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Abstract: The phosphorylated kinase-inducible activation domain (pKID) adopts a  
helix–loop–helix structure upon binding to its partner KIX, although it is unstructured in 
the unbound state. The N-terminal and C-terminal regions of pKID, which adopt helices in 
the complex, are called, respectively, αA and αB. We performed all-atom multicanonical 
molecular dynamics simulations of pKID with and without KIX in explicit solvents to 
generate conformational ensembles. Although the unbound pKID was disordered overall, 
αA and αB exhibited a nascent helix propensity; the propensity of αA was stronger than that 
of αB, which agrees with experimental results. In the bound state, the free-energy landscape 
of αB involved two low free-energy fractions: native-like and non-native fractions. This 
result suggests that αB folds according to the induced-fit mechanism. The αB-helix direction 
was well aligned as in the NMR complex structure, although the αA helix exhibited high 
flexibility. These results also agree quantitatively with experimental observations. We have 
detected that the αB helix can bind to another site of KIX, to which another protein MLL 
also binds with the adopting helix. Consequently, MLL can facilitate pKID binding to the 
pKID-binding site by blocking the MLL-binding site. This also supports experimentally 
obtained results.  
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1. Introduction 

A traditional view related to protein function, is that a folded three-dimensional structure plays a 
fundamental role as a scaffold to hold the function. However, this view has been modified by 
discovery of intrinsically disordered proteins (IDPs), which are proteins (or protein regions) that lack a 
well-defined three-dimensional structure in the isolated state (i.e., unbound/free state), existing as an 
ensemble of interconverting conformations. Many IDPs interact with partner molecules, transferring to 
the folded state (i.e., bound state). The tertiary structures of IDPs in the bound state have been 
determined experimentally. This remarkable feature is called coupled folding and binding [1], which 
combines two major subjects––protein folding and molecular recognition––each of which has been 
studied individually in the protein science field. 

Actually, IDPs differ from ordered proteins in several respects: They are found ubiquitously in 
transcriptional regulators of eukaryote [2] and they frequently undergo posttranscriptional  
modification [3] such as phosphorylation. Furthermore, some severe diseases are related to IDPs [4]. 
Consequently, they have been recognized as potential drug targets [5,6]. A biophysically interesting 
point is that the intrinsic disorder in the unbound state offers advantages over folded proteins [7]. For 
instance, molecular association is enhanced by the intrinsic disorder [8]. 

Experiments do not provide sufficient information related to early events in the coupled folding and 
binding, where the IDP and its partner molecule are separate or weakly interacting with one another. 
Consequently, theoretical [9] and computational [10–13] studies might be crucially important to reveal 
important aspects of their early events. One fascinating mechanism from these studies is a “fly casting” 
model [9], in which the disordered state allows IDP to capture a distant partner molecule because the 
disordered polypeptide has a greater interaction radius than a well ordered structure does. After 
capturing the partner, the disordered polypeptide is reeled to form the native complex. However, 
Huang et al. [12] have implied that the kinetic advantage derived from the greater interaction radius 
must be countervailed by its slow diffusion. They have suggested a picture in which the kinetic 
advantage may not be derived from the greater interaction radius but from a lowered free energy 
barrier. Then the IDP reaches the final bound form through fewer encounter complexes with its partner 
than an ordered protein does. Consequently, the association mechanism of IDP remains controversial. 
All of these binding schemes were derived from simplified protein models. We suggest that an all-
atom computation can provide useful insight into this experimentally undetectable process. 

Most computational studies [11–15] have been conducted using simplified protein models such as a 
Gō-like coarse-grained model, where one amino-acid residue is expressed usually by one sphere. This 
model has been used widely to investigate protein folding and molecular recognition because of its low 
computational cost. A typical Gō-like model postulates that natively formed residue–residue contacts 
(native interactions) in the native structure are energetically favored, even at a transition state. The 
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other contacts (non-native interactions) likely slow the folding rate. However, the non-native 
interactions might speed up the folding rate when they help the unfolded polypeptide to collapse, as 
occurs with competition with chain entropy [16]. If this scheme is correct, then non-native interactions 
might also positively support or facilitate the IDP–partner association. However, the protein models so 
far used are too simple to support a realistic discussion of the native and non-native factors. To 
elucidate these factors, an all-atom protein model is expected to be useful. 

The all-atom model involves all the interaction factors. However, it is usually difficult to construct a 
statistically significant conformational ensemble of protein because the conformational space (potential 
energy surface) is constructed with a huge number of degrees of freedom and the conformation is 
frequently trapped in energy local minima during a simulation. Consequently, sampling the ensemble 
requires unrealistically long computation time by conventional simulations. We have overcome this 
difficulty using an enhanced sampling method: multicanonical molecular dynamics (McMD) [17,18]. 
The advantage of McMD is that the energy barriers among the energy local minima are overcome,  
as explained later. Recently, we developed a more efficient sampling method, trivial trajectory 
parallelization of multicanonical molecular dynamics (TTP-McMD) [19,20]. Using TTP-McMD, we 
have conducted an all-atom folding simulation of a 57 amino-acid residue protein [21] and the coupled 
folding and binding of NRSF and mSin3 [22], in explicit solvent. The NRSF is IDP and folds into the 
helix when binding to the partner mSin3. The simulation reproduced a conformational ensemble at 
room temperature, which contained the native-like complex structure in the largest population cluster 
(i.e., the most thermodynamically stable cluster/the lowest free-energy cluster) as well as non-native 
complex structures in minor clusters. Therefore, the TTP-McMD is a useful computational technique 
to examine IDP systems. 

The cAMP-response element-binding protein (CREB) induces transcription via an interaction with 
its co-activator CREB binding protein (CBP). The transcription factor CREB contains a kinase-inducible 
domain (KID) to bind the kinase-induced domain interacting domain (KIX) of CBP [23,24]. The 
binding affinity of KID with KIX depends on phosphorylation [25,26]: the affinity increases as Ser133 
of KID is phosphorylated. Both KID and the phosphorylated KID (pKID) are IDPs [27], and the 
tertiary structure of the pKID–KIX complex was determined using NMR at 315 K (PDB ID: 1kdx [27]). 
The deposited 17 NMR models show that pKID adopts a helix–loop–helix structure on the KIX surface. 
Therefore the binding of pKID to KIX is cooperated with folding [28]. Sugase et al. studied the 
kinetics of pKID binding with KIX by NMR [29]. This system is suitable for all-atom computations 
because the pKID sequence deposited in PDB is short (28 residues). 

We note some experimental features of this pKID–KIX system. First, the binding affinity of the  
C-terminal helix of pKID (called αB; residues 134–145 in the original PDB file) is one order stronger 
than that of the N-terminal helix (αA; residues 120–131), and formation of helix in αB is necessary for 
the affinity maintaining, although the helix formation of αA is not [25]. The NMR study [27] has 
shown that the orientation of αA relative to the KIX framework is disordered, although that of αB is 
well determined with contacting tightly with KIX. Contrarily, in the unbound state, αA has a higher 
helix propensity than αB [30]. These features should be confirmed through simulations. 

As described in this paper, we performed TTP-McMD simulations of pKID in the presence and 
absence of KIX. We denote the residues 120–131 as “αA residues” and the residues 134–145 as “αB 
residues” whether these residues form helices in simulation snapshots or not. Similarly, when the αA 
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and αB residues are expressed as elements, they are denoted respectively as an “αA region” and “αB 
region.” We show that the obtained conformational ensemble from the simulation agrees with the 
experimental features described above, and that the αA and αB regions have different mechanisms of 
coupled folding and binding.  

2. Experimental Section 

2.1. Setting Simulation Systems (pKID and pKID–KIX Systems) 

We designated the simulation system of pKID in the absence of KIX as the “pKID system” and that 
in the presence of KIX as the “pKID–KIX system.” In the NMR experiment on the pKID–KIX 
complex [27], the pKID sequence was longer than that deposited in PDB (residues 119–146) because 
unstructured regions are not deposited. We used the deposited pKID region for the simulation, which is 
the minimum sequence of pKID binding with KIX (residues 586–666). 

We prepared the pKID system as follows. The coordinates of pKID were taken from the first model 
out of the 17 NMR ones. The pKID was immersed in a solvent sphere (called sphere 1; radius = 30 Å), 
which consists of water molecules with the density of 1 g/mL equilibrated at 300 K in advance. The 
mass center of pKID was set to the center of sphere 1, and water molecules overlapping with pKID 
were removed. To neutralize the net charge of the system and make consistency with the ionic strength 
of the NMR experiment, nine water molecules were selected randomly and replaced with five Cl− and 
four Na+ ions. Finally, the pKID system consisted of 3473 water molecules, pKID, and nine ions. 
Although pKID was taken from the NMR model at this stage, the structure was randomized 
completely using a high-temperature simulation, as described later. 

Next, we prepared the pKID–KIX system as follows. The coordinates of the two proteins were 
taken from the first NMR model again. They were immersed in a solvent sphere (called sphere 2; 
radius = 37 Å). The sphere 2 radius was sufficiently large to contain the entire KIX structure, as 
described later. The center of sphere 2 was set to the mass-center position of pKID of the NMR model. 
It is noteworthy that the center of sphere 2 is fixed in space (i.e., the center of sphere 2 is not fixed to 
pKID) when pKID is moving in the simulation: The translation and rotation of pKID are not 
restrained. Water molecules overlapping the proteins were removed. Eighteen randomly selected water 
molecules were replaced with nine Cl− and nine Na+ ions. Then, the pKID–KIX system came to consist 
of 6166 water molecules, pKID, KIX, and 18 ions. This complex was dissociated by a high-
temperature simulation, as shown later. 

We used the AMBER-based hybrid force field for the proteins. This force field is the combination 
of AMBER force field parm94 ( E94 ) [31] and parm96 ( E96 ) [32] with a mixing rate ω  as 

9694)1( EEE ×+×−= ωω . We set 75.0=ω  because our previous works indicated that 75.0=ω  

reproduces the optimal secondary structure preference for some peptides [33,34]. The TIP3P model [35] 
was used for the water molecules. After energy minimization, we performed a high-temperature (700 K) 
canonical MD simulation for each of the pKID and pKID–KIX systems to generate the initial 
simulation conformations for the following TTP-McMD. Figure 1 shows that this temperature was 
sufficiently high to demolish the native conformation of pKID and to dissociate the native complex. 
Although pKID was able to move freely in the solvent spheres, the structure of KIX was weakly 
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2.2. Trivial Trajectory Parallelization of Multicanonical Molecular Dynamics (TTP-McMD) 

Before introducing TTP-McMD, we describe the conventional McMD, i.e., the single-run  
McMD. The single-run McMD is a canonical simulation at a temperature T (a constant-temperature 
method [40] was used as thermostat in this study) using the multicanonical energy mcE  instead of the 

original potential energy E  of the system, as 

),(ln)(ln cmc TEPRTEEnRTE +==  (1) 

where )(En  is the density of states of the system, R  signifies the gas constant, ),(c TEP  the 

probability distribution function of the canonical ensemble at T. If the simulation is sufficiently long, 
then the single-run McMD provides a flat distribution along the axis of E  because the probability 
distribution is formally given by the following equation.  

const
ZTEP

RTEEn
Z

RTEEnEP =
−

=
−

=
mccmc

mc
mc ),(

)/exp()()/exp()()(  (2) 

In that equation, mcZ  is the partition function for McMD, which can be regarded simply as a factor to 
normalize the distribution function mcP . To derive Equation (2), we used a formulation of statistical 
mechanics: cc /)/exp()(),( ZRTEEnTEP −= , where cZ  is a factor to normalize ),(c TEP  (i.e., the 

partition function of the system). This flat energy distribution guarantees that the conformation can 
overcome the energy barriers and visit low energy conformational regions during the simulation. We 
refer to the entire conformational ensemble obtained from McMD as a “multicanonical ensemble.” 
Then we can reconstruct a canonical energy distribution cP  at any target temperature tagT  from mcP  as  

mcc

tagmcmc

c

tag
tagc

)/exp()/exp()()/exp()(
),(

ZZ
RTERTEEP

Z
RTEEn

TEP
−

=
−

=  (3) 

To derive Equation (3), we used Equation (2) in the following form: )/exp()()( mcmcmc RTEEPZEn = . 
The canonical conformational ensemble at tagT  is constructed by assigning the probability ),( tagmc TEP  

to all conformations in the multicanonical ensemble. 
McMD uses the probability density function ),(c TEP  in Equation (1), which is generally unknown 

a priori (before simulation). Then, we must construct it self-consistently through iterative simulation 
runs, during which ),(c TEP  converges to a precise function. TTP-McMD takes an advantage over the 

single-run McMD [19,20]. TTP-McMD is technically equivalent with performing independent multiple 
runs of single-run McMD starting from various initial conformations. The multiple trajectories generated 
are integrated simply into an ensemble. It is noteworthy that low-energy conformations (low-energy 
basins) distribute widely in the conformational space, which are spaced by high-energy barriers. Then, 
a single-run McMD takes a long flight while overcoming the barriers to reach the low-energy basins. 
On the other hand, the multicanonical algorithm tries to ensure the flat distribution along the energy 
axis (Equation (2)) so that the conformation is expected to exist evenly in both the low-energy and 
high-energy regions. This evenness might cause a difficulty of single-run McMD, i.e., no convergence. 
The connected multiple runs (TTP-McMD), which are spread in the conformational space, are equivalent 
to a long trajectory, each part of which flights and searches the low-energy basins. Consequently,  
TTP-McMD provides the convergence of conformational ensemble faster than the single-run McMD. 
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The initial conformations for TTP-McMD were those shown in Figure 1(a) and (b), which were 
generated from the high-temperature canonical MD simulations, as described above. In this study, we 
performed 256 multiple runs for each system. To obtain the accurate ),(c TEP  in Equation (1), we 

performed the simulations iteratively. First, we performed a canonical simulation at 700 K and 
generated the probability )K700,(c EP  for each system. This probability distribution is restricted 
around the peak position (designated as highE ) of )K700,(c EP , and is accurate only in the narrow 
region. We designate this energy range as ],[ high0 EE  ( high0 EE < ), where 0E  is a lower limit of the 

accurately sampled energy region. Second, we performed the first TTP-McMD at 700 K with the 
multicanonical energy mcE , where )K700,(c EP  obtained above was used for ),(c TEP  in Equation (1). 
In the simulation, we set artificial energy walls at 0E  and highE  so that the conformation did not escape 
out of the range ],[ high0 EE . This simulation produced a flat energy distribution )(mc EP  only in 

],[ high0 EE . Then, using Equation (3) we reconstructed the probability )K200,(c EP . Here, mcE  defined 
by )K200,(ln c EPRTE +  is effective only for multicanonical runs at 200 K. The reason for this 
temperature reset (i.e., 700 K  200 K) is explained later. We again extrapolated )K200,(c EP  to an 
energy range as ],[ high1 EE  ( 01 EE < ), and performed multicanonical runs at 200 K to produce a flat 
energy distribution )(mc EP  in this extrapolated energy range. Multicanonical runs were performed 
iteratively until the sampled energy range reaches an energy ( lowE ) that corresponds to a temperature 
lower than a room temperature. After reaching lowE , we performed the final TTP-McMD to generate a 
flat energy distribution in ],[ highlow EE . We used 256 computing cores (intel Xeon X5365 3.0 GHz), 

each core executed one run of TTP-McMD. In the equilibration stage (i.e., the stage to estimate Emc 
before the final sampling stage), the simulations were done for 21 ns and 23 ns in each of  
256 trajectories (total of 5.4 μs and 5.9 μs) of the pKID and pKID-KIX system, respectively. The final 
runs were done for 8.51 ns in each of 256 trajectories (total time of 2.18 μs) and stored the snapshots 
every 5 ps for subsequent conformational analyses. The computation times for the equilibration stage 
were 33 and 76 days for the pKID and pKID-KIX system, respectively. Those for the final sampling 
stage were 13 and 28 days for the pKID and pKID-KIX system, respectively. 

As described above, we reset the simulation temperature from 700 K to 200 K. The multicanonical 
energies at the two temperatures are, respectively, )(ln700)K700(mc EnRE ×=  and 

)(ln200)K200(mc EnRE ×= . Mathematically, the multicanonical ensembles from )K700(mcE  and 
)K200(mcE  are expected to be equivalent: 

]K200/)K200(exp[]K700/)K700(exp[ mcmc REREPmc ×=×= . 

Consequently, the temperature reset is theoretically non-sense. However, the two simulations 
produce practically different ensembles. We use a polynomial function to approximate ),(c TEP  in 
Equation (1). The function form )200,(c KEP  is smoother than )700,(c KEP . Then, )200,(c KEP  is 
more suitable than )700,(c KEP  to define mcE . 



B

 

3

S
u
la
th
c
b

3

[
th
“
th
s
h
h
th
F
3
in

n

Biomolecule

3. Results a

The conf
Section 3.1,
unbound sta
andscape of
he KIX fra

coupled fold
bound states

3.1. The Con

The TTP
−35000.0 k
he multican

“315K-ensem
he NMR ex

structure co
helix more t
helix conten
he unbound

Furthermore
315K-ensem
ntrinsically 

Figure
in the 
The x
Arrow

We inves
native bound

es 2012, 2  

and Discuss

formational 
, we analyz
ate. In Secti
f pKID in th

amework flu
ding and bin
s are discuss

nformationa

P-McMD s
kcal/mol, −2
nonical ens
mble”) con
xperiment [2
ntent at eac
than the αB 
nt rate was 
d pKID was
e, the relat
mble. Cons

disordered

e 2. α-helix 
315K-ense
-axis repres

ws indicate t

stigated wh
d state (i.e., 

  

sion 

ensembles 
zed the pKI
on 3.2, we 
he bound st
uctuates mo
nding for th
sed. 

al Ensemble

simulation 
23480.0 kca
semble, we
sisting of 9
27]. The av
ch residue p
region doe

small: The 
s fluctuating
tive positio
sequently, t
. 

content rate
mble. DSSP
sents the re
the αA and α

ether the co
NMR struc

 

at 315 K of
ID system 
investigated
tate is rugge
ore than αB

his system. I

e in the pKID

for the pK
al/mol] that 
e construct
922 conform

verage of en
position is 

es. This resu
content for

g among the
oning betw
the simula

e per residu
P program 
esidue ordin
αB regions.

onformation
cture). Picki

f the pKID 
and showed
d the pKID
ed. Furtherm
 does. In S
In the final 

ID System (U

KID system
correspond

ted a confo
mations. It 
nergy E at 3
shown in F
ult agrees w
r αA was be
e helix and 

ween the αA

ation confir

ue in the pK
[41] was us
nal number 

n in the unb
ing up a sam

 

and pKID–
d that pKID
–KIX syste
more, the or
Section 3.3, 

section, dif

Unbound St

m is explo
s to a tempe
ormational 
is notewort
315 K was 
Figure 2. A
with the NM
elow 50% an
non-helix c
A and αB

rmed that 

KID system c
sed to assig

of pKID in

bound state 
mpled confo

–KIX system
D is intrins
em and show
rientation o
we discuss

fferences be

tate) 

ored evenly
erature rang
ensemble 

thy that 315
−34272.0 k

Apparently, 
MR observa
nd that for 

conformatio
regions flu
pKID in 

computed fr
n the α-heli
n the origin

 

showed sim
ormation fro

   

ms were inv
sically disor
wed that the

of αA of pKI
s the mech
etween the u

y in an e
ge [300 K, 7
at 315 K 

5 K is the te
kcal/mol. Th
the αA regi

ation [30]. H
αB was abo

ons at room 
uctuated hi
the unbou

rom conform
ix to each r
nal PDB fil

milarity wit
om the 315 

11

vestigated. I
rdered in th
e free energ
ID relative t
anism of th
unbound an

energy rang
700 K]. From

(denoted a
mperature o
he secondar
ion preferre
However, th
out 20%, an
temperatur

ighly in th
und state 

mations 
residue. 
le [27]. 

th that in th
K-ensembl

 
11

In 
he 
gy 
to 
he 
nd 

ge  
m 
as  
of 
ry 
ed 
he 
nd 
re. 
he  
is 

he 
le, 



B

 

th
A
v
S
R

w
d
p
a

m
m
to
a

3

in
r
(
c

R

th

(
th

Biomolecule

he root-mea
After superi
values were
Similarly, th
RMSD for th

were used 
distributions
peak was fou
a small pea

mechanisms
mechanism, 
o KIX with

and then the

Figure 3. 

3.2. Free En

The TTP
n an energ
ange [300 
8840 confo

constructed 

BB αα RR
r

−=

he αA and α

i.e., the NM
he potential

es 2012, 2  

an-square d
imposing C
e calculated 
he smallest 
he entire pK

for the RM
s of αRMSD
und in the α

ak at RMSD

s of couple
where the 

h an induced
e native com

Probability

nergy Lands

P-McMD s
gy range [−

K, 700 
ormations). 

as a functi
NMR
BαR

r
− , wh

αB regions in

MR model),
l of mean fo

  

deviation (R
α atoms of 
and the sm
RMSD, den

KID (residu

MSD comp
Aα  and RMS
αA region at

BαD  ≈ 1.0 Å

d folding a
structured f
d-folding m

mplex is form

y distributio

scape and O

simulation 
−64440.0 kc
K]. From 
The free en

ion of two 

here AαR
r

 an

n a sampled

, respective
orce (PMF) 

 

RMSD) was 
the αA regi

mallest RMS
noted as RM
es 121–144

putation wi
BαMSD  for al

t small RMS
Å. These re

and binding
fraction of α

mechanism, 
med. 

ons of (a) RM

Orientation 

of the pK
cal/mol, −4

the multi
nergy lands
variables R

nd BαR
r

 respe

d conformat

ely. Using th
as 

PMF =

calculated 
ion onto tho
SD of the 1

BαMSD , wa
4) is denoted

ithout supe
ll conforma

AαMSD : RMSD
esults sugge

g: αA migh
αA is used f
where αB is

AαMSD  and

of αA in the 

KID–KIX s
42500.0 kca
canonical 
scape for th

AαR  and αR

ectively rep

tion, and αR
r

hese distanc

(ln RPRT−

 

for each of
ose in each 
17 values, d
s calculated
d as RMSD

erposition. F
tions in the

AαSD  ≈ 1.0 Å
est that the 

t bind with
for binding 
s bindable t

d (b) RMSD

pKID–KIX

system pro
al/mol], wh
ensemble, 

he αA and α

Bα  defined a

present the p
NMR
Aα  and N

αR
r

ces as the r

), BA αα RR , 

f the αA and
of the 17 N

denoted as 
d for the αB

allD , where ra

Figure 3 p
e 315K-ense
Å. Contraril
αA and αB

h KIX with
to KIX. In 

to KIX with

BαD  in the pK

X System 

oduced a f
hich corresp

we derive
αB regions 
as follows: 

position vec
NMR
Bα  those in

reaction coo

   

d αB region
NMR mode

AαRMSD , w
B region. Th
aw coordin

presents the
emble. A no
ly, the αB re
B regions ha

h a populat
contrast, α

h various co

KID system

 

flat energy 
ponds to a 
ed the 315
on binding 

AA αα RR
r

=

ctors of the

n the refere

ordinates, w

11

ns as follow
ls, 17 RMSD
was selected
he Cα-atom
ates of pKID

e probabilit
on-negligib
egion showe
ave differen

tion-selectio
αB might bin
onformation

m at 315 K.

distributio
temperatur

5K-ensemb
to KIX wa

NMR
AαR

r
−  an

e centroids o

nce structur

we calculate

(4

 
12

ws: 
SD 
d. 
ic 
D 

ty 
le 
ed 
nt 

on 
nd 
ns 

on  
re  
le  
as 
nd 

of 

re 

ed 

4) 



B

 

w
fr

3
e
b
e
n
F

w

[

p
fr
lo

Biomolecule

where the p
fraction [ i ±
315-K ensem
energy lands
by green cir
energy frac
nearest-nativ
Figure 4(a) i

well-ordered

Figure
Equati

The gr
structu
pKID 

near th
region
region

We also 
=],[ BA αα RR

pKID attach
fractions we
ow-free-ene

es 2012, 2  

probability 
± 0.5 Å, j ±
mble, R is t
scape PMF
cle around 

ction.” This
ve structur
is: ,( BA αα RR

d αB helix. 

e 4. (a) F
ion (4)) con

reen and re
ure of pKID
by rainbow

he structure
n of panel a
n. (e) MLL (

found a n
= [5–13 Å, 0

hed KIX w
ere distingui
ergy fractio

  

,( BA αα RRP
± 0.5 Å] ( , ji

the gas con
F, which wa

=),( BA αα RR
s native-lik
re, shown 

=)Bα  (4.43 Å

Free energ
nstructed on

ed circles ar
D in the pK
w (blue N-t

es indicate i
a. (d) pKID
(magenta) s

non-native 
0–7 Å]. We 

with variou
ishable in F
on suggests

 

)  was repr
L,2,1,0=j )

nstant, and T
as complex 
=  (4 Å, 3 Å

ke fraction 
in Figure 

Å, 2.94 Å). 

y landscap
n the plane 

re described
KID–KIX sy
terminal an

its position 
D structure 
structure bou

broad fract
designate t

s binding p
Figure 4(a), 
s that pKID

resented as 
) of ,[ A αα RR

T  is the tem
and ragged

Å). We desig
comprised
4(b), had

This struct

pe (potentia
of AαR  and

d in the tex
ystem. KIX

nd red C-ter

in panel a.
bound at th
und to KIX

tion with l
this fraction

poses as ex
a free energ

D can bind 

 

the numbe
]Bα  over the

mperature (3
d. We found
gnate this fr

d conforma
d allRMSD
ture forms a

al of mean
d BαR . The 

xt. (b) Smal
X is represen
rminal). Va

 (c) Structu
he MLL bin
 (blue) take

low free en
n “non-nativ

xemplified 
gy barrier ex

to KIX w

er of confo
e total conf

315 K). Fig
d a low free
raction as th

ations with 
 of 5.65 

a partially d

n force (P
lowest PMF

llest-RMSD
nted by the

alues for αR

ures taken f
nding site o
en from PDB

nergy in F
ve low-free-

in Figure 
xists betwee

with a struc

   

ormations c
formations (

gure 4(a) sh
e-energy fra
he “native-l

all <RMSD
Å, whose 

disordered α

PMF) defin
MF was set t

Dall (nearest-
e blue ribbo

Aα  and BαR  

from the red
of KIX via 
B ID: 2agh.

igure 4(a) 
-energy frac

4(c). Beca
en them. Th

ctural divers

11

counted in 
(8840) in th

hows the fre
action circle
ike low-free

1.7<  Å. Th
position i

αA helix and 

ned by 
to zero. 

-native) 
on, and 
shown 

d-circle 
the αB 
 

(red circle
ction”, wher

ause the tw
he non-nativ
sity, and th

 
13

a 
he 

ee 
ed 
e-
he 
in  

d a 

 

e): 
re 

wo 
ve 
he 



Biomolecules 2012, 2             
 

 

114

generated various encounters reach the final native-like fraction across the free energy barrier.  
This result suggests that the high flexibility of pKID might help the pKID–KIX association because 
pKID binds to KIX without adopting a well-ordered structure. The final native-complex formation  
is completed after forming the various non-native complexes. Later in this report, we describe  
our examination of why the non-native low-free-energy fraction was larger than the native-like  
low-free-energy fraction in the free-energy landscape and why the αA helix is partially disordered, even 
in the native-like low-free-energy fraction (Figure 4(b)). 

We found pKID bound to another site of KIX in 323 snapshots of the 315K-ensemble (Figure 4(d)). 
This site is a binding site for the activation domain of the mixed lineage leukemia (MLL) transcription 
factor [42]. The MLL–KIX complex structure (Figure 4(e)) shows that a segment of MLL adopts  
helix and binds to KIX, and the other parts are unstructured. In all of these snapshots, the αB region 
adopted helix to bind to the MLL binding site with the αA region unstructured. The orientation of the 
αB helix cylinder was approximately the same as that of the MLL segment in the MLL–KIX complex 
structure [43]. Consequently, the αB region corresponds to the MLL segment. In fact, both the  
MLL-binding site and the genuine αB-binding site on the KIX surface consist of hydrophobic amino 
acids. Furthermore, the hydrophobic residues in the αB region and the MLL segment have similarity; 
they contains φ-x-x-φ-φ motif (φ = hydrophobic residue and x = any residue), which is conserved in 
many KIX binding proteins (see Figure 9 of reference [43]). It is particularly interesting that in the 
presence of MLL, pKID binds to KIX with the two-fold higher affinity than pKID in the absence of 
MLL [44]. Our simulation results suggest that MLL might facilitate the pKID binding to the genuine 
binding site via blocking the MLL binding site. 

The orientations of the αA and αB regions with respect to the KIX framework were investigated, 
respectively, using inner products, AαI  and BαI . The inner product AαI  was defined as 

NMR
128-124128-124A eeI rr

•=α , (5) 

where vectors 128-124er  and NMR
128-124er  respectively represent the unit vectors of vectors 128-124rr  and NMR

128-124rr : 
see Figure 1(c). The vector 128-124rr  is pointing from the Cα-atomic position of the 124th residue to that 
of the 128th residue in a sampled conformation. The vector NMR

128-124rr  is defined in the same way for the 
NMR structure. For the orientation of αB residues, BαI  was defined as  

NMR
141-134141-134B eeI rr

•=α . (6) 

The unit vectors 141-134er  and NMR
141-134er  were calculated similarly as 128-124er  and NMR

128-124er  by replacing the 
residue numbers 124–134 and 128–141. When the inner products AαI  and BαI  are 1, the orientations 

are aligned as in the native bound form. 
The inner products were calculated for 2476 conformations whose distances ],[ BA αα RR  satisfy 

13A ≤αR  Å and 7B ≤αR  Å, which involves the native-like (green circle in Figure 4(a)) and non-native 
(red circle) low-free-energy fractions. The histogram for BαI  (Figure 5(b)) has the largest peak at 1, 

which indicates that the αB region attaches to KIX with the same orientation as that in the final bound 
form in both low-free-energy fractions. We discussed the factors stabilizing this orientation later in 
Section 3.4. Recall that the αB region less adopts helix than the αA region in the isolated state 
(Figure 2) and that the αB region seldom adopts native-complex form in the isolated state (Figure 3(b)). 
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density site was slightly deviated from that in the NMR structure, the anchor effect of pS133 is clearly 
shown. Consequently, phosphorylation plays an important role for specifying the αB-helix orientation  
(Figure 5(b)). We presume that this phosphorylation-induced restraint on the αB helix increases the 
binding affinity more than non-phosphorylated KID [25,26]. 

4. Conclusions 

We performed the TTP-McMD simulations for the pKID folding and binding with KIX in explicit 
solvents. Although the overall property of pKID in the unbound state was disordered, pKID has the 
nascent helix propensity in the αA and αB regions in the computed conformational ensemble. The 
propensity for αA was stronger than that for αB, which agrees with an experiment described in the 
literature [30]. 

In the presence of KIX, the free-energy landscape at 315 K involved two low-free-energy fractions: 
The native-like low-free-energy fraction and non-native low-free-energy fraction. Because the αB 
region can bind to KIX with various non-native contacts (various encounter complexes), the αB region 
might provide fast association with KIX [8]. This landscape proposes an induced-fit mechanism for 
coupled folding and binding of the αB region: various encounter complexes are possible in the early 
stage, and the complex passes through the free-energy barrier to reach the native-like low-free-energy 
fraction. The well-oriented binding of the αB region was controlled by the phosphorylated SER133 
located in the middle of the αA and αB regions. This control supports the higher binding affinity of 
pKID than KID, as observed experimentally [25,26]. In contrast to the αB region, the αA region 
exhibited high flexibility, which agrees qualitatively with that found in the NMR structure [27].  
An earlier experiment [25] has demonstrated that the helix formation of αA is not important for binding 
to KIX. Consequently, the simulation supports the high binding affinity of αB and the low binding 
affinity of αA. 

It is particularly interesting that the αB region bound to another shallow hydrophobic concave of 
KIX than the genuine pKID-binding site, where αB adopted helix. This hydrophobic concavity is the 
MLL binding site of KID, to which a segment of MLL binds with adopting helix [42]. It has been 
pointed out in an earlier report that the hydrophobic residue pattern of the αB and MLL segments have 
a similar hydrophobic amino-acid residue pattern [43]. In the presence of MLL, pKID binds KIX with 
the two-fold higher affinity than pKID alone [44]. We presume that MLL might facilitate the pKID 
binding to the genuine binding site by blocking the MLL binding site. 

The current study demonstrated the importance of hydrophobic interactions between pKID and 
KIX. Because the multicanonical simulation is an efficient sampling method, the multicanonical 
trajectory can overcome high potential energy barriers in the conformational space. At the cost of this 
high performance, the trajectory does not provide information of time series. A conventional MD 
simulation may provide another important aspect, such as electrostatic interaction, on the complex 
formation.  

Finally, it is noteworthy that the non-native low-free-energy fraction (red circle in Figure 4(a)) is 
larger than the native-like low-free-energy fraction (green circle) in the free-energy landscape and that 
the αA helix is partially disordered, even in the native-like low-free-energy fraction (Figure 4(b)). 
These points disagree with the NMR experimentally obtained results [27]. Presumably, this disagreement 
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results from the truncation of pKID, which are unstructured in the NMR experiment. It is important to 
remember that the computed pKID segment is the only part deposited to PDB. The unstructured region 
might stabilize the αA helix more, which might result in an increase of the native-like low-free-energy 
fraction. 
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