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Abstract: In order to preserve genome integrity, extrinsic or intrinsic DNA damages must 

be repaired before they accumulate in cells and trigger other mutations and genome 

rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well 

as to single DNA double strand breaks (DSBs), suggesting highly sensitive and robust 

mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, 

controls the DNA damage response (DDR). Furthermore, cells must be able to distinguish 

natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint 

activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, 

the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many 

genes that have a role in this pathway have been identified, including MRC1, MEC3, 

RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the 

genetic basis of the DNA damage checkpoint and uncovered its different functions in cell 

cycle regulation, DNA replication and repair, and telomere maintenance. However, major 

questions concerning the regulation and functions of the DNA damage checkpoint remain 

to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? 

Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? 

In this review we will examine primarily studies performed using Saccharomyces cerevisiae 

as a model system. 
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1. Introduction: The Importance of Genome Stability 

The genetic heritage of every single cell has to be faithfully transmitted across generations in order 

to allow cell survival, normal cell growth and the survival of species. The loss of genomic integrity 

could cause chromosomal aberrations and cancer [1–8] and stable genome rearrangements have been 

demonstrated as inherited mutations that cause a number of other human diseases [7,9,10]. The 

genomic integrity of cells is constantly being endangered by DNA insults arising from endogenous 

stresses resulting from DNA replication errors and byproducts of cellular metabolism, such as reactive 

oxygen species, as well as from exogenous sources, including ionizing and ultraviolet radiation and 

genotoxic agents in general [11]. The ability to effectively deal with spontaneous- or environmentally-

induced DNA damage is crucial for cellular survival and the maintenance of genomic stability. 

In order to preserve genome integrity cells have evolved a sophisticated surveillance mechanism 

called DNA damage checkpoint [12,13] that monitors the successful completion of DNA replication 

and initiate a coordinated cellular response when DNA damage occurs [2,14–18]. The DNA damage 

checkpoint is a signal transduction cascade that is activated in response to DNA damage and through 

sensors, transducers and effectors it is able to control cell cycle progression, DNA replication, transcription 

and repair and cellular senescence or programmed cell death in higher eukaryotes [19] (Figure 1). 

Figure 1. Schematic representation of the DNA damage response. 

 

The first evidence that cell cycle arrest caused by DNA damage is due to a genetically controlled 

mechanism and not to the damage itself came from studies carried out in Escherichia coli, where it 

was found that mutations in certain genes relieved the septation block caused by DNA damage [20]. 
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Later, Weinert and Hartwell found that RAD9 gene is able to control the cell cycle in response to DNA 

damage in Saccharomyces cerevisiae. This discovery led to a number of studies on the identification 

and characterization of many checkpoint genes in this eukaryotic microorganism, genetically  

well-known and easy to handle [12,17]. 

Here we are going to summarize studies on DNA damage checkpoint performed using S. cerevisiae 

as a model system. 

2. The DNA Damage Checkpoint in S. cerevisiae 

The DNA damage checkpoint has been highly conserved during evolution. In fact, most of the key 

players in the checkpoint response in S. cerevisiae identified in the last 30 years have structural and 

functional counterparts in Schizosaccharomyces pombe and humans (Table 1). The similarity among 

these pathways from yeast to mammal and, in particular, human cells enables their studies in a simpler 

organism like S. cerevisiae. This helps to understand the DNA damage checkpoint in more complex 

organisms like humans and how its deregulation leads to cancer. Indeed, a lot of genes implicated in 

this pathway have been identified in yeast and higher eukaryotes after the first discovery of the genetic 

regulation of the DNA damage checkpoint [12]. Even though it is easier to think about the DNA 

damage checkpoint as a linear pathway, as shown in Figure 1, where sensors act before transducers, 

which act before effectors and repair factors, the situation is far more complex as proteins that act at 

the very beginning of the cascade are also required for repairing and/or replicating the DNA. For 

instance, the Mre11-Rad50-Xrs2 (MRX-) complex in S. cerevisiae is one of the first recruited at the 

site of DSB and it is essential for starting both the checkpoint signal and the repair process [21,22]. 

Thus, there are likely extensive communications between the DNA damage checkpoint proteins and 

those involved in DNA replication and repair to ensure that not only the checkpoint is turned on in 

response to DNA damage but also it is properly turned off following DNA repair.  

2.1. Activation of the DNA Damage Checkpoint in Yeast 

2.1.1. Sensors: How the Signal Transduction Cascade Starts 

As soon as DNA damage occurs, DNA damage checkpoint and repair proteins are able to form 

microscopically observable nuclear foci at the sites of damage. In particular, the MRX-complex is one 

of the first recruited at the site of DSBs. Its recruitment in yeast cells causes the co-localization of the 

protein kinase Tel1 at the site of damage [21]. Biochemical studies show that the MRN-complex 

(where Nbs1 is the mammalian ortholog of Xrs2) physically interacts with and stimulates the kinase 

activity of ATM (the mammalian ortholog of Tel1) in the presence of broken DNA ends [23,24]. 

Similarly, Tel1 can be activated by the interaction with MRX and DNA ends [25]. Both in yeast and 

mammals, DNA DSBs are quickly processed by nucleolytic resection into ssDNA which is coated by 

Replication Protein-A (RPA) [26–28]. RPA recruits the protein kinase Mec1 and its binding factor 

Ddc2 (ATR/ATRIP in mammal cells) (Figure 2), causing an ATM
Tel1

-to-ATR
Mec1

 switch that is cell 

cycle-dependent with occurrence restricted to the S and G2 phases [29]. Interestingly, in yeast Tel1 

and MRX increase the efficiency of ssDNA generation, leading to Mec1-Ddc2 recruitment [22]. 

 



Biomolecules 2012, 2 508 

 

 

Table 1. DNA damage checkpoint related factors. 

Function S. cerevisiae H. sapiens S. pombe 

Sensors    

9-1-1 complex Ddc1 hRad9 Rad9 

 Mec3 hHus1 Hus1 

 Rad17 hRad1 Rad1 

RFC-like clamp 

loader 
Rad24 hRad17 Rad17 

 Rfc2-5 hRfc2-5 Rfc2-5 

MRX complex Mre11 hMre11 Mre11 

 Rad50 hRad50 Rad50 

 Xrs2 hNbs1 Nbs1 

BRCT-containing Dpb11 TopBP1 Cut5 

  BRCA1  

  hMdc1  

ss-DNA binding RPA RPA RPA 

Transducers    

PI3K-like kinases Mec1-Ddc2 ATR-ATRIP Rad3-Rad26 

 Tel1 ATM Tel1 

Adaptors    

 Rad9 53BP1 Crb2 

 Mrc1 CLSPN Mrc1 

Effectors    

Checkpoint kinases Chk1 CHK1 Chk1 

 Rad53 CHK2 Cds1 

Figure 2. Schematic representation of the DNA damage checkpoint activation pathway in 

S. cerevisiae after DSBs in G2. For simplicity some factors are omitted.  
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In order to properly activate Mec1, and subsequently the DDR, other protein complexes are 

required. For instance, the 9-1-1 complex, formed by Ddc1, Mec3 and Rad17 in yeast, is loaded onto 

ssDNA and dsDNA junctions by RFC-like clamp loaders [30]. A number of RFC-like clamp loaders 

have been identified to function in the DNA damage checkpoint, where the biggest subunit of the 

canonical replication RFC, Rfc1, is replaced by either Rad24, Elg1 or Ctf18 [31]. Rad24-RFC is 

specifically involved in loading the 9-1-1 complex and functions in the Rad9 pathway in DNA damage 

checkpoint [32–34] (Figure 2). The Ctf18-RFC complex has recently been implicated in the Mrc1 

dependent DNA replication checkpoint [35], while the Elg1-RFC clamp loader plays a role in DNA 

replication and has a redundant role to Rad24-RFC and Ctf18-RFC in the DNA damage response [36–39].  

Biochemical study has indicated that the Xenopus TopBP1, homolog of yeast Dpb11, could activate 

ATR in vitro [40]. It has been similarly shown in yeast that Dpb11 can also activate Mec1  

in vitro [41,42]. However, mutation of the Mec1-activation domain in Dpb11 does not cause a 

significant defect in the activation of the protein-kinase Rad53 [43], a hallmark of DNA damage 

checkpoint activation in yeast. This suggests that alternative pathways exist for a proper activation of 

the DNA damage checkpoint. In fact, Dpb11 has been shown to bind to Ddc1 [44] through interaction 

mediated by the phosphorylation of Thr-602 on Ddc1, and that this interaction is important for full 

activation of Rad53 [45,46]. Ddc1 can also use its C-terminal tail to activate the kinase activity of 

Mec1 in vitro and it appears to act in parallel to Dpb11 in the G2/M phase [47]. 

2.1.2. Adaptors and Activation of Downstream Effector kinases 

Activated Mec1 and Tel1 directly phosphorylate the adaptor proteins Rad9 and Mrc1, which are 

both required for Rad53 activation in vivo in response to different kind of damages and in different 

phases of the cell cycle [48–50]. Both the adaptors are able to recruit the checkpoint kinases Rad53 

and Dun1, via their FHA domains, to trigger their activation. In particular, Mrc1 interacts with Tof1 

and Csm3, associates with DNA replication forks [51–53] and has been shown to promote Rad53 

phosphorylation by Mec1 directly under DNA replication stress conditions [54]. In agreement with the 

biochemical findings, the co-localization of Mrc1 and Mec1 is sufficient to promote Rad53  

activation [55]. On the other hand, Rad9 functions to control Rad53 activation throughout the entire 

cell cycle. Cell biological studies show that Rad9 and its orthologs Crb2 and 53BP1, from fission yeast 

and mammals respectively, localize to the sites of DNA damage by a direct interaction between the 

Tudor domain of Rad9/53BP1 and methylated histone [21,56,57]. However, mutation of the 

nucleosomal histone H3-Lys79 methylase DOT1, which is responsible for this particular histone 

modification in yeast, does not cause any appreciable checkpoint defects. Moreover, the BRCT domain 

of Rad9 is a phosphoprotein-binding domain that has been suggested to bind the phosphorylated 

Ser129 of H2A [58–60], but mutation to eliminate Ser129 phosphorylation of H2A does not cause a 

checkpoint defect, suggesting that additional ligands exist. Rad9 is also phosphorylated by CDK on 

multiple SP/TP sites, which has been suggested to be a mechanism of its function in S and G2/M 

phase. Mutation of 18 SP/TP sites in the N-terminal region of Rad9 causes a loss of its checkpoint 

activity [61] and recent studies have suggested that Dpb11 binds to Rad9 via its CDK phosphorylated 

sites [43] to recruit Rad9 to Mec1 and promote the adaptor phosphorylation by Mec1. However, latest 

results indicate that multiple additional CDK consensus sites in Rad9 are involved in its interaction 
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with Dpb11. Surprisingly, the Dpb11-Rad9 interaction is even dispensable for checkpoint activation in 

the G2/M phase [62]. Therefore, the CDK regulation of checkpoint activation through Rad9 is likely 

more complex. 

Upon recruitment to Rad9 and Mrc1, Mec1/Tel1 phosphorylates Rad53. Studies on Rad53, its 

ortholog Cds1 in fission yeast and Chk2 in mammals, have shown that phosphorylation of the  

N-terminal TQ sites of the Chk2 family kinase mediates its dimerization via the FHA domain [63], 

leading to its trans-phosphorylation on a conserved threonine residue in the activation loop and 

subsequent activation (Figure 2) [64]. Rad53 directly phosphorylates the activation loop of Dun1 for 

its activation [64] and the interaction between the FHA domain of Dun1 and N-terminal TQ 

phosphorylation sites of Rad53 is critical for this kinase-to-kinase trans-phosphorylation event [64–66]. 

2.2. Inactivation of the DNA Damage Checkpoint: How to Silence the Checkpoint 

As activation of the DNA damage checkpoint is necessary for orchestrating cell cycle arrest, 

transcriptional regulation, and DNA repair, cells also need to properly inactivate the DNA damage 

checkpoint in order to resume cell cycle progression after repairing the lesions. The mechanism for the 

inactivation of the DNA damage checkpoint is known as ‘checkpoint recovery’. Presumably, inactivation 

of the checkpoint coincides with the removal of DNA lesions, although yeast cells have the ability to 

inactivate the checkpoint even in the presence of persistent DNA lesions through a phenomenon 

known as ‘checkpoint adaptation’ [67,68].  

2.2.1. Checkpoint Recovery: When It Is Safe to Switch the Checkpoint Off 

Several genes that have been implicated in recovery defect are involved in distinct stages of the 

DNA damage checkpoint, suggesting that checkpoint recovery could be a multistep process rather than 

a single inactivation mechanism. Several mechanisms, not mutually exclusive, have been proposed 

including (1) disassembly of DNA repair and checkpoint proteins on the site of damage [69];  

(2) removal of DNA lesions [70]; (3) recruitment of protein phosphatases [71,72], and (4) feedback 

control via transcriptional changes [73], as discussed further below. 

Proper inactivation of the checkpoint requires the disassembly of the same mechanisms that are 

required for its activation. For instance, the removal of DNA lesions after repair would disengage the 

sensors and activators of the checkpoint, including Mec1, Tel1, the 9-1-1 and MRX complexes and 

would prevent them from further transducing the signal to Rad53. Genetic and biochemical analyses of 

Sae2 and Srs2, which are involved in DNA repair, have demonstrated that these factors are linked to 

checkpoint inactivation too. In particular, Sae2 is part of the initial sensing mechanism of DNA DSBs 

and works to promote DNA end resection with the MRX complex [74]. SAE2 deletion or mutation of 

its Mec1/Tel1 phosphorylation sites have been shown to cause a more persistent checkpoint activation 

and cell cycle arrest that cannot be only correlated to repair defects [75,76]. Accordingly, over-expressed 

SAE2 was also shown to antagonize checkpoint activation. This brings about the possibility that 

Mec1/Tel1-dependent phosphorylation of Sae2 is a way for mediating DNA repair with the DNA 

damage checkpoint, although the mechanism remains unknown.  

DNA structure also plays an important role in eliciting the DDR. There are several mechanisms the 

cell uses to identify DNA lesions and structures (e.g., 9-1-1 complex, MRX-complex, replication fork), 
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which might be targeted during inactivation. For instance, during homologous recombination to repair 

DNA DSBs, the DNA resection machinery processes broken DNA ends to generate ssDNA 3’-tails, 

leading to Rad51 filament formation towards homology search and recombination. The presence of 

ssDNA is important to maintain the checkpoint before the repair has completed. Srs2, a DNA helicase 

with DNA translocation properties, acts as an anti-recombinase factor. In fact, loss of Srs2 not only 

abrogates checkpoint inactivation, but also results in persistent ssDNA and Rad51 association [69,70]. 

Nevertheless, the checkpoint recovery defect of srs2∆ cells is more damage specific and so far only 

seen in the context of a DNA DSB using the HO-endonuclease induced system, whereas in sae2∆ 

mutants checkpoint recovery defect has been shown in other types of damage. This suggests that 

different kinds of intermediate DNA structures during DNA repair could also trigger checkpoint activation. 

Checkpoint recovery in yeast requires the inactivation of Rad53, which has to be degraded or 

dephosphorylated. Phosphatases Ptc2 and Ptc3 have been implicated in dephosphorylating Rad53 [77]. 

These phosphatases are part of the PP2C family and seem to share redundant roles in inactivating Rad53. 

In the HO-induced DSB system, over-expression of PTC2 promotes Rad53 dephosphorylation and 

results in faster resumption of cell cycle progression [77]. Ptc2 interacts with Rad53 specifically through 

its FHA1 domain further supporting its role as the main phosphatase in Rad53 inactivation [77–79]. 

Pph3, another phosphatase, has also been implicated in Rad53 inactivation [71,72]. Since the mutations 

of all these phosphatases fail to completely impair Rad53 dephosphorylation, it might be that other 

phosphatases [80–82] or additional pathways are responsible for a complete checkpoint inactivation.  

Downstream targets of Rad53 could also provide a feedback mechanism to maintain checkpoint 

function and inactivation after DNA repair. Indeed, the lack of the downstream kinase Dun1 results in 

prolonged Rad53 activation after replication stress induced by hydroxyurea [73]. This Rad53 

inactivation defect is further exacerbated in combination with CCR4 deletion. Ccr4-Not complex is 

part of the transcriptional machinery and Ccr4 is the catalytic subunit of the mRNA deadenylase 

complex and regulates mRNA turnover. Ccr4 can affect transcriptional targets of Rad53 and Dun1, 

and has been demonstrated to influence the abundance of Crt1, a transcriptional repressor of DNA 

damage induced genes. Therefore, Ccr4 can also affect many other DNA damage induced transcriptional 

targets, which could provide a feedback control towards Rad53 and Dun1 inactivation. 

2.2.2. Checkpoint Adaptation: Escaping the Checkpoint in the Presence of Damage 

Adaptation is the overriding of the checkpoint in presence of irreparable DNA lesions. Persistent 

DNA lesions, such as a DNA DSB or broken chromosome, allow continuous checkpoint activation as 

a consequence of the presence of active Mec1/Tel1 at the sites of damage [67,83,84]. Indeed, 

microscopy studies have shown that Ddc2-foci, a marker of Mec1-Ddc2 complex, correlates with 

active Rad53 [85]. Nevertheless, yeast cells eventually resume cell cycle progression even in the 

presence of DNA lesions suggesting that there exists an “active” process that is required to disengage 

Rad53 from Mec1 and Tel1 signaling and that allows the cells to adapt to the presence of dangerous 

lesions. Studies on adaptation have revealed numerous genes involved in this kind of checkpoint 

inactivation, such as CDC5, CKB2, YKU70, SAE2 and SRS2 [67,70,83,86]. Recent work has shown the 

polo-like kinase Cdc5 may play a pertinent role in facilitating checkpoint adaptation. In fact,  

over-expression of CDC5 is able to suppress checkpoint activation in presence of an irreparable DSB 
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and in cdc13-1 mutants [83,84,86]. It remains to be seen whether Cdc5 kinase activity on potential 

targets such as Rad53 is part of the processing of adaptation. Moreover, adaptation also requires 

dissociation of the sensors of DNA damage suggesting that adaptation functions through multiple 

mechanisms of action.  

While a number of mechanisms have been proposed for checkpoint recovery and adaptation, 

ranging from the disassembly of activators for the checkpoint and recruitment of phosphatases, it is not 

known whether these mechanisms of action take place in a temporal manner or en masse once DNA 

lesions are repaired. Further studies are needed to reveal how the checkpoint activity is coupled to the 

status of DNA repair. 

3. Genome Maintenance: Focusing on Telomere 

Genetic studies have shown that Mec1 and Tel1 have a major role in the maintenance of genome 

integrity. For example, in yeast cells the single deletion of either MEC1 or TEL1 causes moderate to no 

increase in gross chromosomal rearrangements (GCRs); however, the inactivation of both kinases 

causes a synergistic increase in GCRs [87]. On the other hand, tel1 cells have shorter telomeres than 

wild type cells, while the deletion of MEC1 has little effect on telomere length. Interestingly, the lack 

of both kinases causes telomere loss and chromosomal fusions [88,89]. One of the major unsolved 

questions is how Mec1 and Tel1 are involved in genome maintenance. In this context, a particularly 

relevant issue is the metabolism of telomeres, which must be recognized and maintained differently 

from deleterious DNA DSBs to prevent checkpoint activation and rearrangements at chromosome ends.  

3.1. Protection of Chromosome Ends: Telomeres 

Telomeres are nuclear-protein complexes at the end of eukaryotic chromosomes that protect from 

erosion by nucleases and ensure a correct and complete replication of the extremities of DNA [90]. 

Moreover, these structures distinguish natural chromosome ends from DNA DSBs, inhibiting the 

activation of the DNA damage checkpoint and repair processes at chromosome ends. In most 

eukaryotes, telomeric DNA consists of tandem repeats of a short sequence that extends from several 

hundred base-pairs (~300 bp in Saccharomyces cerevisiae) to thousands of base pairs in mammals. 

The 3’-strand is G-rich and is extended to form a single-stranded overhang known as the G-tail [90–92], 

which is bound in vivo by sequence specific DNA-binding proteins like Cdc13 in S. cerevisiae [93,94]. 

Additionally, Cdc13 is able to recruit other proteins like Stn1 and Ten1 [95–98], forming a 

heterotrimeric complex essential for protecting telomeres from nuclease activities and for recruiting the 

reverse transcriptase responsible of the G-strand synthesis, the telomerase [99]. The Cdc13-Stn1-Ten1 

(CST) complex is specific for binding the ssDNA at the end of yeast telomeres and it is structurally 

similar to the RPA complex [97,98]. Telomeres are subject to continuous shortening due to the 

removal of the primers of the canonical semi-conservative DNA replication and nuclease erosion. In 

order to ensure the stability of chromosome ends, telomeres are replicated by telomerase, a specialized 

reverse transcriptase, which uses a specific RNA as a template to lengthen the telomeric G-tail (Figure 3). 

The complementary C-strand is synthesized via semi-conservative DNA replication.  
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3.2. Replication of Telomeres: When and Where?  

Telomere elongation is a well-controlled and dynamic process. It has been shown in S. cerevisiae 

that telomerase is active preferentially at shorter telomeres and only in late S/G2 phases of the cell 

cycle [100]. The major open questions are about how cells are able to recognize shorter telomeres for 

elongation and to lengthen these short telomeres only during late S/G2 phase? It has been 

demonstrated that before telomerase action, telomeres have to be resected to generate a G-tail that is 

the substrate for telomerase activity. The resection at telomeres requires the same nuclease machinery, 

responsible of DSBs processing, which includes Mre11, Exo1, Sgs1 and Dna2 [101–103]. A lot of data 

demonstrate that the resection of DSBs happens only in G2 and requires a high CDK activity [104], 

suggesting that one or more factors involved in the resection could be CDK substrates and regulated by 

CDK [105,106]. Experiments on de novo telomeres, generated after cutting an HO-site flanked by  

TG-repeats or after inducing recombination at telomeres, show that the resection happens only in late 

S/G2 phase [107]. In G1 this process is inhibited by Ku70/80-complex, which is also involved in 

inhibiting the resection at DSBs in G1 [76], and by a telomeric specific complex formed by  

Rap1-Rif1-Rif2 [108]. This complex, recently called Shelterin-like complex [90], is localized at 

telomeres and through Rap1 is bound directly to double strand telomeric DNA preserving this DNA 

from degradation [108,109] (Figure 3 Upper panel). At de novo telomeres, it looks like Rap1 and Rif2 

are involved in inhibiting both the G- and the C-strand degradation in G1, while the role of Rif1 in this 

pathway is not so clear [107]. Moreover, it has been shown that the lack of Rif2, of the C-terminus of 

Rap1 or of Ku70 increases the ssDNA at native chromosome ends [107]. All these data suggest that the 

proteins involved in protecting chromosome ends from degradation, like Rap1, Rif2 or Ku70-Ku80, 

could be directly or indirectly the substrates of CDK to control the access of nucleases to telomeric 

DNA. Moreover, it has been shown that the recruitment of the telomerase components, Est1, Est2, 

Est3 and Cdc13, increases at telomeres in S/G2 phases [100,110,111], and this recruitment is strictly 

dependent on Est1, a cell cycle controlled recruiter and activator of telomerase [112]. Genetic and 

biochemical evidences strongly imply that telomerase recruitment to telomeres is achieved by specific 

interaction between Cdc13 and Est1 [113–115], and this interaction seems to be dependent on Cdc13 

phosphorylation by CDK [114], which could contribute to a cell cycle regulated recruitment and 

activation of the telomerase. 

Telomere lengthening is preferentially occurring at shorter telomeres in cells [116], but how do 

cells detect shorter telomeres? It has been proposed that Rap1, Rif1 and Rif2 are part of a “counting 

system” that measures telomere length by the number of these proteins present on each telomere  

(in cis) [108]. In fact, tethering Rap1, Rif1 or Rif2 at telomeres is able to inhibit telomere lengthening 

in cis [117]. However, at short telomeres Rif2, but not Rif1, occupancy is reduced [118], suggesting 

that Rif2 is more important than Rif1 in the “counting system”. Consistent with their inhibitory 

functions, rif1 mutants have longer telomeres than rif2 cells and the double mutants rif1 rif2 

have telomeres that are longer than each single mutant, indicating that they are acting in two different 

pathways [119]. Since the recent involvement of Rif2 in protecting chromosome ends from nuclease 

degradation, it could be that a less amount of this protein at short telomeres allows nucleases to be 

recruited and activated in G2, as previously discussed, to generate the amount of ssDNA required for 

CST-complex binding and recruitment of telomerase, even though the molecular details of this 



Biomolecules 2012, 2 514 

 

 

mechanism are not yet elucidated. In this pathway, a crucial role is carried out by the protein kinase 

Tel1, that is recruited preferentially at short telomeres [120–122]. It has been shown that Tel1 and Rif2 

are competing for the binding to Xrs2 C-terminal domain [118,123]. At short telomeres, where Rif2 is 

less abundant [120], Tel1 could be favored in binding Xrs2, leading to the recruitment of the kinase 

and, as a result, the phosphorylation of proteins that cause telomere lengthening (Figure 3). Different 

candidates have been proposed, for instance Cdc13, the specific telomeric ssDNA-binding protein, but 

the data about the function of its phosphorylation are controversial. In fact, even though it was 

proposed that Cdc13 phosphorylation by Mec1/Tel1 was essential for the interaction between Cdc13 

and Est1 [124], the latest data indicate that the mutagenesis of every potential consensus 

phosphorylation site for Tel1 confers nearly wild-type telomeres length [115] and does not affect 

Cdc13-Est1 interaction [125]. Furthermore, it has been shown that Rif1 is phosphorylated in a 

Mec1/Tel1-dependent manner [126], but the function of this phosphorylation remains unknown. 

Figure 3. Schematic representation of the regulation of telomere lengthening in S. cerevisiae. 

For simplicity some factors are omitted. 

 

3.3. The Ends of Chromosomes Are Not DSBs 

Telomeres are naturally stable and are protected from DNA damage checkpoint, homologous 

recombination as well as end-to-end fusion that normally promote intrachromosomal DSBs repair [127]. 

It has been hypothesized that the TG-repeats and/or the protein complexes bound to the telomeric 

sequences exert an anti-checkpoint function at a DSB flanked by telomeric sequences inhibiting the 

recruitment and the activation of the checkpoint proteins at de novo telomeres [128,129]. Moreover, 

alterations at native telomeres caused by uncapping of telomeres, using cdc13-1 mutant for instance, 

elicit DNA degradation that leads to accumulation of ssDNA. This ssDNA recruits RPA, Mec1/Ddc2 

and triggers DNA damage checkpoint activation. Interestingly, deletion of Rif1 exacerbates the 

checkpoint activation of cdc13-1 mutant, suggesting that Rif1 could inhibit the recruitment of DNA 
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damage checkpoint proteins at damaged telomeres [130]. A similar function could be carried out by 

Cdc13-Stn1-Ten1 complex, which is able to bind specifically telomeric ssDNA [98], protecting it from 

RPA and Mec1 binding. 

4. Conclusions 

Extensive studies using yeast and other organisms have identified most of the genes involved in the 

DNA damage checkpoint and much of its genetic basis has been established. In some instances, certain 

steps of the DNA damage checkpoint activation have been reconstituted biochemically. However, 

many mechanistic questions remain unanswered upon closer examinations. For example, Rad9 is 

central to DNA damage checkpoint activation. Although Dpb11 interacts with CDK-phosphorylated 

Rad9 and was found to activate the Mec1 kinase, the abolishment of this interaction does not affect 

checkpoint activation in vivo [62]. Since CDK phosphorylation of Rad9 is essential for checkpoint 

activation, it is likely that there could be factors other than Dpn11 interacting with Rad9 for full 

checkpoint activation which remain to be identified. 

Relatively little is known concerning the molecular basis of the inactivation of the DNA damage 

checkpoint following the completion of DNA repair. Although recent studies on checkpoint 

inactivation and a lot of evidences are suggesting that this is a genetically controlled pathway, it is not 

clear which are the crucial factors involved in turning off the checkpoint cascade after the repair of 

DNA damage. The difficulties in identifying these factors could be due to the redundancy of pathways 

and enzymes involved, like phosphatases or damage sensors themselves. Moreover, DNA damage 

sensors could have dual roles in activating the DNA damage checkpoint as well as serving as a 

feedback control to inactivate the checkpoint. One such example could be Sae2, a DNA repair protein 

that is known to be a negative regulator of the DNA damage checkpoint [76].  

Recent data have elucidated some molecular mechanisms responsible for regulating telomere 

resection and elongation by cell cycle and telomere length by itself. Nevertheless, there are several 

steps of these pathways which need to be further investigated. For example, the role of the telomere 

lengthening inhibitor Rif1 has been genetically demonstrated. In fact, rif1 mutants have really long 

telomeres and cells overexpressing RIF1 show short telomeres. However, it is completely unclear how 

this protein interferes with telomerase activity or cell cycle regulation of telomere lengthening and 

which factors Rif1 is interacting with to carry out this role. 

Despite that numerous substrates have been found for Mec1 and Tel1 in yeast and ATR and ATM 

in mammalian cells by high throughput screenings [126,131,132], it is poorly understood how these 

kinases regulate telomere elongation and suppress chromosomal rearrangements. Considering that 

chromosomal rearrangements are a hallmark of many human diseases, especially cancers, 

understanding how they are prevented would provide new insights into the development of therapeutic 

strategies in the future. Finally, we apologize for those studies that are inadvertently omitted.  
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