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Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder where age, genetic
factors and sleep disturbance significantly influence disease risk. Recent genome-wide
association studies identified a C/T missense variant (rs141749679) in the sortilin (SORT1)
gene linked to heightened AD risk, revealing SORT1’s role as a key player in the disease’s
pathophysiology. This type I membrane glycoprotein is implicated in amyloid 3 (Ap)
accumulation and associated lipid dysregulation, particularly through its interaction with
apolipoprotein E (ApoE). SORT1 facilitates the uptake of ApoE-bound polyunsaturated
fatty acids (PUFAs), conversion to endocannabinoids (eCBs), and the regulation of anti-
inflammatory pathways via peroxisome proliferator-activated receptors (PPARs). Notably,
this neuroprotective signaling is contingent on the APOE allele, exhibiting functionality
in presence of ApoE3 but disrupted with ApoE4. Additionally, the brain-type fatty acid
binding protein, FABP7, mediates this signaling cascade, emphasizing its role in neuron-
glia communication. FABP7 is known to regulate sleep across species and binds PUFAs
and eCBs. Therefore, dysfunction of the ApoE-SORT1-FABP7 axis may underlie the neuro-
protective loss observed in AD, linking sleep disruption and lipid homeostasis to disease
progression. This perspective aims to elucidate the intricate neural-glial mechanisms gov-
erning the ApoE-SORT1-FABP7? interaction and their implications for targeting therapeutic
interventions in Alzheimer’s disease.

Keywords: astrocyte; circadian; metabolism; excitability; neurodegeneration

1. Introduction

Alzheimer’s disease (AD) presents a growing challenge to global health, significantly
impacting healthcare systems, economic resources, and social frameworks [1]. As the most
common form of dementia, AD affects over 55 million people globally, and this number
is expected to triple by 2050 due to an aging population and increased life expectancy [2],
which is also influenced by the COVID-19 pandemic [3,4]. The disease is characterized by a

Biomolecules 2025, 15, 1432

https://doi.org/10.3390 /biom15101432


https://doi.org/10.3390/biom15101432
https://doi.org/10.3390/biom15101432
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-3771-0906
https://orcid.org/0000-0003-0498-3342
https://orcid.org/0000-0002-9613-928X
https://orcid.org/0000-0003-0858-9844
https://orcid.org/0000-0003-3113-6974
https://doi.org/10.3390/biom15101432
https://www.mdpi.com/article/10.3390/biom15101432?type=check_update&version=2

Biomolecules 2025, 15, 1432

20f13

gradual decline in cognitive abilities, memory loss, and functional impairments, resulting
in higher dependency needs and increased caregiver burdens. The financial impact is
substantial, with costs reaching $1.3 trillion annually on a global scale and is expected to
rise to US$ 2.8 trillion by 2030, highlighting the urgent need for effective interventions [2].
Despite advancements in understanding the disease’s pathophysiology, including the roles
of amyloid 3 plaques and tau tangles, current treatments remain focused on managing
symptoms and modifiable risk factors [5], as there are no available options that can alter
the disease’s progression.

AD is a progressive dementia typified by the formation of hyperphosphorylated tau
tangles and amyloid plaques in the brain [6-8]. It is also associated with sleep disturbances,
cognitive decline, memory loss, and other behavioral anomalies [9-11]. While AD is
not an inevitable part of aging, age is the primary risk factor for its development [12].
Genetic factors also play a significant role, with variations in apolipoprotein E (ApoE)
and mutations in the amyloid precursor protein (APP) and presenilin genes (PS1 and PS2)
linked to a heightened risk of AD [13-15]. The presence of the ApoE4 protein (product
of the APOE &4 allele) is particularly associated with a higher risk of sporadic late-onset
AD. Advances in neuroimaging and biomarkers have prompted a reevaluation of AD,
now seen as a progressive neuropathological disease with underlying processes that begin
well before clinical symptoms emerge [16,17]. Clinical manifestations can include mild
cognitive impairment (MCI), subjective cognitive impairment (SCI), and varying degrees of
AD dementia [18-22]. The protracted pre-symptomatic phase of AD pathogenesis presents
opportunities for early intervention, which could delay the onset of more severe symptoms
and dementia [20,23].

2. Alzheimer’s Pathophysiology
2.1. A Role for Sleep and Circadian Rhythms

Recent research underscores a strong link between sleep disorders, circadian disrup-
tions, and AD, highlighting their mutual impact on sleep and brain degeneration [10,24-28].
Disrupted sleep patterns, including insomnia, sleep apnea, and fragmented sleep, are both
early indicators and risk factors for AD, with poor sleep contributing to Af3 and tau protein
accumulation via disturbances in glymphatic clearance during slow-wave sleep. In mam-
mals, circadian rhythms are generated by a cell-autonomous transcriptional feedback loop
in which the activators BMAL1 (Brain and Muscle ARNT-Like 1, also known as ARNTL)
and CLOCK (Circadian Locomotor Output Cycles Kaput) drive the rhythmic expression of
their repressors, PER (Period Circadian Regulator 1-3) and CRY (Cryptochrome Circadian
Regulator 1-2). This core oscillatory mechanism is further regulated by an additional
complementary loop in which REV-ERB«/3 [Nuclear Receptor Subfamily 1 Group D
Member 1 and 2 (NR1D1/NR1D2)] and RORe/ 3 [RAR-Related Orphan Receptor Alpha
and Beta (RORA /RORB)], act as negative and positive regulators, respectively, of BMAL1
cycling [29,30]. Disruptions of this molecular clock in aging individuals and those with AD
exacerbate neurodegeneration by altering physiological activity schedules such as hormone
release and brain cell repair [31]. Indeed, BMAL1 and PER1 have been implicated in the
production and clearance of Af3, further connecting circadian dysfunction to AD pathogen-
esis [32-35]. Sleep and circadian disruptions accelerate toxic protein buildups and impair
cellular repair, thus speeding up neurodegeneration, while neurodegenerative diseases
also disturb Sleep—Wake cycles, creating a vicious cycle that worsens disease progression.
Understanding the reciprocal relationship between sleep patterns, circadian rhythms, and
neurodegeneration is crucial as they both signal and contribute to AD [9,36-39]. Current
research suggests that managing sleep and circadian rhythms could slow neurodegenera-
tion, emphasizing the importance of integrated strategies in research and clinical settings
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to provide early interventions and improve outcomes for patients with neurodegenerative
diseases [36].

2.2. A Role for Lipid/Cannabinoid Signaling

FABP7’s role in lipid metabolism in the developing brain is essential, with pronounced
expression in embryonic neural stem cells and a sustained presence in astrocytes post-
development [40]. FABP7 exhibits a strong binding affinity to w-3 fatty acids, particularly
docosahexaenoic acid (DHA), and plays a critical role in modulating neuroinflammatory
processes [41]. Additionally, the ApoE4 variant disrupts sortilin-receptor interaction,
thereby muting FABP7 expression, thus qualifying the need for its characterization and
investigation in Alzheimer’s pathologies [42,43]. This section presents a brief overview
and integration of the present knowledge of the role of FABP7 interactions with PUFAs
and cannabinoids, and its plausible role as an interface between w-3 and endocannabinoid
(eCB) systems with downstream implications related to AD progression.

Arachidonic acid (AA) and DHA metabolism in the brain drives pro- and anti-
inflammatory signal transduction cascades that play integral roles in neuronal home-
ostasis, neurogenesis, and inflammation [44]. While both can be made De Novo in the
brain from (nutritionally essential) w-6 and w-3 precursors, respectively, current evidence
suggests a greater reliance on hepatic- or adipose-derived reservoirs of AA and DHA
from the blood, and that diet-derived DHA is transported to the brain more effectively
than reservoir-derived DHA (see Box 2 of [44]). PUFAs crossing the Blood—Brain Barrier
(BBB) will bind FABPs (including FABP?) for transport to storage sites on the plasma
membrane and will also bind intracellular FABPs for metabolism to one of several down-
stream bioactive compounds. DHA is released from glial or neuronal membrane stores
Via receptor-mediated signal transduction, or in response to cellular stress, and undergoes
metabolism by lipoxygenases to create anti-inflammatory mediators including resolvins,
neuroprotectins, and maresin (see Figure 3 of ref. [44]). Freed DHA and its downstream
mediators interact directly with multiple cell signaling pathways related to cellular stress.
PUFAs also modulate the eCB system, influencing neurotransmitter release Via interac-
tion with cannabinoid receptor type 1 (CB1) of astrocytes, microglia, and neurons. DHA
consumption blunts elevated peripheral tissue concentrations of the two primary eCBs,
anandamide and 2-arachidonylglycerol (2-AG), in rodents fed a high fat diet [45]. Rodents
fed diets devoid of DHA also yield elevated brain 2-AG independent of AA, which could be
reversed with dietary replacement of DHA [46]. In addition to direct effects, synaptamide
(N-Docosahexaenoylethanolamine) is DHA-derived endocannabinoid that promotes neural
growth and function with greater potency than its precursor [47,48] and both brain synap-
tamide and brain-derived neurotrophic factor (BDNF) concentrations positively respond
to dietary intake of DHA [49,50]. While the role of synaptamide in AD is not well known,
BDNF depletion has been linked to AD, and may represent a diagnostic marker and target
with therapeutic potential for the treatment of AD [51].

Both DHA and its mediator, neuroprotection D1 (NPD1), possess anti-amyloidogenic
properties Via inhibition of the enzymatic pathway of amyloid 3 generation, and DHA is
associated with lower plaque formation [52-54]. Higher dietary intake of DHA is associated
with a lower risk of AD and other neurological conditions [55]. Some but not all brain
DHA pools are exhausted in AD, and this is hypothesized to occur in the earlier stages of
AD progression [56,57]. However, DHA supplementation does not unequivocally yield
positive results in human trials of AD patients [58,59], which could be confounded by APOE
allele, as ApoE4 reduces DHA uptake into the brain [60,61]. Taken together, the multiple
mechanisms of action of DHA underscore a central role in neuronal health, but their
effectiveness alone in prevention or reversal of neurodegenerative disease are unproven.
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This highlights a knowledge gap in the complex interactions between the transport and
metabolism of PUFAs, eCB, and APOE allele status as they relate to brain health and disease.

2.3. Neural-Glial Metabolic Coupling

Growing research has suggested the crucial role of neural-glial metabolic coupling in
AD pathophysiology [38,62—-64]. Neurons and glial cells, especially astrocytes, engage in
complex metabolic interactions that maintain brain homeostasis [65]. Disruption of these
interactions leads to metabolic dysregulation, compromised neuronal energy supply, and
accelerated neurodegeneration, contributing to AD progression [37,66]. Astrocytes are
vital for supporting neuronal function by modulating synaptic activity, recycling neuro-
transmitters, and maintaining the BBB, ensuring energy balance and protection against
oxidative stress [67-69]. In AD, astrocytes undergo metabolic reprogramming, impairing
their neuro-supportive functions [67]. Glial cells, including microglia, also contribute to
AD-related inflammation, with metabolic dysregulation triggering chronic inflammation
and exacerbating neuronal damage [70-73]. Recent proteomics studies show a strong link
between AD severity and astrocyte-related metabolic proteins [74,75]. Single-nucleus tran-
scriptional profiling of AD patient brains revealed significant metabolic abnormalities in
astrocytes, particularly with glutamate Via downregulation of glutamine synthetase (GLUL)
and glutamate dehydrogenase 1 (GLUD1), potentially disrupting the glutamate-glutamine
cycle and leading to excitotoxicity [76].

Moreover, astrocytes are involved in the clearance of A3 plaques [77], and dysfunc-
tional astrocytic metabolism impairs A clearance, leading to its accumulation, mitochon-
drial disruption, and increased neuronal toxicity [78,79]. A recent study revealed that sleep
promotes brain energy homeostasis through a neuron-glia mitochondrial lipid cycle, where
neurons transfer lipid-linked oxidative damage to glia during the wake cycle, and sleep
enables glial lipid clearance, mitochondrial recovery, and neuronal mitophagy [80]. Sleep
disturbances, common in AD patients, may exacerbate these metabolic alterations, under-
scoring the interconnectedness of sleep, metabolism, and neurodegeneration [10,81-83].

The implications of glial metabolic dysregulation extend beyond AD, influencing
various neurodegenerative conditions such as multiple sclerosis (MS), Parkinson’s disease
(PD), and amyotrophic lateral sclerosis (ALS) [84]. Understanding the metabolic coupling
between neurons and glial cells is crucial for developing therapeutic strategies aimed at
restoring metabolic balance and mitigating neurodegeneration in AD [64,84].

3. FABP7: A Molecular Node Integrating Sleep, Circadian Rhythms,
Metabolism, and AD

3.1. A Role for FABP7 in Sleep and Circadian Rhythms

FABP7 is a member of a family of small, ~15 kD lipid-binding proteins known to
bind to hydrophobic regions of fatty acids and their metabolites for transport, influencing
a broad spectrum of physiological functions, including PUFAs and their metabolites to
facilitate their transport to various subcellular locations. They affect a wide range of cellular
processes, including signal transduction, oxidation, membrane synthesis, transcription,
fat storage, autocrine/paracrine function, inflammation, and metabolism [85,86]. FABP7
is enriched in astrocytes, oligodendrocyte progenitor cells (OPCs) and neural progeni-
tors and regulates changes in cell growth, morphology, and motility via lipid signaling
cascades. We have previously shown that FABP7 expression oscillates in a synchronized
fashion throughout the mammalian brain [87-89] and is regulated by BMAL1 [90] and
REV-ERBa [91]. FABP7 also regulates sleep across phylogenetically diverse species, from
flies to mice and humans [92]. Since sleep and circadian disruptions influence neurode-
generative diseases [24,36,37], we sought to determine whether FABP7 plays a role in AD
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pathophysiology and found that AB-induced sleep fragmentation in an A{3 fly model was
rescued by overexpression of mouse FABP7 or the fly homolog, dFABP [93]. Overexpres-
sion of FABP7 or dFABP in flies was also shown to promote long-term memory formation
and sleep consolidation [94], and nuclear-cytoplasmic localization seems to correlate with
different forms of memory [95]. Given that circadian factors are known to contribute to
long-term memory formation and synaptic plasticity [96,97], FABP7 may function as a
molecular node that integrates astrocyte lipid metabolism with sleep, clocks, and cognitive
function [91]. Taken together, these studies indicate that FABP7 and related neural-glial sig-
naling cascades likely cooperate with circadian/Sleep—Wake states to drive lipid signaling,
metabolism, and neuroprotection [37,38,91,98].

3.2. A Role for FABP7 in Neural-Glial Metabolic Coupling in AD

Recent studies suggest that FABP7 is essential for maintaining neuronal structure and
synaptic function through mediating neuron-glia metabolic coupling [99,100]. FABP7 is
predominantly expressed in astrocytes and OPCs, but not in mature neurons or microglia.
FABP? knockout (KO) mice exhibit reduced dendritic arborization and impaired synaptic
plasticity [99]. Specifically, pyramidal neurons in the medial prefrontal cortex (mPFC) show
decreased dendritic branching, shorter arbor length, lower synapse density, and weakened
excitatory synaptic transmission [99]. Similarly, wild-type neurons co-cultured with FABP7-
deficient astrocytes show reduced dendritic complexity and spine density, confirming the
crucial role of astrocytic FABP7 in supporting neuronal maturation [99]. Furthermore,
recent research reveals that FABP7, along with its family members FABP3 and FABPS5,
bind neuroactive lipids such as epoxyeicosatrienoic acids (EETs) and 15-deoxy-A12,14-
prostaglandin J2 (15d-PGJ2), regulating EET-mediated synaptic signaling and emphasizing
their broader role in neuronal lipid signaling [101]. Together, these findings highlight the
importance of FABP7-mediated neuron-glia lipid metabolism in synaptogenesis, supporting
neural homeostasis and function [100].

Reflecting its critical role in neural physiology and function, growing evidence sug-
gests that FABP7 is implicated in the pathophysiology of neurological and neurodegener-
ative diseases, particularly AD [98,102,103]. In AD, FABP7 expression is upregulated in
astrocytes around amyloid plaques, while ApoE4 disrupts myelin homeostasis in the frontal
cortex by altering ApoE and FABP7, contributing to early demyelination and cognitive de-
cline [104]. This upregulation is associated with an inflammatory response, as FABP7 over-
expression in astrocytes induces NF-«kB-driven inflammation and neurotoxicity [104,105].
Proteomics studies revealed that compared to asymptomatic AD brain, significantly ele-
vated levels of FABP7 in AD brain were observed [74,75,106,107]. Notably, FABP7 binds to
both AA and DHA [41], resulting in distinct physiological responses [98,108]. The binding
of AA to FABP7 is thought to promote inflammatory pathways and astrogliosis, which can
impede glutamatergic uptake and exacerbate neuroinflammation [98,105,108,109], while
the binding of DHA to FABP7 conversely stabilizes astrocyte-neuron lactate shuttle dynam-
ics, preserves glutamatergic uptake, and activates anti-inflammatory pathways, promoting
neuroprotection [91,98,105,108]. The FABP7’s dual role in AD makes it a potential therapeu-
tic target to restore metabolic balance and reduce neuroinflammation, warranting further
research to develop targeted interventions.

3.3. A Role for FABP7 and Cannabinoids Beyond DHA Signaling in AD

In addition to shuttling DHA, FABP7 transports the eCB anandamide and the two pre-
dominant cannabinoids sourced from Cannabis sativa, delta 9-Tetrahydrocannabinol (THC)
and the non-psychoactive Cannabidiol (CBD) [110,111]. Recently, THC-treated FABP7 KO
mice were shown to increase distance travelled in an open field, the opposite phenotype
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of WT THC-treated mice, which reduced distance traveled [112], suggesting a regulatory
role for FABP7 mediating the effects of THC on behavior. Both PUFA and cannabinoid-
based interventions are proven modulators of endocannabinoid system tone (ECS) via
modulation of CB1, which is demonstrated to inhibit neuroinflammatory pathways [113].
Indeed, the observed changes in ECS tone translate to clinical improvements. For example,
a meta-analysis of four separate Phase IlI clinical trials included 550 epileptics and reported
a 20% reduction in seizure frequency in patients consuming 10-20 mg/kg body weight
CBD for up to 14 weeks [114]. Elucidation of the mechanistic underpinnings between
the brain’s eicosanoid and endocannabinoid systems, including a greater framework for
the essential role(s) of FABP7 within and between both, will inform its influence on both
metabolic and oxidative stress conditions, and how the axis can be exploited to improve
clinical outcomes of neurological disease. To this last point, FABP7 and other brain FABP
isoforms were recently implicated in facilitation of the interaction of AA-derived EETs,
which promote PPAR-gamma activity, with downstream effects on synaptic transmission
and other critical functions [101]. Enhancement of these signaling pathways attenuates
AD progression in 5xFAD mice [115,116]. In conclusion, given FABP7’s dual role in trans-
porting both DHA-derived mediators and cannabinoids, it emerges as a novel therapeutic
target bridging dietary fatty acid interventions and modulation of cannabinoid signaling
pathways to mitigate the neuroinflammation of AD.

4. ApoE-SORT1-FABP7 Axis in AD

A newly discovered C/T missense variant, 15141749679, of the gene for the membrane
surface receptor sortilin (SORT1) was recently shown to be associated with increased AD
risk in genome-wide association studies (GWAS) [117]. SORT1 is a type I membrane glyco-
protein in the vacuolar protein sorting 10 protein (VPS10P) family of sorting receptors that
also includes SorL A, SorCS1, SorCS2, and SorCS3, all of which have been identified as AD
risk loci [118]. While SORT1 is expressed in neurons, it is not exclusive to this cell type, as
it has also been shown to be expressed in various glial cells, including astrocytes, oligoden-
drocytes, OPCs, and microglia, as well as endothelial cells in humans and mice [119,120].
Existing mouse models with targeted Sort1 gene disruption have shown increased levels
of Af} peptides and plaque burden in the brain, as well as the accumulation of sulfatides
(a type of glycolipid) likely associated with ApoE-Af{3 complex dysfunction [121]. Given
that SORT1 binds to ApoE with high affinity, it is probable that the dysregulation of lipid
homeostasis that contributes to AD pathology may be due in part to functional deficits of
ApoE-SORT1 interactions [122]. Indeed, SORT1 directs the uptake of ApoE-bound PUFAs
and their conversion into eCBs, and the regulation of anti-inflammatory gene expression
programs via the peroxisome proliferator-activated receptor (PPAR) family of transcription
factors in an APOE allele-dependent manner [123]. The neuroprotective effects of SORT1
exist with functional ApoE3, but are disrupted upon ApoE4 binding [123]. Unbiased pro-
teome screens have discovered that this APOE-allele-dependent neuroprotective signaling
is mediated by functional expression of FABP7. In the presence of ApoE3, a SORT1-FABP7
signaling cascade elicits stimulation of PPAR-mediated gene expression, which is blocked
in the presence of ApoE4 [42]. Therefore, dysfunctional ApoE-SORT1-FABP7 neural-glial
signaling may contribute to the loss of neuroprotection observed in AD (Figure 1).
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Figure 1. A neural-glial model of the ApoE-SORT1-FABP?7 axis tied to sleep disruption and AD
pathophysiology. We previously described how neural-glial metabolic coupling during healthy
sleep preserves neural function via the astrocyte supply of lactate following activity-dependent
glutamate release tied to wakefulness, known as the ANLS [62,124]. (A) In contrast, disrupted sleep
is tied to enhanced wake-dependent glutamate release from neurons, subsequent A oligomerization,
and astrocyte reactivity, creating a reciprocal interaction that disrupts the ANLS and enhances
glutamatergic release, which is tied to further fragmented sleep and excitotoxicity that perpetuates
the cycle (B) [37,38]. In this updated model, we incorporate FABP7 signaling from astrocytes to
neurons that is closely tied to ApoE lipid exchange, where ApoE3 cargo interacts with SORT1-wt
receptors on neurons to drive FABP7-dependent w-3 FA, such as DHA nuclear localization, to promote
PPAR-mediated transcription of anti-inflammatory and neuroprotective genes, such as TFEB (A).
However, ApoE4 disrupts functional interactions between SORT1 and FABP7 (B), preventing nuclear
localization of FABP7 and subsequent neuroprotective gene expression [42,123]. We hypothesize
that the recently identified SORT-mt tied to Alzheimer’s risk, in combination with the Ex17b mutant
that permits soluble decoy SORT1 receptors [125,126], may similarly inhibit the ApoE-SORT1-FABP7
nuclear lipid-signaling cascade. This would favor FABP7 to bind to w-6 FAs, such as AA, and shuttle
them to the endoplasmic reticulum to activate COX-2-dependent pro-inflammatory pathways via w-6
FA conversion to prostaglandins (particularly PGE;). Such activation would result in the production
of chemokines and cytokines, such as TNFx and IL-6, in tandem with our previous hypothesis for
a dichotomous role for FABP7 in AD [98]. Here, pro-inflammatory signaling further exacerbates
toxic lipid production via increased glutamate release, excitotoxicity, and ROS leading to excess lipid
droplet formation and astrocytosis, disrupting lactate coupling. Further release of toxic TAG ApoE
particles as well as enhanced amyloid secretion and aggregation tied to more glutamate leads to
neurodegeneration. We hypothesize that the wake-dependent Af and TAG release by neurons is
taken up by ApoE and trafficked to astrocytes for clearance and metabolism as a process during sleep.
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However, given SORT1 expression is not exclusive to neurons, future studies will be important to
distinguish between cell types responsible for ApoE particle trafficking, ligand uptake, intracellular
routing, nuclear signaling, and secretion events. Abbreviations: astrocyte-neuron lactate shuttle
(ANLS), beta-amyloid (Af), wild-type (wt), omega-3 (w-3), fatty acid (FA), docosahexaenoic acid
(DHA), peroxisome proliferator-activated receptor (PPAR), transcription factor EB (TFEB), mutant
(mt), omega-6 (w-6), arachidonic acid (AA), cyclooxygenase 2 (COX-2), prostaglandins E2 (PGE,),
tumor necrosis factor-alpha (TNF«), interleukin-6 (IL-6), reactive oxygen species (ROS), triacylglyc-
erol (TAG).

5. Conclusions

The manuscript highlights the critical role of the ApoE-SORT1-FABP7 axis in the
complex neurodegenerative processes underlying Alzheimer’s disease. Disruptions in
this pathway—particularly stemming from the ApoE4—impair lipid metabolism, neuroin-
flammatory regulation, and neuroprotective signaling mediated by endocannabinoids and
PPARs. The interaction between these molecular components influences sleep regulation,
neuronal-glial metabolic coupling, and amyloid pathology, thereby contributing to disease
progression. Determining the relationship between FABP7 and sleep with AD progression
remains an important area of future study. Understanding this axis offers promising av-
enues for targeted therapeutic interventions aimed at restoring lipid homeostasis, reducing
neuroinflammation, and mitigating sleep disruptions. Overall, elucidating the neural-glial
mechanisms governing the ApoE-SORT1-FABP7 pathway enhances our comprehension of
AD pathophysiology and opens potential strategies to delay or prevent neurodegeneration
in at-risk populations.
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