered binding affinity (nM) and a much 

faster dissociation time (t1/2 ≈ 3 sec) for zinc was developed to circumvent these limitations [59]. Other 

studies have aimed to improve the fluorescence signaling upon zinc binding in the active site of  

HCA II via incorpororation of the H36C variant, which then selectively labeled with a thiol-reactive 

fluorophore [60] that would interact upon ligation of an inhibitor, azosulfonamide, acting as a 

fluorescence acceptor [61]. 

Other metals that bind to HCA II consist primarily of transition metals in the +2 oxidation state, 

which include: Cd
2+

, Co
2+

, Cu
2+

, Hg
2+

, Fe
2+

, Mn
2+

, Ni
2+

, Pb
2+

 and In
3+

 [53,54,60,62]. However, only 

the binding affinity of HCA II for Cu
2+

 and Hg
2+

 is greater than that of Zn
2+

 [54], so variants with a 

lowered binding affinity for these metals would have to be developed before detection of other metals 
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is feasible. Sulfonamide inhibitors, however, do not bind tightly to CA with metals other than Zn
2+

 or 

Co
2+

 bound in the active site [63], promoting the need for a novel development of metal ligation. This 

limitation can been superseded because several of these divalent ions (Cu
2+

, Co
2+

 and Ni
2+

) exhibit 

weak d-d absorbance bands in the visible regions that can be directly measured via fluorescence energy 

transfer lifetimes [60]. This can be extended to the other metals that do not exhibit d-d absorbance 

bands, (Hg
2+

 and Cd
2+

) since the binding of these metals to apo-CA causes a quenching of the 

fluorescence of an active site fluorophore [64]. Since biologically prevalent divalent metals such as 

Mg
2+

 and Ca
2+

 do not bind to CA and interfere with the assay, biosensors employed in biomedical 

applications are especially useful [65–70]. 

4. CO2 Sequestration  

Elevated CO2 levels in the human body have detrimental effects ranging from impaired judgment  

to death. CO2 control is important in confined spaces where there is little buffering ability to absorb  

this gas, such as spacecraft or submarines. These life support systems employ a small amount  

of CA dissolved in thin aqueous buffered films and compressed between porous polypropylene  

membranes [71]. The concentrations of CO2 commonly experienced in these systems (~0.1% v/v)  

are ideal for selective capture by CA. Analysis of the produced (scrubbed) gas shows that  

the CA-containing setup selectively lets N2 and O2 through, with ratios of 1400:1 and 900:1,  

respectively [71,72]. The relatively low concentration of CO2 readily dissolves in the thin layer of 

enzyme containing buffer and across the membrane, where it is removed via vacuum or carrier gas. 

Engineered CA-based bioreactors outperformed chemical methods using diethylamine solutions, with 

much higher selectivity, 400:1 and 300:1 for N2 and O2, respectively [72]. In addition, the presence of 

CA increased CO2 transport across the polypropylene membrane by ~70% [71]. Another benefit of 

these CA-bioreactor systems is that they are very efficient at ambient pressures and temperatures [72], 

improving overall cost-efficiency. However, the longevity of the systems has raised concerns as the 

need to keep the membranes wet, or at least humid, will add cost and operational difficulties to their 

practical use. 

5. Pharmalogical Considerations 

CAs have been employed in CO2-responsive cationic hydrogels in antidote delivery to treat 

analgesic overdose without losing therapeutic levels of drug [73]. Alternate medicines, such as opioids, 

have very potent analgesic effects but overdoses can cause respiratory hypoventilation, which leads to 

increased CO2 and decreased O2 levels in the body ultimately leading to an acidosis-induced death. 

The CA treatment involves a feedback-regulated antidote delivery system that responds to high CO2 

levels or decrease in pH [73]. The cationic hydrogel is based on N,N-dimethylaminoethyl methacrylate 

(DMAEMA) polymers that have modified to have a pKa ~ 7.5, which makes it an adequate blood pH 

monitor. Incorporation of CA as a CO2 sensor improved the efficiency of these antidote-delivery 

systems [73]. Other hydrogels have been designed with a switchable co-block polymer can undergo  

a transition change from gel to sol upon exposure to CO2 [74]. This study demonstrates that  

stimuli-triggered drug delivery could be incorporated with CAs utilizing CO2, bicarbonate or pH 

changes as signaling molecules. 
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High-resolution X-ray [75,76] and neutron structures [29] of HCA II in complex with 

acetazolamide (Diamox), a tight binding inhibitor used in the treatment of glaucoma [12,77], has 

accelerated research into structural-based rational design of an isozyme specific inhibitor. Current 

research interest includes specific inhibition of HCA IX, which has been shown to be overexpressed in 

a wide array of cancer cell lines [11,39,78–80]. In short, tumor cells proliferate in acidic environments 

which could be presumably due to the catalytic activity of HCA IX on the cell surface. Selective 

inhibition of HCA IX could provide a means for targeted tumor eradication. A suitable drug candidate 

has not been discovered as of yet, but an impressive library of inhibitors designed from different 

functional groups with varying binding affinities and specificities for various CA isoforms has been 

steadily growing with entries and has been summarized elsewhere [2,10,38,40,81,82]. 

6. Blood Substitutes 

A continual source of blood is required for use in trauma injuries or major surgeries, and, as natural 

blood is often in limited supply, there has been progress in the development of blood substitutes  

which primarily consist of 4–5 cross-linked stroma-free hemoglobin (polySFHb) molecules [83].  

The major drawback of these substitutes, however, was the inadequate CO2 removal rates. Increased 

CO2 levels in the body leads to acidosis, and if left untreated will end up in coma and death [9]. 

Incorporation of catalase (CAT), superoxide dismutase (SOD) and CA to the PolySFHb substitute  

(PolySFHb-SOD-CAT-CA) was introduced to overcome this limitation with encouraging activity [84]. 

Blood substitutes have also been shown to be advantageous over transfused whole blood in that they 

can be sterilized, stored for long periods and contains no blood antigens [83]. 

7. Conclusions 

The various aforementioned biotechnological aspects of the different CA-associated systems 

emphasize the usefulness of this enzyme. The advancement of fast and cost-effective genome 

sequencing, molecular biology techniques that boost overexpression of protein and direct evolution 

techniques that can select for highly active and stable CAs provide an optimistic view as to the 

advancement in the efficiency and selectivity in current systems. It is also likely that further 

developments in these fields will lead to novel biomedical applications of CAs. 
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