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Abstract: This study presents the interaction with the human host metabolism of SARS-CoV-2 ORF7b
protein (43 aa), using a protein–protein interaction network analysis. After pruning, we selected
from BioGRID the 51 most significant proteins among 2753 proven interactions and 1708 interactors
specific to ORF7b. We used these proteins as functional seeds, and we obtained a significant network
of 551 nodes via STRING. We performed topological analysis and calculated topological distributions
by Cytoscape. By following a hub-and-spoke network architectural model, we were able to identify
seven proteins that ranked high as hubs and an additional seven as bottlenecks. Through this
interaction model, we identified significant GO-processes (5057 terms in 15 categories) induced in
human metabolism by ORF7b. We discovered high statistical significance processes of dysregulated
molecular cell mechanisms caused by acting ORF7b. We detected disease-related human proteins and
their involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional
systems, in particular intra- and inter-cellular signaling systems, and the molecular mechanisms that
supervise programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. A
cluster analysis showed 10 compact and significant functional clusters, where two of them overlap in a
Giant Connected Component core of 206 total nodes. These two clusters contain most of the high-rank
nodes. ORF7b acts through these two clusters, inducing most of the metabolic dysregulation. We
conducted a co-regulation and transcriptional analysis by hub and bottleneck proteins. This analysis
allowed us to define the transcription factors and miRNAs that control the high-ranking proteins and
the dysregulated processes within the limits of the poor knowledge that these sectors still impose.

Keywords: SARS-CoV-2-ORF7b; COVID-19; interactomics; topological analysis; cluster analysis;
co-regulation network; transcription factors; microRNA; SARS-CoV-2 inter-tissue diffusion;
programmed death; SARS-CoV-2

1. Introduction

This study aims to show the effects of the ORF7b viral protein of SARS-CoV-2 on
humans, using significant experimental virus–host molecular interactions from BioGRID.
Studying protein–protein interactions that contain information and metabolic strategies
used by both the virus and its host allows us to understand functional relationships. We
performed the analysis after functional enrichment to amplify less represented biological
functions. SARS-CoV-2 encodes its genetic information in a single-stranded RNA, and
ribosomes translate it into thirty-one different proteins. Viral action occurs through interac-
tions with single human proteins or with protein complexes. To implement an effective
action, the total number of viral proteins must be adequate for that of humans. About
5000 viral particles are present in a single human cell during the peak time of infection
(the first 3–4 days), along with a concentration of about 150,000 proteins/cell necessary for
effective action, as estimated by reliable sources [1,2]. Other estimates [3,4] suggest that in

Biomolecules 2024, 14, 541. https://doi.org/10.3390/biom14050541 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom14050541
https://doi.org/10.3390/biom14050541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-0544-5100
https://orcid.org/0000-0003-3139-7672
https://doi.org/10.3390/biom14050541
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom14050541?type=check_update&version=2


Biomolecules 2024, 14, 541 2 of 52

the human cell, there are on average between two and four billion proteins, represented
by a few thousand different types [3–5], and the average lifespan of each molecule is
often measurable in a few dozen minutes. All this implies that each viral protein should
interact with a target that has a rather limited time window, but viral proteins also have
the same problem because of their turnover rate. Therefore, only a perfect knowledge of
human metabolism, deriving from a co-evolution of coronaviruses with humans and/or
mammals, can generate proteins that are effective. ORF7b is one of the smallest proteins
of the virus [6], an accessory protein of only 43 amino acids with a central alpha-helical
segment, but its function is still unknown [6,7]. In recent years, various laboratories ded-
icated their activities to the research, purification, and characterization of the physical
complexes between ORF7b2 and human proteome proteins with different methods and
technologies. BioGRID [8] has collected and cured these experimental results within the
“BioGRID COVID-19 Coronavirus Curation Project”. BioGRID curates proven protein inter-
actions between viruses and humans, and curators have classified the proteins according to
criteria of statistical reliability. They have identified 2753 physical interactions and 1708
interactors for ORF7b (accessed in July 2023). Thus, BioGRID presents an interactome of
considerable interpretative complexity for this protein [9].

2. Materials and Methods
2.1. BioGRID

It is the source of experimental interactions of SARS-CoV-2-ORF7b (Version 4.4.223
as of July 2023). (https://thebiogrid.org/4383871/summary/severe-acute-respiratory-
syndrome-coronavirus-2/orf7b.html (accessed on July 2023)). It also collects all the ex-
perimentally proven data on the interactions between the 31 SARS-CoV-2 proteins and
the human proteome. The quantitative SAINT analysis was used to identify SARS-CoV-
2 viral–host proximity interactions in human or model system cells [10–16], and those
with a Bayesian FDR ≤ 0.01 were high confidence. Scores are the sum of peptide counts
from four mass spec runs with a higher score indicating a higher degree of connectivity
between proteins.

2.2. STRING

STRING [10,17] (https://string-db.org/ (accessed on July 2023)) is a database of
known and predicted PPIs. The curated interactions are direct (physical) and indirect
(functional) associations. The interactions came from different sources (genomic context,
high-throughput experiments, co-expression, previous knowledge, etc.), which are chan-
neled into seven independent channels. In this paper, we established the PPI network
according to Version: 11.5 of the STRING database. We constructed PPI networks by map-
ping proteins to the STRING database with a confidence score of >0.9 (highest confidence)
by informing seven sources.

Protein enrichment is to some extent based on prior knowledge, and the statistical
enrichment of the annotated features may not be an intrinsic property of the input. We
used a selected set of proteins by BioGRID as functional seeds. Using Cytoscape software,
(Version 3.10.1) we visualized and analyzed PPI networks, which offer diverse plugins for
multiple analyses. Cytoscape represents PPI networks as graphs with nodes illustrating
proteins and edges depicting associated interactions.

2.3. CYTOSCAPE and Network Topology Analysis

Cytoscape [11,12] through Network Analyzer was used to analyze the topological
parameters of networks. We examined network architecture for topological parameters
such as the clustering coefficient, centralization, density, network diameter, and so on.
Our analysis included undirected edges for every network. We termed the number of
connected neighbors of a node in a network as the degree of a node. P(k) is used to
describe distributing node degrees, which counts the number of nodes with degree k where
k = 0, 1, 2, . . . We calculated the power law of the distribution of node degrees, which is

https://thebiogrid.org/4383871/summary/severe-acute-respiratory-syndrome-coronavirus-2/orf7b.html
https://thebiogrid.org/4383871/summary/severe-acute-respiratory-syndrome-coronavirus-2/orf7b.html
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one of the most crucial network topological characteristics. The coefficient R-Squared value
(R2), also known as the coefficient of determination, gives the proportion of variability in
the dataset. We also examined other network parameters, including the distribution of
various topological features. We calculated hub and bottleneck nodes based on relevant
topological parameters. By examining the PPI network, we found the top 7 hub nodes.
These nodes had higher degree values than the others and were in two central modules
that were connected and compact.

CentiScaPe is used to calculate centralities for undirected, directed, and weighted
networks. CentiScaPe [13] computes specific centrality parameters describing network
topology. These parameters assist users in locating the most important nodes within a
complex network. The computation of the plugin produces both numerical and graphical
results, facilitating the identification of key nodes even in extensive networks. Integrating
network topological quantification with other numerical node attributes can cause relevant
node identification and functional classification, as well as the topological location of
proteins in their specific cellular compartments.

2.4. Evaluation of the HUB-and-Spoke Model

Many properties of a scale-free network depend on the value of the degree exponent
of the power law γ [14]. Therefore, it is interesting to establish how network properties
vary with γ. Estimating the expected maximum degree (also known as the natural cut-off)
for a scale-free network, which represents the expected size of the largest hub, is based on
the following formula [15]:

Kmax ~ Kmin N 1/γ−1 (1)

where Kmax and Kmin are the expected maximum and minimum degrees of a node. N is
the system size in terms of the number of nodes.

2.5. Cluster Analysis

For the cluster analysis, we used the K-Means Clustering method [16]. K-Means
Clustering is an Unsupervised Learning algorithm (centroid-based clustering algorithm)
used by STRING to group the protein dataset into different functional clusters. Centroid-
based algorithms are efficient, effective, simple, and sensitive to initial conditions and
outliers. This makes it useful in handling networks. Here, for K, which defines the number
of pre-defined clusters, we used the value of 10 after various manual attempts to search the
most reliable clusters in terms of compactness, metabolic functionality, and p-value.

2.6. GO and KEGG Pathway Analyses

To better research and show the biological function of proteins, we performed GO
analysis, which included biological process (BP), cellular component (CC), and molecu-
lar function (MF). When the p-value was below 0.05, we considered the results to have
statistical significance.

2.7. Network Analyst—Comprehensive Gene Expression Profiling via Network Visual Analytics:
TFs and miRNAs

Network Analyst [18,19] interprets gene lists in a network. It enables the analysis of
results present in the network via a powerful online network visualization framework.
In protein–protein network analyses, the system also involves the existing relationships
between genes, proteins, miRNAs, and human transcription factors, creating a co-regulatory
network that is very useful for understanding the mutual relationships between these
biological actors.

Information and data used come from various sources.
For gene-miRNA interactions, we used miRTarBase v8.0. It is a database that provides

experimentally validated information on microRNA–gene interactions. It contains over
670,000 unique interactions.
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For gene-TF interactions, data for target genes were derived from ENCODE ChIP-seq-
Data. The BETA Minus algorithm was used to select only peak intensity signals < 500 and,
for interactions, predict potential regulatory scores < 1 from ENCODE ChIP-seq-Data.

For signaling, the public repository SIGNOR 2.0, where the signaling data are based
on data from the SIGnaling Network Open Resource.

RegNetwork—Regulatory Network Repository of Transcription Factor and microRNA
Mediated Gene Regulations. RegNetwork is a data repository of the following five-type
transcriptional and posttranscriptional regulatory relationships for humans and mice:

1. tF → TF.
2. TF → gene.
3. tF → miRNA.
4. miRNA → TF.
5. miRNA → gene.

This repository integrates curated regulations and the potential regulations inferred
based on the transcription factor binding sites. The transcription factor (TF) and microRNA
(miRNA) function at the transcriptional and posttranscriptional levels. It is valuable for
studying gene regulatory systems by integrating prior knowledge of the transcriptional
regulations between TF and target genes and the post-transcriptional regulations between
miRNA and targets. We can also use conservation knowledge of the transcription factor
binding site (TFBS) to link the potential regulatory relationships between regulators and
their targets. Therefore, from RegNetwork, we can query and identify the combinatorial
and synergic regulatory relationships among TFs, miRNAs, and genes [20].

2.8. Protein Intrinsic Disorder and Secondary Structure Prediction

We used two online servers, Jpred 4 and IUPred2A. Jpred is a web server that takes
protein sequences and from these, predicts the location of secondary structures using a
neural network called Jnet. It shows the prediction as a graph. IUPred2A [21,22] is a
combined web interface that allows for the identification of disordered protein regions
using IUPred2 and disordered binding regions using ANCHOR2. IUPred2A can identify
disordered protein regions by analyzing their sequence, regardless of whether they are
stable. Upon inspecting the graphic outputs of both predictive systems, we have confirmed
disordered segments in most of the examined proteins, whether viral or human, as shown
in Figures S13 and S14 of Supplements.

2.9. SARS2-HUMAN Proteome Interaction Database (SHPID)

In a single database, we collected all the files made available online by BioGRID,
containing all the curated physical interactions of the 31 SARS-CoV-2 proteins gained
through experiments in human cellular systems with viral baits, followed by purification
and characterization with mass spectrometry. These data are available as multiple zip
files comprising interactions and post-translational modifications for each single SARS-
CoV-2 protein for a total of 33,823 interactions (as of June 2023). The database therefore
contains the set of all real interactions existing between the SARS-CoV-2 proteome and
all the proteins of the human proteome. BioGRID curators have selected only physical
interactions that show a significant statistic with an F.D.R. ≤ 0.01. This means that the
probability of a false positive is always less than 1%. Therefore, our database contains all
biologically significant interactions known today between SARS-CoV-2 and its human host.
The database also contains interactions between individual viral proteins, where known.
As part of database search actions, we can ask who interacts with whom through queries
using single human or viral proteins. The search can include multiple sets of proteins.

2.10. Highlighting the Nodes of a STRING Network Involved in the Same Biological Process (GO)

STRING makes all the nodes involved in the same biological process visible, as
evidenced through its mapped databases onto proteins (GO, KEGG, REACTOME, and so
on) by activating the process itself with a click of the cursor on the process line. When
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activated, nodes within the same metabolic process show similar staining patterns. When
nodes are involved in multiple processes, they are colored multiple times. This tool is very
useful when one wants to analyze multiple nodes involved in many metabolic processes
by distinguishing the effect of different processes among nodes and identifying which
nodes represent the crossing points. If individual nodes do not show any coloration under
the effect of clicking, this identifies certain components of a path, or group, that a specific
activated process does not influence. The relationships that determine the coloring of the
nodes depend on the knowledge base that STRING organizes for a specific network by
extracting data and information from the scientific literature in PubMed.

2.11. Comparison of GO Functions in Enriched Networks

From network analysis, STRING defines the enriched biological terms using
two numerical parameters. Strength is a measure of how large an enrichment is and is
expressed as Log10 [Log10 (observed/expected)], and the False Discovery Rate (fdr) is
a measure of the statistical significance of an enrichment. The higher the strength value,
the greater the biological effect due to the genetic enrichment with an increased gene
expression, while the smaller the p-value, the greater the certainty that the event will occur.
Often, these characterizations show very different numerical values of strength and fdr.
For example, a very low value of fdr tells us that the event is very probable. But, if it is
also combined with a low strength value, it means that, despite the high probability, there
is not sufficient gene expression to implement the biological event. To decide which GO
functions, among the most probable ones, were also those with the best genetic activity, we
compared them one by one. Then, we introduced the product P, where,

P = −1[(strength value) × (log10 p-value)]

and is calculated from the STRING values to get a quick and accurate quantitative compari-
son. For example, two GO functions, one characterized by S = 0.35 and fdr = 1.0 × 10−11,
and another characterized by S = 1.9 and fdr = 1.0 × 10−6, could lead one to think that the
first is more significant. If we calculate P, we obtain 3.85 and 11.4. This tells us that the
increase in gene expression in the second case is functionally prevalent. As reported by
STRING, strength = 1 means a 10-fold genetic enrichment with an equivalent increase in
gene expression. Furthermore, all fdr values reported by STRING for its biological charac-
terizations (GO, KEGG, etc.) are always statistically consistent with values ≤ 5 × 10−2.

3. Results
3.1. Source of the Data

Fundamental experimental data supporting the role of SARS-CoV-2 in human infec-
tion continue to accumulate. BioGRID, one of the most important biomedical interaction
repositories, compiled comprehensive datasets of all physical interactions between the
proteins of SARS-CoV-2 and the human proteome through the BioGRID COVID-19 Coron-
avirus Curation Project [8,23]. Curators chose interaction data derived from purification
processes in which researchers employed physical methods like Affinity Capture–MS and
Proximity Label–MS. Interactions and molecular interactors were classified into various
levels of significance. With protein ORF7b (P0DTD8-NS7B_SARS2, UniProt), BioGRID
classified 1708 unique curated physical interactors [24–30] involved in 2753 interactions
(accessed in July 2023). Their distinctiveness lies in their ability to avoid repetition and
engage in high-confidence interactions at an impressive pace, resulting in remarkable scores
in statistical filtering. SAINT (Significance Analysis of INTeractome) express version 3.6.0
confirmed this [24–30].

3.2. Representing ORF7b Data Using Interactomes

Figure 1 shows the circular network of human ORF7b-interacting proteins calculated
by BioGRID. Since not all physical interactions flow into a real biological function, the
concentric representation of the nodes shows different levels of reliability. Therefore, we
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used the densest layers as functional seeds. The nodes selected in this study have proven
physical interaction through at least two different physical methods. The interaction was
chosen to be non-redundant and high-throughput with optimal statistical significance
between BioGRID levels 6 and 4. These options allowed us to select nodes with curated
unique interactions.
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Figure 1. Circular network of SARS-CoV-2-ORF7b and human host PPI (from BioGRID). The circle
within circle representation shows the layers closest to the center as more highly connected. BioGRID
also suggests the likelihood of direct/indirect interactions between ORF7b (in dark red) and other
viral proteins (ORF3a and M, in blue). The proteins used in the present analysis are among those in
the most densely represented central area.

In Figure S1 (Supplementary Materials), we show an ARBOR representation of the
network calculated by BioGRID with a minimum evidence value of 4, which illustrates
the level/association relationships very well. An interactome shows the one-to-one map-
ping of all interactions, which turns the interactome into an information system [31].
The goal is to decode the functional information of this biological map, the macroscopic
properties of which are unpredictable and emergent properties of the system [32,33]. Its
inherent complexity makes it difficult, if not impossible, to decode individual hidden
molecular information. The datasets curated by BioGRID for each SARS-CoV-2 protein
represent suitable starting material. The list of 75 ORF7b interactors with significant levels
ranging from 6 to 4 is available in Table S1. Through the STRING platform [34], we cal-
culated the corresponding interactome (Figure S2 in the Supplementary Materials) with
a score of 0.9 and with all seven data source channels active, to gain as much informa-
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tion as possible. But the graph showed 54 unconnected proteins (72%). So, we added
500 first-order proteins to enrich the interactome and increase the functional relationships
(Figure S3 in the Supplementary Materials). In this new graph, we also eliminated some
parental proteins that were still disconnected, leaving 51 final parental proteins that were
the basis of our enriched interactome. Network pruning helps eliminate artifacts caused
by noisy information [35], while enrichment helps amplify those biological processes that
are difficult to define because of their poor representation. Figure 2 shows the interactome
obtained after pruning and enrichment. The interactome now appears compact, with
all nodes connected. Proteins that share similar functional information should appear
as compact sets of nodes and edges (sub-graphs) that perform one or more macroscopic
functions. Sub-graphs contain molecular partners that have relational links and perform
similar functional activities. Analyzing metabolic processes with Gene Ontology or KEGG
allowed us to evaluate the increase in functional annotations.
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represent specific functional modules or even particular protein complexes. The network was
calculated by STRING, and the score is 0.9. The number of edges is greater than the number of nodes
in a similar random network we calculated (PPI enrichment p-value < 1.06 × 10−16). The topological
parameters are shown in Table 1.

Many rather compact peripheral modules with a large and very compact central
module characterize this interactome. The peripheral modules suggest functional protein
complexes. For example, the module at the top of the figure contains a high abundance of
ribosomal subunits and is close to many proteins belonging to the translocon complex. The
complex on the right is rich in ATPase subunits characteristic of the proton-transporting
vacuolar protein pump (V)-ATPase, required for the acidification of secretory vesicles.
These complexes represent the set of metabolic machinery necessary for normal cellular
life. Surprisingly, the large central component shows intra-connected nodes representing a
significant fraction (37%) of the network’s nodes. Components with these characteristics
are called Giant Connected Components (GCCs) [36]. This type of component is often
present in scale-free networks, in which it is an important substructure. GCCs control the
topological growth of the network and thus its evolution [37]. Its capacity to aggregate
new nodes and functions makes it a very compact system with a notable increase in the
interaction turnover rate of new proteins [37].

We demonstrate this compactness in Table S2 and Figure S4 (in the Supplementary
Materials). The figure shows the distribution graph of the mean shortest paths as a function
of the degree of the single nodes. The 30 nodes with the highest ranks, i.e., with the greatest
connectivity in the network, are those with the lowest average shortest path length. These
nodes are all concentrated in the GCC. Thus, this network has a “giant component”, where
almost every node is reachable from almost every other node in the GCC through a dense
net of interactions. New nodes will join the GCC in a non-linear and unpredictable way
to create biological functions, as the GCC is a set of very functionally attractive metabolic
nodes. This helps create the set of functions of this metabolic module [37]. As the network
grows, the giant component will continue to incorporate a significant fraction of incoming
nodes. This means that we should find the main and crucial functional activities integrated
into this subgraph.

Table 1. Topological parameters calculated for the interactome of Figure 2.

Summary Statistics of the Network * Notes

Number of nodes 551

Number of edges 4648 **

Avg. number of neighbors 16,871 Average connectivity of the nodes

Network diameter 9

Characteristic path length 3.666

Clustering coefficient 0.549 0 ≤ C ≤ 1

Network density 0.031

Network heterogeneity 1.057 Tendency to contain hub nodes

Network centralization 0.259 The extent to which certain nodes are far more
central than others

Connected component 1 ***

(*) Calculated by Cytoscape Network Analyzer, which computes a comprehensive set of topological
parameters [38,39]. (**) Most nodes (77%) with a score of 0.9 contain a very large component of the scien-
tific information necessary to calculate the interactions that derive from the Text Mining channel with only a
partial presence of data coming from the Experiments channel. However, only 15.7% of the edges show a full score
of 0.9, deriving from the “Experiments” channel alone, proving that their interactions are experimental. (***) This
value is “1” to show that all nodes in the network are connected to each other. Existing unconnected components
(CC > 1) alter the calculations of the topological parameters, making them unreliable. This is the fundamental
reason for pruning. A single component accounts for strong network connectivity. Calculation by Cytoscape.
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3.3. Principal Characteristics of the Interactome

We transferred the interactome to Cytoscape [38] and analyzed it with the help of
CentiScaPe (v2.2), Analyze Network [39], and STRING-app [11,40], which generated a table
of nodes containing various columns with the quantitative values of many topological and
functional parameters. This allowed for the evaluation of characteristic topological and
functional features for each node of the interactome.

By examining the value of parameters in Table 1, we can deduce that we are consid-
ering a network composed of many independent and compact peripheral modules that
interact with few connections between them, although these connections are crucial. The
large diameter, network heterogeneity, and low density are all topological parameters that
suggest low connectivity and functional independence [41], which is also supported by the
discontinuities between the sub-graphs and the central core. In particular, a large diameter
suggests a wide system with peripheral components quite distant from the central module.
The shortest average path length, which gives the mean distance between two connected
nodes in the modules, should be a metabolic advantage because small average lengths
minimize transition rates between metabolic states in response to external stress. The
clustering coefficient also supports this topology. It is a basic index for local density in a
network and is a measure of the degree to which nodes in a graph group together. It takes
values of 0 ≤ C ≤ 1; thus, a value of 0.549 shows a tendency to form clusters, where each
node shows an average of 16.817 neighbors. This coefficient of aggregation, according to
Barabasi [42], decreases with an increase in nodes.

The function used for the fit is f(x) = a xb, where the values of a, b, and R2 are 0.29,
−1.89, and 0.62. The significant p-value of 1.0 × 10−16 from the interactome analysis and
the good correlation index underscore a strong expectation of preferential relations or
associations among nodes following their enrichment.

Figure 3 shows the characteristic power distribution of nodes of a scale-free network [37],
where the vast majority of nodes have very few connections and only a few (HUBs) have a
very large number of connections. This distribution is a distinctive feature of biological
networks, regardless of the experimental approach [43], and is important for understanding
the behavior of the system. In these networks, the number of nodes necessary to control the
entire system is reduced to a minimum, improving functional speed and providing better
control of the system [44,45]. Our interactome has an absolute gamma value of 1.89, which
favors the formation of large topological modules (GCCs). A topological module represents
an area of the network that is densely packed with nodes and links, where nodes have a
greater tendency to connect to nodes in the same area than to nodes located outside the
area itself. In this scenario, high-degree nodes are the most attractive. Their acquisition rate
is faster than the growth of the network in terms of the number of nodes it contains. Here,
the dynamic is “winner-takes-all”. This feature is often based on a topological organization
of the main nodes of the hub–spoke-type, where all these nodes are located within a short
distance to each other [46,47].

In the figure, we highlight the seven HUB nodes (EGFR, SRC, PIK3R1, PIK3CA, GRB2,
and HRAS) that have superior ranks compared with all the others, also remembering
that the GCC includes the top 30 nodes with the highest ranks. Hub nodes model the
architecture of metabolic modules. EGFR, which serves multiple critical functional roles in
the cell, is the highest degree interactomic hub node because of its exceptional capacity for
PTMs (see Figure S5).

We need alternative information to prove the accuracy of our observations and hy-
potheses and to decode the information considering the actual functional activities in which
ORF7b2 is involved. The following tables show the most significant information obtained
from GO analyses. To assess the importance of each functional property, we use the p-value
as the evaluation criterion [5] for the main significant processes. STRING calculated the
tables with the methods and techniques of GO analysis.
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3.4. Quantitative Evaluation of the Biological Functionalities in the Interactome

Table 2 shows the overall picture of the many functional activities performed by the
entire network. Over 10,000 significant PubMed publications were used to provide coherent
information on the 5057 functional terms. STRING calculated the entire interactome
using this knowledge base. This assures us that the functional relationships taken into
consideration are very robust and that the pruning operation reflected real knowledge
gaps in the considered node properties. The spectrum of biological activities induced by
ORF7b2 appears broad in 15 categories and, therefore, it is difficult to define and study. We
evaluated and selected the functional activities from time to time, as each of the 5057 terms
reported in Table 2 has a statistical value (p-value) that is always less than 0.05, ensuring
their significance. In this study, we tried to provide a comprehensive view of the metabolic
and molecular activity induced by ORF7b. Future studies will try to go into more detail.

Table 3 shows the most significant biological functions (GO biological processes)
among the 1690 related to the human proteome following the action of ORF7b. The
principal activities involve the control of intracellular transport, also by vesicles, and
the control of their localization in the cell. The set of cellular processes includes the
transportation, binding, and holding of a protein complex or organelle in a specific position.
A transporter or group of transporters facilitates the directed movement of molecules
or cellular complexes into or out of a cell, or between cells, to effect transmembrane,
microtubule-based, or vesicle-mediated transport. A significant value ranging from a
p-value of 1.0 × 10−77 down to 0.05 marks all 1690 activities. Enzymes and signaling
pathway receptors also appear to be possible prime targets, considering the large number
of human proteins involved. In particular, the series of molecular signals started with an
extracellular ligand binding to a receptor with tyrosine kinase activity on the surface of
the target cell and ended with regulating a downstream cellular process. The statistical
significance of these biological actions is very high, as is the number of proteins involved.
However, the table shows a comprehensive picture of 1650 functional activities that belong
to both the virus and the cell in performing their respective strategies of attack or defense.
A part of these activities also refers to the basal metabolic activities required to maintain
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normal vital functions (housekeeping functions). As we will see later, it is possible to
extract the specific activities of the virus.

Table 2. Functional activities and structural characteristics highlighted by STRING for the interactome
of Figure 2.

Action Enriched Terms

Biological process (Gene Ontology): 1690 GO terms
Molecular function (Gene Ontology): 166 GO terms
Cellular component (Gene Ontology): 267 GO terms

Reference publications (PubMed): >10,000 publications
Local network cluster (STRING): 137 clusters

KEGG pathways: 195 pathways
Reactome pathways: 494 pathways

WikiPathways: 259 pathways
Disease–gene associations (DISEASES): 112 diseases

Tissue expression (TISSUES): 186 tissues
Subcellular localization (compartments): 249 compartments significantly

Human phenotype (Monarch): 1002 phenotypes
Annotated keywords (UniProt): 99 keywords

Protein domains (Pfam): 63 domains
Protein domains and features (InterPro): 118 domains

Protein domains (SMART): 20 domains
All enriched terms (without PubMed): 5057 enriched terms in 15 categories

Table 3. Biological Functions.

GO Term ID Term Description Number of Involved Proteins p-Value

GO:0051179 Localization 378 2.01 × 10−77

GO:0006810 Transport 320 3.04 × 10−67

GO:0007169 Transmembrane receptor protein tyrosine kinase
signaling pathway 124 1.23 × 10−66

GO:0051234 Establishment of localization 322 7.72 × 10−66

GO:0015833 Peptide transport 187 1.09 × 10−62

GO:0051649 Establishment of localization in cell 230 3.37 × 10−62

GO:0051641 Cellular localization 254 1.29 × 10−60

GO:0015031 Protein transport 181 7.86 × 10−60

GO:0007167 Enzyme-linked receptor protein signaling pathway 131 7.95 × 10−59

GO:0008104 Protein localization 213 1.46 × 10−58

GO:0045184 Establishment of protein localization 183 2.85 × 10−58

GO:0016192 Vesicle-mediated transport 189 1.18 × 10−53

GO:0032879 Regulation of localization 229 2.95 × 10−51

GO:0009987 Cellular process 546 4.49 × 10−51

GO:0046907 Intracellular transport 168 1.19 × 10−49

Table 4 depicts the location in the cell where the most statistically significant functional
activities (as presented in Table 3) occur. Many cell membranes, the cytoplasm, as well as
protein complexes, are metabolically involved. Of particular interest is the significant activ-
ity performed by the SNARE complex, which is involved in driving vesicles and endosomes
toward the correct cellular target and also provides the correct docking. SNARE proteins
(SNAp REceptor, i.e., Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins) are
a family of cytosolic proteins involved in vesicular fusion with the target membrane during



Biomolecules 2024, 14, 541 12 of 52

intracellular transport and exocytosis [48]. SNAPs interact with proteins of the SNARE
complex during the recycling of the fusion complex components [49]. We know that inter-
ference with the function of SNAP proteins is associated with many pathological processes,
such as colorectal cancer [50], epilepsy [51], and Huntington’s disease [52]. However, it is
the post-translational process by which a PTM protein (a proteoform) trans-locates from
the ER to its final destination, which drives function. This process also includes tethering
and docking steps that prepare vesicles for fusion.

Table 4. Cellular localization of biological functions.

GO Term ID Compartment Number of Involved Proteins p-Value

GOCC:0016020 Membrane 399 2.58 × 10−92

GOCC:0012505 Endomembrane system 302 1.36 × 10−91

GOCC:0031090 Organelle membrane 243 2.07 × 10−77

GOCC:0098796 Membrane protein complex 189 7.35 × 10−74

GOCC:0005737 Cytoplasm 437 1.41 × 10−73

GOCC:0031982 Vesicle 213 5.13e × 10−62

GOCC:0098588 Bounding membrane of organelle 174 3.17 × 10−58

GOCC:0005783 Endoplasmic reticulum 133 6.29 × 10−55

GOCC:0098805 Whole membrane 156 1.76 × 10−53

GOCC:0110165 Cellular anatomical entity 531 2.59 × 10−51

GOCC:0005789 Endoplasmic reticulum membrane 105 4.93 × 10−51

GOCC:0042175 Nuclear outer membrane–ER membrane network 106 1.79 × 10−50

GOCC:0031410 Cytoplasmic vesicle 177 1.29 × 10−49

GOCC:0032991 Protein-containing complex 306 4.76 × 10−44

GOCC:0043226 Organelle 437 1.20 × 10−41

GOCC:0043227 Membrane-bounded organelle 406 5.80 × 10−41

GOCC:0005622 Intracellular 462 8.33 × 10−38

GOCC:0043229 Intracellular organelle 407 4.82 × 10−34

GOCC:0005829 Cytosol 201 2.18 × 10−32

GOCC:0005886 Plasma membrane 220 3.75 × 10−30

GOCC:0031201 SNARE complex 34 3.79 × 10−30

GOCC:0043231 Intracellular membrane-bounded organelle 349 6.22 × 10−30

Table 5 (Reactome) shows the most statistically significant molecular mechanisms in
which ORF7b might involve the human proteome. It contains biomolecules that perform
precise metabolic and signaling activities and their relationships, which are organized into
biological pathways. Beyond the various interferences on important metabolic pathways,
it is interesting to note the metabolic functions shown, such as nervous system develop-
ment, immune system, infectious disease, hemostasis, innate immune system, platelet
activation, insulin receptor signaling, viral mRNA translation, and cell–cell communica-
tions. Although these vital metabolic functions have high statistical significance, it is of
great significance that the parallelism with the known clinical effects of COVID-19 on
the human organism [53,54] is not overlooked. In fact, they represent significant areas of
virus interaction.
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Table 5. Reactome.

Term ID Molecular Mechanism Number of Involved
Proteins p-Value

HSA-9006934 Signaling by receptor tyrosine kinases 140 4.44 × 10−84

HSA-1643685 Disease 189 2.66 × 10−63

HSA-422475 Axon guidance 101 6.79 × 10−45

HSA-9675108 Nervous system development 103 6.79 × 10−45

HSA-168256 Immune system 176 6.06 × 10−41

HSA-5663205 Infectious disease 115 6.30 × 10−41

HSA-162582 Signal transduction 204 2.84 × 10−37

HSA-5653656 Vesicle-mediated transport 95 2.70 × 10−34

HSA-199991 Membrane trafficking 92 5.34 × 10−34

HSA-392499 Metabolism of proteins 163 3.25 × 10−33

HSA-109582 Hemostasis 89 1.02 × 10−32

HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 45 2.19 × 10−31

HSA-168249 Innate immune system 111 1.33 × 10−30

HSA-1227986 Signaling by ERBB2 35 2.43 × 10−30

HSA-74752 Signaling by insulin receptor 38 5.77 × 10−29

HSA-177929 Signaling by EGFR 33 5.40 × 10−28

HSA-4420097 VEGFA-VEGFR2 pathway 39 5.35 × 10−27

HSA-202733 Cell surface interactions at the vascular wall 42 3.19 × 10−25

HSA-76002 Platelet activation, signaling, and aggregation 52 4.89 × 10−24

HSA-6811558 PI5P, PP2A, and IER3 regulate PI3K/AKT signaling 37 5.16 × 10−24

HSA-5683057 MAPK family signaling cascades 52 1.19 × 10−20

HSA-5684996 MAPK1/MAPK3 signaling 49 1.37 × 10−20

HSA-77387 Insulin receptor recycling 21 1.07 × 10−19

HSA-192823 Viral mRNA translation 27 1.54 × 10−16

HSA-1500931 Cell–cell communication 30 1.91 × 10−15

The spectrum of possible viral interference might also involve intracellular transport
mechanisms and cell–cell communications. Many of these “actions” have a deep impact
on human biology and inter-organ signaling, according to recent research on the effects
of COVID-19 on the human organism [55,56]. In particular, we relate the most significant
one to signaling by receptor tyrosine kinases (RTKs), a family of proteins that act as cell
surface receptors for various factors, such as cytokines and hormones. These receptors
control many cellular processes and also have a crucial role in the development and
progression of many types of cancer [57,58]. It is also interesting to highlight the high
significance of this interactome in some activities, such as “cell surface interactions on the
vascular wall”, “platelet activation”, “insulin receptor recycling”, “viral mRNA translation”,
and “cell–cell communication”.

By using proteins involved with ORF7b, we extracted relevant activities in this in-
teractome from the human proteome. The symptoms of patients with COVID-19, includ-
ing thrombophilic alterations [59], hyperglycemia [60], and systemic spread of infected
cells [61], may not be independent, as their underlying mechanisms, as found in Reactome,
all appear to involve ORF7b, which may be the underlying cause.
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The number of human tissues and organs that are potential targets of ORF7b is also
staggering. Table 6 shows these tissues/organs, which are important constituents of the
human body through many cell types.

Table 6. Human tissues involved with ORF7b.

TERM ID Human Tissues Involved with ORF7b Number of Involved Proteins p-Value

BTO:0000345 Digestive gland 233 4.73 × 10−56

BTO:0001491 Viscus 322 1.59 × 10−54

BTO:0001489 Whole body 504 2.18 × 10−45

BTO:0000522 Gland 356 2.76 × 10−45

BTO:0000759 Liver 178 2.17 × 10−44

BTO:0001488 Endocrine gland 323 1.15 × 10−37

BTO:0003091 Urogenital system 341 3.03 × 10−36

BTO:0000227 Central nervous system 303 1.41 × 10−35

BTO:0001484 Nervous system 307 3.23 × 10−35

BTO:0000449 Fetus 125 1.68 × 10−32

BTO:0001078 Placenta 119 1.40 × 10−30

BTO:0000081 Reproductive system 308 5.01 × 10−30

BTO:0003099 Internal female genital organ 183 5.01 × 10−30

BTO:0000174 Embryonic structure 159 7.75 × 10−28

BTO:0000203 Respiratory system 127 9.81 × 10−28

BTO:0000083 Female reproductive system 292 1.71 × 10−27

BTO:0000089 Blood 136 1.39 × 10−26

BTO:0000570 Hematopoietic system 172 6.39 × 10−26

BTO:0000763 Lung 105 3.59 × 10−23

BTO:0000988 Pancreas 72 6.06 × 10−23

BTO:0000431 Excretory gland 106 8.44 × 10−21

BTO:0003092 Urinary system 97 3.43 × 10−19

BTO:0001244 Urinary tract 97 4.17 × 10−19

BTO:0000671 Kidney 86 5.49 × 10−19

BTO:0001129 Prostate gland 58 8.08 × 10−19

BTO:0000132 Blood platelet 50 2.81 × 10−18

BTO:0000511 Gastrointestinal tract 116 4.50 × 10−17

BTO:0000131 Blood plasma 51 1.46 × 10−16

BTO:0000574 Hematopoietic cell 77 1.21 × 10−14

BTO:0000082 Male reproductive system 148 3.21 × 10−14

BTO:0000751 Leukocyte 72 3.31 × 10−14

BTO:0000080 Male reproductive gland 138 6.39 × 10−13

BTO:0000254 Female reproductive gland 145 7.61 × 10−12

BTO:0005810 Immune system 96 3.68 × 10−11
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Table 6. Cont.

TERM ID Human Tissues Involved with ORF7b Number of Involved Proteins p-Value

BTO:0003096 Internal male genital organ 122 4.92 × 10−11

BTO:0000088 Cardiovascular system 70 4.40 × 10−10

BTO:0000421 Connective tissue 63 1.19 × 10−09

BTO:0000439 Eye 59 1.33 × 10−09

BTO:0000706 Large intestine 54 1.57 × 10−09

BTO:0000202 Sense organ 69 1.98 × 10−09

BTO:0000855 Lymph 25 4.56 × 10−09

BTO:0001085 Vascular system 38 9.90 × 10−09

BTO:0001424 Uterus 67 1.11 × 10−08

BTO:0000269 Colon 46 3.05 × 10−08

BTO:0001363 Testis 85 2.48 × 10−05

These tissues/organs share many of the described metabolic activities to varying
degrees. Therefore, even if not all, they are potential targets of the virus where it finds
optimal metabolic conditions for its replication [62]. The need to expand the list of terms in
this table arises from the need to show the many target tissues of the virus with significant
potential. It is amazing how a tiny protein like ORF7b could induce such a wide effect.
This also means that the protein appears to be an authoritative candidate for altering the
molecular mechanisms that keep cells in contact with each other [63–65]. Dysregulating
these mechanisms might free the cells to spread without a programmed death [66,67].

This table shows a long list of the various organs in the abdominal cavity that are
potential targets of the action of this protein and validates the clinical observations that
COVID-19 is a systemic disease. The high statistical values suggest the enormous potential
of the strategy implemented by SARS-CoV-2 in attacking the human body. Some objectives
are of particular interest. The nervous system (central and peripheral), human reproductive
system (male and female), placenta and fetus, blood, and hematopoietic system should
alert us to the consequences encountered in long COVID. Long COVID is associated with
symptoms that suggest including these specific organs and tissues as well.

Another significant index to consider is the large number of proteins taking part in
various functional activities, as stated in the tables discussed earlier. Considering the
finite number of proteins in the interactome and the large number of them involved in
many different metabolic activities, this suggests that there is a high probability that single
proteins may be involved in numerous functions. But all this also suggests that, with
viral infection, a single human protein can perform many functional activities, some for
the benefit of the cell and others for the benefit of the virus. KEGG pathways can infer
higher-level functions and metabolic utilities of the human system from genomic and
proteomic data. It groups genes and/or proteins into “pathways” as lists of genes/proteins
taking part in the same metabolic process. Thus, KEGG is very useful for computational
analyses, including metabolic modeling and simulation according to systems biology, and
translational research in disease development. The KEGG results show a wide range of
activity. More space would be required to highlight the breadth and diversity of many of the
responses (195 pathways) and their statistical significance. However, we included the most
probable in Table 7. These pathways reflect precise connections with the functions reported
in the previous tables, which identify and endorse their metabolic roles. We identified the
most significantly represented functions, but we could not at this stage establish a direct
correlation to viral activity.
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Table 7. Most significant KEGG pathways in the human interactome induced by ORF7b.

Pathway Description Number of Involved Proteins p-Value

hsa04012 ErbB signaling pathway 50 3.02 × 10−41

hsa04510 Focal adhesion 64 2.27 × 10−40

hsa01521 EGFR tyrosine kinase inhibitor resistance 46 4.29 × 10−38

hsa04151 PI3K-Akt signaling pathway 74 1.16 × 10−36

hsa04141 Protein processing in ER 55 1.44 × 10−35

hsa04015 Rap1 signaling pathway 51 3.72 × 10−28

hsa04014 Ras signaling pathway 52 3.76 × 10−27

hsa05206 MicroRNAs in cancer 45 1.48 × 10−26

hsa04935 Growth hormone synthesis, secretion action 40 3.80 × 10−26

hsa04130 SNARE interactions in vesicular transport 27 1.38 × 10−25

hsa04062 Chemokine signaling pathway 45 2.35 × 10−24

hsa04145 Phagosome 40 9.33 × 10−24

hsa04360 Axon guidance 43 2.15 × 10−23

hsa04072 Phospholipase D signaling pathway 39 2.11 × 10−22

hsa04917 Prolactin signaling pathway 30 2.84 × 10−22

hsa04150 mTOR signaling pathway 39 4.38 × 10−22

hsa04810 Regulation of actin cytoskeleton 42 3.07 × 10−20

hsa01522 Endocrine resistance 31 4.10 × 10−20

hsa04915 Estrogen signaling pathway 35 4.10 × 10−20

hsa04722 Neurotrophin signaling pathway 33 4.29 × 10−20

hsa04919 Thyroid hormone signaling pathway 32 9.72 × 10−19

hsa04664 Fc epsilon RI signaling pathway 26 1.16 × 10−18

hsa04010 MAPK signaling pathway 45 5.16 × 10−18

hsa04721 Synaptic vesicle cycle 26 1.05 × 10−17

hsa04660 T cell receptor signaling pathway 29 1.05 × 10−17

hsa04662 B cell receptor signaling pathway 26 2.90 × 10−17

hsa04650 Natural killer cell-mediated cytotoxicity 30 7.46 × 10−17

So far, we examined the spectrum of functional/molecular activities present in an
infected cell and, in particular, those involved by ORF7b. Once we define the principal func-
tions, we will highlight which single proteins favor the virus by “playing a double game”.

3.5. Exploring the Physical Basis of Cytoskeletal Alterations Caused by ORF7b

The propagation of a virus to uninfected cells makes up a crucial phase in its life
cycle, achieved by liberating novel viral particles from the infected cell. The ability of
ORF7b to induce changes in the cytoskeleton that could promote the spread of infected
cells is not coincidental. As we previously discussed, these changes seem to derive from
dysregulations induced at the cytoskeleton level. These results, however, suggest different
biological events from those already known, not only the spread of viral particles after cell
rupture but also the spread of all the infected cells to distant tissues, like that observed in
tumor metastases. Therefore, this aspect needs greater attention. The key processes for
modifications of the cell membrane, or that of cellular compartments, should pass through
direct deformations caused by specific proteins that interact with the membrane [68] or even
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through indirect deformation by the cytoskeletal structures [69]. Therefore, the cytoskeleton
is one of the key driving forces, having a close association with these events [70].

Unfortunately, understanding the influence of these molecular processes on the physi-
cal structure of the membrane is still an unsolved challenge, despite a slight improvement
in our understanding of the underlying physical basis. Until now, it has been difficult to
quantify the forces present in living cells within these processes. However, we now have a
first, albeit crude, quantitative understanding of force production and distribution at the
molecular level using clathrin-mediated endocytosis as a model [68,69]. During endocyto-
sis, the actin cytoskeleton generates forces that are transmitted to the plasma membrane
through a multi-protein coat, leading to membrane deformation. Although the exact extent
of these forces remains uncertain, we can highlight a phenomenon of accumulation and
redistribution of force within the endocytic mechanism. This has led to the widespread
belief that the EPNs and Hip1R proteins transmit the force generated by the assembly of
the actin to the plasma membrane [71,72]. As both protein types also attach to clathrin and
other coat proteins, it is plausible that transmitting forces to the membrane might occur
through multiple pathways [73,74].

However, we know which eukaryotic genes/proteins engage in these processes,
serving as either components or regulators of the cytoskeleton, while an intricate in-
terplay between lipids and proteins controls membrane remodeling during intracellular
trafficking [75]. Noteworthy examples include MTOR, CTNNA1 (alpha 1 catenin), CTTN
(cortactin), ITGBs (integrins), CDH1, CDH2 (cadherins), ACTB (actin B), and EPNs (Epsin
family). A review of the interactome in Figure 2 identifies all eight proteins and various
members of their families (please also refer to the accompanying Excel file for the com-
prehensive list and node degrees). This observation drew our attention to the intriguing
possibility regarding the potential involvement of specific human proteins, in particular,
those associated with cytoskeletal modifications and negative regulation processes, in the
mechanism of SARS-CoV-2 spread to non-infected cells and tissues. We used these proteins
as seeds to tease out their functional relationships within the human proteome. Figure 4
illustrates the specific and close relationships among them during their involvement in the
processes that impact the organization of the cytoskeleton. We used a specific feature of
STRING to highlight and color the proteins involved in the same biological process (see
Material and Methods, Section 2.10).

The network comprises all the human proteins involved in cytoskeleton dynamics.
Since they are all reported in BioGRID as interacting, this suggests direct physical and/or
functional associations. Within the high-ranking group, proteins such as ACTB contribute
to a single dysregulated process (one color), while proteins like MTOR manage multiple
dysregulated processes (various colors). However, these interactions imply that SARS-
CoV-2 exploits the host cell’s proteins involved in processes regulated by CDH1, CDH2,
EPN1, EPN2, CTNNA1, ITGB1, MTOR, ACTB, CTNNA1, and CTTN. This affects cellular
functions related to cell adhesion, signaling pathways, cytoskeletal organization, and
programmed death through the Viral Hijacking of Cellular Machinery. But these specific
interactions also suggest potential roles for these cellular proteins in stages of the viral
life cycle. In fact, their presence shows that these host proteins contribute to SARS-CoV-
2 infection dynamics and pathogenesis, thus becoming appropriate therapeutic targets.
However, further observations are important. Structural models of protein interfaces
and the potential impact of post-translational modifications are crucial to understanding
molecular mechanisms based on interactions because alteration of these characteristics
might change protein–protein interactions and related biological functions. Many of the
cytoskeletal proteins possess disordered structural domains and many phosphorylation
sites. MTOR, serine/threonine protein kinase, in the presence of RPTOR (Regulatory-
associated protein of mTOR) and RICTOR (RICTR, Rapamycin-insensitive companion
of mTOR), and through mTORC1 and 2 complexes, controls the phosphorylation of at
least 800 proteins, and the actin cytoskeleton is MTOR-sensitive [76,77]. DEPTOR (DEP
Domain Containing MTOR Interacting Protein) is a negative regulator of TOR signaling
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and the mTORC1 and 2 pathways, inhibiting the activity of both complexes [78,79]. This
leads to negative regulation of cell size and negative regulation of protein kinase activity.
MTOR, DEPTOR, RICTOR, and RPTOR are all part of the interactome and communicate
extensively. Thus, the relationships among them validate the various dysregulations in
Figure 4 and Table 8. A last consideration is that another viral protein also interacts with
the cytoskeleton. It is the N protein, which plays various roles in the life cycle of the
coronavirus [80]. We should emphasize that the N protein has a physical interaction with
ACTB [81], resulting in cytoskeleton manipulation similar to other viruses (see also Table 5).
We mention the N protein because it plays a role in the formation of liquid droplets, which
is an overlooked aspect of this virus.
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Table 8. Dysregulated processes related to the cytoskeleton.

GO Biological Process Description P Strength fdr Color

GO:2001237 Negative regulation of extrinsic apoptotic signaling pathway 8.05 1.18 6.60 × 10−6

GO:0051129 Negative regulation of cellular component organization 7.23 0.76 3.79 × 10−9

GO:2000811 Negative regulation of anoikis 7.00 1.58 2.70 × 10−4

GO:0043069 Negative regulation of programmed cell death 6.66 0.70 3.24 × 10−9

GO:0060548 Negative regulation of cell death 6.50 0.67 4.93 × 10−9

GO:0048519 Negative regulation of biological process 5.62 0.39 2.67 × 10−14

GO:0043066 Negative regulation of apoptotic process 5.54 0.69 1.09 × 10−8

GO:0023057 Negative regulation of signaling 5.13 0.58 7.04 × 10−8

GO:0010648 Negative regulation of cell communication 5.11 0.58 6.42 × 10−8

GO:0031333 Negative regulation of protein-containing complex assembly 4.56 0.95 6.40 × 10−4

GO:0010507 Negative regulation of autophagy 4.42 1.10 4.50 × 10−4

GO:0032369 Negative regulation of lipid transport 4.23 1.39 1.10 × 10−3

GO:2001234 Negative regulation of apoptotic signaling pathway 3.74 0.85 2.50 × 10−4

GO:1902904 Negative regulation of supramolecular fiber organization 2.80 0.89 1.40 × 10−3

GO:0051494 Negative regulation of cytoskeleton organization 2.77 0.90 1.20 × 10−3

GO:0007162 Negative regulation of cell adhesion 2.19 0.75 1.20 × 10−3

In Figure 4, the Table on the right side shows the nodes with the highest degree. In the
table, we also report CDH2, CTNNA1, and EPN1 to show all seeds. The number of colored
segments of each protein node shows the dysregulated processes in which it is involved, as
shown in Table 8.

We can conclude that the interaction between the SARS-CoV-2 ORF7b protein and
host cell proteins, especially those involved in cytoskeletal modifications, plays a role in
the virus’s ability to propagate infected cells to target distant tissues. Structural disarrange-
ments or metabolic dysregulations induced at the cytoskeleton level impact a cell’s ability
to counteract viral infection, aiding in viral spread or facilitating intracellular transport of
viral components, thus contributing to its long-distance diffusion.

3.6. Topological Analysis

When a virus infects a cell, viral proteins represent the attackers and seek vulnera-
bilities in the network. Vulnerabilities introduce uncertainties into the network as a loss
of original metabolic performance, even by changing information flows. Examining the
network topology allows us to study both vulnerability and functional uncertainty and
to seek any architectural or functional changes. Pathways that cross between metabolic
pathways or between signaling pathways are among the most vulnerable topologies, while
hub-and-spoke topologies have the least uncertainty in destabilization. Therefore, topo-
logical data analysis is a powerful biological network analytic method [46]. To extract
meaningful information from interactomic data, it is essential to understand the correlation
between topological parameters and the mechanisms of biological functions [82]. Centrality
metrics measure prizing nodes by attempting to quantify the idea that some nodes are
more “important” than others.

We can divide topology scoring metrics into two groups including a local one to
evaluate individual nodes and a global one to evaluate the network. Global metrics
include betweenness, bottleneck, eccentricity, closeness, radiality, stress, and more. It is
a useful methodological approach to increase the efficiency in selecting, characterizing,
and classifying crucial proteins as both hub and/or bottleneck proteins. In particular,
bottlenecks are key link proteins, almost always not HUBs, but hard-to-discover essential
proteins that control and regulate metabolic crossovers. Being intermediate (bottleneck) in



Biomolecules 2024, 14, 541 20 of 52

regulatory networks indicates functional essentiality, which is often more significant than
being a hub for understanding information flow.

Eigenvector centrality measures the transitive influence of nodes. Relationships origi-
nating from high-scoring nodes contribute more to a node’s score than connections from
low-scoring nodes. A high eigenvector score of a node indicates its connection to multiple
nodes with high scores. Figure 5 (top) shows the distribution analysis of the eigenvectors.
The graph shows that the eight highest values have a degree value matching that of the
selected eight hub nodes, showing that all hub proteins also have the highest eigenvector
scores. Stress is an index of node centrality. It represents the number of the shortest paths
passing through a node. A high-stress node is a node traversed by a very large number
of the shortest paths. In an interactomic network, it shows the relevance of a protein in
keeping communicating nodes together. We can consider such a protein as a “bottleneck”
protein [83–85]. The higher its value in the network, the more relevant the protein is in
linking regulatory proteins of different pathways. However, because of the parametric
significance of this index, it is sometimes possible that stress shows a molecule that is only
involved in many cellular processes but not relevant for maintaining communication among
other proteins [86]. Figure 5 (middle) shows the stress distribution analysis where SEC13,
EGFR, MTOR, HSPA5, VAMP2, and SRC are the major stress proteins. Betweenness [82]
is also an index of node centrality, similar to stress, but with more information. It is a
measure to rank the relative importance of vertices or edges. It represents the total number
of non-redundant shortest paths connecting a pair of nodes, i.e., a1 and a2, crossing the
node a. The betweenness value of a node increases if it lies on a non-redundant shortest
path between nodes a1 and a2. Therefore, a high betweenness score characterizes a key
node in maintaining connections, and this type of node becomes the critical point that
controls the communication among other distant nodes in the network. In biological terms,
it characterizes the interactivity of a protein in an interactome, showing the protein’s ability
to link distant proteins. Thus, betweenness is a measure of how important the node is to
the flow of information through a network. This feature of the node in a protein signal-
ing network may also show the potential of the protein to act as a bottleneck. It acts as
a junction connecting metabolic pathways that can hold the communicating proteins of
different pathways together. The higher the value, the greater the potential of the protein
as a bottleneck molecule. The interdependence of a protein shows the ability of this protein
to link distant proteins. When reporting modules, intermediate relationships are crucial to
maintain functionality and consistency in the reporting mechanisms.

The analysis in Figure 5 (bottom) confirms that EGFR, SEC13, MTOR, and HSPA5 are
“bottleneck” proteins, and also shows a new protein, SEC61A1. In the stress distribution,
the SEC61A1 value was very close to that of VAMP2, while now the VAMP2 value is
close to that of SEC61A1. Therefore, we can consider both proteins as bottlenecks. In
a multi-parametric approach, we used eigenvector, stress, and betweenness centrality
distributions to validate the eight hub proteins and define the role of some proteins as
bottlenecks. Among the proteins selected as the most ranked bottlenecks (EGFR, HSPA5,
MTOR, SEC13, SEC61A1, SRC, and VAMP2), EGFR and SRC show a dual role, both as a
hub and as a bottleneck. Putting it all together, we have EGFR and SRC, which are mixed
(HUB/bottleneck) proteins, HSPA5, MTOR, SEC13, SEC61A1, and VAMP2, which are pure
bottleneck proteins, and PIK3R1, PIK3CA, GRB2, and HRAS, which are pure hub proteins.
These differences allow these proteins to be defined into three classes of molecular markers.
In a eukaryotic protein interaction network, a node represents the lone native protein
because of alternative splicing [87] and proteoforms [88]. This may be a problem because,
in all databases (including STRING), it is customary to collapse all the different functions
of its isoforms and proteoforms onto the native protein, attributing it to a greater load of
functions that it does not possess. In the interactome calculation, this anomaly produces
biased nodes with higher and unreal connectivity.
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Researchers have identified three different types of hubs in tissue-specific protein–
protein interaction networks as follows: a few tissue-specific hubs, many tissue-preferred
hubs that are formed by connected proteins, and housekeeping hubs that are involved
in normal metabolic management [89]. When we connect these features to their specific
functional roles within different tissues, they exhibit distinct functional differences, which
are influenced by structure/function relationships.

Disordered regions enrich pure hub and hub/bottleneck proteins among the three
previous classes, and as a result, these proteins harbor a significant number of predicted
binding sites [90]. They are also rich in splice variants, have longer peptide chains, and
host a significant number of domains. This successful structural versatility drives their
high propensity for interactions [88]. Because they are involved in essential functions such
as phosphorylation and mRNA slicing processes, they get tangled in multiple intracellular
functional pathways. Pure bottleneck proteins are extracellular proteins that are connected
to pathological conditions, such as cancer, and play a role in cell-to-cell signaling pathways.
Defining the actual functional role of a node is challenging because of the convergence
of multiple functions with varying spatio-temporal characteristics. Many researchers still
use static and deterministic approaches to select their experimental design, which leads to
these limitations.

The topological role of network hubs depends also on the exponent value of the power
law [91]. The value of <2 for the degree exponent b (see Figure 3), although very close
to 2, suggests a hub-and-spoke architectural model. The hub–hub network of the entire
interactome fits a hub-and-spoke model, as Perera [14] and Barabasi [15,42] suggest. The
largest hub (EGFR, 159 nodes) acts as a central coordinator and connects to a significant
portion of nodes, which is shown in Figures 3 and 5. These structures act as a backbone
connecting different metabolic modules. In this topological context, we should also identify
the top hubs as significant centers of control over the entire network. This view also agrees
with the topological parameters calculated by the Cytoscape Network Analyzer.

Figure 6 also shows the relationships and the particular topology involving both
HUB and bottleneck nodes [92]. Figure S6 (in the Supplementary Materials) shows that
EGFR organizes in a topologically similar manner, even when conditions are normal.
Relationships among the HUB nodes are strong, while those with the bottleneck nodes
are less intense, as the figure shows. All these significant nodes play a collective role
in maintaining the stability of the hub-spoke system, albeit with varying functions and
methods [46]. Each of them controls many different biological processes [47]. The following
question remains: which node, regardless of its degree, is involved in the greatest number
of functional processes? The question is not far-fetched. Because of the many metabolic
crossroads, greater connectivity may not correspond to greater functional involvement [93].
When designing a drug, it is important to have this information.

While surprising considering the very high number of functional involvements, Table 9
shows how a HUB node is not always the main controller of the metabolic landscape. MTOR
(degree = 24) and HSPA5 (degree = 19), although with lower connectivity, are involved
in a very significant number of processes. The node distribution and biological functions
in the hub-and-spoke system, coupled with the ORF7b-induced interactome’s complexity,
handle this outcome. The next inquiry is how functionally significant are the processes they
regulate. The answer would require a large analysis not covered by this study. Certainly,
these same nodes, depending on their level of genomic expression, can both up-regulate
and down-regulate a biological process [94–96]. Down-regulated processes, or “negative
biological processes” according to GO, are important to highlight because of their higher
probability of resulting from viral strategy [97]. Here, as we will see below, statistical
significance is no longer the only parameter to follow.
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By removing all unnecessary nodes from the network in Figure 2, we extracted this graph. Edge
intensity is proportional to the interaction intensity between nodes (calculated by STRING).

Table 9. Involvement of HUBs and bottlenecks in the control of biological processes (GO).

HUB Protein Number of GO Processes Bottleneck Protein Number of GO Processes

EGFR 408 EGFR 408

PIK3R1 328 HSPA5 234

EGF 646 MTOR 413

HRAS 245 SEC13 83

GRB2 233 SEC61A1 63

SRC 508 SRC 508

PIK3CA 271 VAMP2 143

Note: EGFR and SRC are on both lists because of their dual activity. From the genes paired to each term, STRING
extracted the biological processes for each individual protein under the biological processes (GO) section.

3.7. The Functional Effects Depend Not Only on ORF7b but Also on the Integrated Action of
Several Viral Proteins

The virus shows extraordinary strategic potential. Our previous results showed
the specific impact of its proteins on crucial metabolic processes. About 200 patient
symptoms [98] were used to generate various hypotheses based on clinical impressions
found to be associated with long COVID. All this shows how broad and diversified the
systemic action of the virus is. Thus, part of the broad spectrum of metabolic activities
found in this interactome might be associated with the multitude of clinically observed
symptoms [99]. However, we should not underestimate the vast potential of the ORF7b
protein. The proteome yields biological functions via target proteins, which result from
specific one-to-one interactions between viral and human proteins. Other viral proteins
could target human proteins present in metabolic modules where ORF7b also operates.
The ORF7b circular interactome (Figure 1) displays other viral proteins, including ORF3a
and M, which may show their ability to target human proteins in the same metabolic
modules as ORF7b. As of July 2023, we had organized a database called SHPID, which
contains BioGRID interactions. In this database, we collected 33,823 interactions between
SARS-CoV-2 and human proteins. We analyzed the hub proteins highlighted in Figure 3.
The proteins EGFR, SRC, and PIK3R1 are the major HUB nodes of the ORF7b interactome
with 159, 123, and 90 links. Although these proteins are involved in the ORF7b interactome,
Table 10 reveals that they also interact with other viral proteins.
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Table 10. Multiple interactions of EGFR, SRC, and PIK3R1 with viral proteins.

Viral Protein Human Target Viral Protein Features **

nsp4 * EGFR Involved in the assembly of virally induced cytoplasmic double-membrane
vesicles necessary for viral replication

M * EGFR Component of the viral envelope

ORF3a * EGFR Homotetrameric potassium-sensitive ion channels (viroporin) that may
modulate virus release

ORF7b * EGFR This paper

S EGFR Spike or surface glycoprotein.

nsp4 * SRC See above

nsp5 * SRC A cysteine protease essential for the viral life cycle

nsp6 * SRC Plays a role in the initial induction of auto-phagosomes from host reticulum
endoplasmic

nsp13 * SRC Multi-functional helicase with a zinc-binding domain in N-terminus

nsp14 * SRC 3′-5′ deoxyribonuclease

E * SRC Plays a central role in virus morphogenesis and assembly

M * SRC See above

ORF3a * SRC See above

ORF3b SRC Could be involved in immune evasion as an interferon agonist ***

ORF6 * SRC Could be a determinant of virus virulence

ORF7a * SRC A non-structural protein, which is dispensable for virus replication in cell
culture

ORF7b * SRC See above

ORF8 SRC A viral cytokine regulating immune responses

S SRC See above

M * PIK3R1 See above

ORF7b * PIK3R1 See above

ORF3b PIK3R2 See above

M * PIK3R3 See above

S PIK3R3 See above

N * ORF7b Responsible for wrapping viral RNA into a symmetric helical structure

Notes: (*) With a few exceptions (ORF3b, ORF8, and S), all the remaining viral proteins, although compact,
have intrinsically disordered regions (IDRs), often in the tails, which make interactions with numerous partners
possible. This could be the structural cause of their multiple actions. (**) Viral protein information from National
Center for Biotechnology Information, the National Library of Medicine, USA. (***) [100].

Table 10 depicts how these high-degree human proteins are a common target for many
viral proteins. Our analysis of the interactions between the thirty-one viral proteins and
the human proteome, as reported by BioGRID, yielded this result. Even though viral
proteins have co-evolved with their human host or other species, they seldom possess
structurally detailed molecular interfaces for accurate and stable interactions. Only a
few viral proteins exhibit strong interactions, akin to those observed in complexes. Most
of the interactions have weak bonds, mostly because of the anisotropy of the contact
areas [101]. Viral proteins attempt to establish competition with normal binding proteins by
mimicking interaction interfaces to the greatest extent possible, binding to target proteins
with interaction constant values that typify weak processes. The interfaces mimicked
by viral proteins compete through multiple and transient cellular interactions. They
interact with hubs and bottlenecks in the human PPI network to control vital proteins in
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complexes and pathways. Proteins can overcome structural difficulty by introducing an
intrinsically disordered region (IDR) into the sequence, which can enhance the mimicry of
contact surfaces. IDPs have IDR stretches that may be part of low-affinity inter-molecular
interactions [102]. With the emergence of IDPs in eukaryotic proteomes [79], the disorder
becomes crucial information for PPI evaluation.

Many of the interacting viral proteins in Table 10 show IDRs (see Supplements, Section S2);
thus, the probability of multi-targeting is high, and this could explain the phenomenon
(see also Section 2 for details). After all, even the three human proteins analyzed have
disordered and mobile segments. They are lipid-anchored proteins with a central body
in the cytoplasm or outside the cell. Two long disordered and mobile tails are present in
EGFR, which is found on several internal membranes (endosomes, ER, Golgi, nucleus)
and the surface. SRC also has long disordered and mobile tails, some mobile central
segments, and multiple localizations, both on the surface and on intracellular organelles
(endosomes, mitochondria, etc.). PIK3R1 also shows a long-disordered C term with many
mobile intermediate segments and is on the cell surface. To this, we should add that the
disordered/mobile parts often show PTM sites. The presence of PTM sites increases the
number of proteoforms for any single protein, increasing the probability of interacting with
new molecular partners and establishing new functions.

A particular observation is that our database shows that ORF7b itself interacts with the
viral N protein (see Table 10). Among the various functional peculiarities of this protein, we
find that it is involved in forming liquid droplets [80]. The liquid–liquid phase separation
is a key mechanism for organizing macromolecules, such as proteins and nucleic acids,
into membrane-free organelles [103]. The N protein can self-bind into spherical aggregates,
which can diffuse in the condensed phase and exhibit liquid-like behavior [104,105].

Although we also examined other relevant human HUB nodes of the ORF7b inter-
actome, such as PIK3CA, EGF, and HRAS, we did not find other direct targeting of viral
proteins. Therefore, these seem to be nodes extracted from the ORF7b functional enrichment
that are functionally connected with the other HUBs of this network. Thus, their presence
in this interactome seems to be a specific functional requirement of ORF7b. After all, the
human metabolic system responds to the ORF7b protein, consistent with the multiple
metabolic responses of multicellular eukaryotic systems. In particular cases, viral action
may require the synergistic action of different viral proteins. Thus, to achieve its biological
effect, the virus can also use complex and sequential interaction modes on a single protein.
This analysis is in excellent agreement with the previous classification of hub and bottleneck
proteins. Unfortunately, we do not know where, how, or when these interactions occur.
Hence, our vision of a dynamic phenomenon is only static and somewhat unclear, which
may also be spatio-temporally inappropriate or distorted in our reconstruction of it [106].
Nevertheless, SARS-CoV-2 employs a known strategy of targeting the same human protein
with multiple viral proteins [107].

3.8. The Peculiar Case of GRB2, a Protein in the Service of ORF7b

GRB2 (Growth Factor Receptor Bound Protein 2—UniProt: P62993) is a protein that,
according to BioGRID, binds ORF7b, although with the low level 1. Our observation
within the BioGRID dataset reveals that this protein only interacts with ORF7b. It was
not included in the seed proteins because of its low significance, but we found it recruited
in the interactome [108]. The enrichment suggests that this ORF7b interactor is essen-
tial for virus infection. It assumes the role of a HUB with 84 connections and controls
233 biological processes (see Table 11). GRB2 is an important protein that provides a crit-
ical link between the phosphorylated cell surface growth factor receptors (EGFR) and
the PI3K-Akt signaling pathway. Both the KEGG and Reactome pathways reported its
significant involvement in several signaling mechanisms (hsa04151, the PI3K-Akt signaling
pathway; HSA-1963640, GRB2 events in ERBB2 signaling; HSA-179812, GRB2 events in
EGFR signaling; HSA-354194, GRB2:SOS linkage to MAPK signaling). Later, we came to
know that it is often involved in various dysregulation processes that assist viral activity.
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Table 11’s proteins and GRB2’s case show the sophisticated and diverse molecular strategy
of SARS-CoV-2. The hubs listed in this table are proteins obtained through functional
enrichment, but they are not direct molecular interactors of ORF7b.

Table 11. Commonly altered pathways.

Function Strength * p-Value P Human Proteins Involved in the Process

Negative regulation of the ERBB signaling
pathway 1.22 1.38 × 10−18 22.13

HBEGF, EREG, PTPN12, TSG101, CBL, CBLB, EGF, ERBB2,
CBLC, EGFR, TGFA, SOCS5, PTPN2, HGS, EPS15, ERRFI1,

SNX5, SH3GL2, GRB2, BTC, AREG, SH3KBP1, CDC42,
EPN1, EPGN

Negative regulation of the EGFR signaling
pathway 1.23 3.24 × 10−17 21.53

HBEGF, EREG, TSG101, CBL, CBLB, EGF, CBLC, EGFR,
TGFA, SOCS5, PTPN2, HGS, EPS15, ERRFI1, SNX5,

SH3GL2, GRB2, BTC, AREG, SH3KBP1, CDC42, EPN1,
EPGN

Negative regulation of anoikis 1.14 5.72 × 10−5 6.56 PIK3CA, ITGA5, BCL2L1, CAV1, PTK2, SRC, ITGB1

Negative regulation of the extrinsic apoptotic
signaling pathway 0.76 9.26 × 10−7 6.05

GCLC, LGALS3, BCL2L1, IGF1, CTNNA1, UNC5B, FYN,
FAS, CASP8, LMNA, GCLM, SRC, AR, CTTN, NRG1,

ITGA6, AKT1

Negative regulation of protein tyrosine kinase
activity 0.99 9.13 × 10−5 5.90 TSG101, CBL, CBLB, CBLC, SOCS5, PTPN2, CAV1, ERRFI1

Negative regulation of epidermal growth
factor-activated receptor activity 1.18 1.7 × 10−4 4.99 TSG101, CBL, CBLB, CBLC, SOCS5, ERRFI1

Negative regulation of interleukin-6
production 0.81 5.0 × 10−5 4.61 CSK, SOCS5, GAS6, TLR9, VIMP, PTPN6, ARRB1,

ENSP00000417517

Negative regulation of peptidyl-tyrosine
phosphorylation 0.88 1.50 × 10−5 4.55 TSG101, CBL, CBLB, CBLC, SPINK1, SOCS5, PTPN2,

CAV1, ERRFI1, PRKCD, PTPN6

Negative regulation of PERK-mediated
unfolded protein response 1.33 9.2 × 10−3 4.12 NCK2, PTPN1, NCK1

Negative regulation of endoplasmic reticulum
unfolded protein response 1.04 8.9 × 10−3 4.11 NCK2, HSPA5, PTPN1, NCK1

Negative regulation of blood–brain barrier
permeability 1.55 3.13 × 10−2 3.88 SH3GL2, VEGFA

Negative regulation of response to oxidative
stress 0.81 4.1 × 10−4 3.74 SLC7A11, MET, GGT7, CTNNB1, FYN, NFE2L2, INS,

HIF1A, AKT1

Negative regulation of protein tyrosine
phosphatase activity 1.39 4.67 × 10−2 3.71 LGALS3, GNAI2

Negative regulation of mesenchymal to
epithelial transition 1.38 4.77 × 10−2 3.69 CTNNB1, STAT1

Negative regulation of blood coagulation 0.83 2.8 × 10−4 3.69 PROC, PDGFRA, F2, PLAUR, PLAU, EDN1, CD9, PROS1,
PRKCD

Negative regulation of primary miRNA
processing 1.38 4.67 × 10−2 3.68 STAT3, IL6

Negative regulation of lipid transport 0.79 1.74 × 10−2 1.77 EGF, PTPN11, SREBF2, AKT1, ITGB3

Note: (*) For comparisons, a strength of 1.39 = 24.5 times enrichment, and 0.76 = 5.8 times. Black bold font
indicates the proteins highlighted in the text as being HUB nodes or “bottlenecks” or as being involved in other
important signaling pathways.

3.9. The Role of ORF7b

The diverse and sometimes contrasting metabolic properties of some of the interactome
nodes are surprising. Among the 1691 biological processes (GO) induced by ORF7b, there
are 117 peculiar metabolic activities mentioned as negative activities (7%). Most of the HUB
and bottleneck proteins are also involved. According to AmiGO-2, the official web-based set
of tools for searching and browsing the Gene Ontology database, negative activity means
“any process that stops, prevents or reduces the frequency, rate, or extent of metabolic
functions”. p-values alone cannot guide us in identifying which terms are most significant
for these purposes. STRING measures the size of the enrichment effect by also using the
“strength” score. The sole use of the p-value can produce an overrepresentation of the GO
term, while the value of P (see the Section 2) is useful for amplifying those underrepresented
biological processes connected with a specific context [109] through their expression. The
limit of this approach is that, in a complex interactome, many proteins are not specific to a
single metabolic pathway but are sometimes even part of multiple pathways. Here, the
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massive study of some of these pathways favors assigning the protein to the more studied
GO pathways. In fact, the databases favor assigning the protein to the more studied GO
pathways and obscure the emerging relationships towards different biological pathways
that are not studied or represented [110]. Therefore, the analysis should select only the
most reliable terms.

In addition, Hong et al. [110] showed that linked gene pairs, even of different func-
tional pathways, according to KEGG, show positive expression levels. Therefore, these
two genes (or their proteins), even in a functional pathway altered by disease, are up-
regulated or down-regulated together. This is due to their reciprocal and close functional
relationships [111]. So, when a disease affects a metabolic pathway, all the genes in the
pathway will regulate their expression. Therefore, an over-representation of a GO pro-
cess suggests an over-expression of the genes and their decoded products that make up
the metabolic pathway since they have close functional relationships with each other in
regulating the expression [110,111].

We selected 17 terms with the highest possible strength value, paired with a very
significant p-value, and listed them according to the value of P (see the Materials and
Methods, Section 2.11). Table 11 reports these terms according to the expressed rule. In
the table, among the proteins involved in these negative functional activities, we note (in
bold) many of the proteins highlighted as HUB nodes or “bottlenecks” or as involved
in other important signaling pathways. Although all biological processes show positive
values of enrichment (high strength), very many have minimal or negligible enrichment.
It is necessary to exceed the value of 0.5 to have an enrichment of 3 times. We found
that 32.28% of the processes have enrichments lower than 3 times and only 14.7% have
enrichments greater than 10 times. The remaining 53.02% has intermediate enrichment
values between 3 and 10. This means that there are very few of the most enriched fractions,
and we can think of the average enrichment of most biological processes as being suitable
for the normal metabolic function to be performed. The 17 selected terms therefore make
up a very limited set, less than 1%, but it is the only one that can boast a significant and
even conspicuous enrichment. However, the negative term means over-enrichment and,
therefore, suggests a gene over-expression. Some sets of proteins, enriching themselves,
change their functional state, inducing changes in the pathways they control. Since the
term negative means loss of control, down-regulation, or a weakening of their functions,
the deactivation (or even activation) of the functional pathways they control is favored.
This is not new. We find a dysfunctional expression of genes with over-expression and
deleterious functions during disease or even aging, in particular, for genes involved in
pathways related to stress responses, antioxidant defenses, and DNA repair [112–114].

Our examination of Table 11 enables us to affirm that many pathways show significant
dysregulation, suggesting that we may have identified pivotal genes associated with these
pathways. At present, describing what occurs is challenging because of the lack of data to
pinpoint causes, determine the opportune moment for the process, and establish the se-
quence of events, which is due to the lack of space–time information. The strategy of ORF7b,
in collaboration with other viral proteins, aims to create a viral microenvironment that helps
infected cells minimize cell matrix rigidity and adhesion, increase intracellular oxidative
stress, generate pro-survival signals, trigger the epithelial–mesenchymal transition process,
and inhibit intracellular transport and ER activity, starting widespread cellular metabolic
deregulation. We should emphasize that the process of metastasis, characterized by the
epithelial–mesenchymal transition (EMT) and its inverse, the mesenchymal–epithelial tran-
sition (MET), plays a crucial role in the metastatic spread of carcinomas [115]. Likewise,
these events appear to be among the primary targets in preventing the programmed cell
death mechanisms of infected cells, allowing survival after separation and systemic spread.

In particular, we can see the dysregulation of all protein tyrosine kinase receptor
activities. This reduces the processes of the internalization of external signals and the
activities of receptors activated by growth factors. The integrated dysregulation of oxidative
stress, the unfolded protein response of the ER, and lysosomal action [116,117] also favored
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integrin-mediated alterations of the intercellular matrix and the loss of control over cell-
extracellular matrix adhesion processes. The intention behind all these activities is to
dysregulate programmed death processes such as apoptosis and anoikis, promoting the
spread of infected cells in the body [118].

The systemic spread of infected cells explains why the tissues and organs shown
as infectible in Table 12 are so numerous and significant. In the presence of infected
cellular material widespread in the body, the virus has also the potential ability to cause
inflammatory processes in the brain, so it is important to pay particular attention to the
dysregulation of blood–brain barrier permeability. By altering endocytosis, endosomal
trafficking, lysosomal degradation, blocking anabolic processes, and lipid transport, this
creates mitochondrial dysfunction, resulting in a heavy dependence on glucose for energy
production. Many miRNAs work within the cell and could interfere with these procedures.
However, distinguishing them through this type of analysis is not yet possible.

In a nutshell, this tiny protein is involved in controlling the intercellular communica-
tion of the virus. By suppressing intracellular signaling, it created a metabolic microen-
vironment that caused generalized metabolic dysregulation and blocked the intracellular
transport of cargo. Prevention of local programmed death mechanisms leads to viral
shedding. Various viruses show comparable infection strategies [65], such as extending
particular stages of the cell cycle, managing programmed cell death, and using the nuclear
membrane to transmit viral genetic material to and from the nucleus. These findings help
to understand how SARS-CoV-2 can spread via cell-to-cell transmission [65], where ACE2
is not required. Our assessment shows that viral mutations shared by different variants are
unsuitable for evaluating disease mechanisms. This is due to the high metabolic interfer-
ence capacity of the remaining information package of the virus. Attention to mutations in
the spike protein has distracted us from evaluating the molecular mechanisms underlying
the metabolic dysregulations induced by the virus.

3.10. Cluster Analysis

Cluster analysis allows us to extract protein interaction sub-networks that interact
with each other in functional complexes and pathways to produce reliable hypotheses
that can explain the various dysregulations of human metabolism induced by ORF7b.
This also increases the likelihood of identifying candidate genes/proteins that can help us
understand the rationale for viral action and the metabolic pathways involved.

Cluster analysis is a data analysis that explores the groups present within a dataset,
known as clusters. We used Cluster K-means analysis, which does not need to group
data points into predefined groups and is an unsupervised learning [119] method. In
unsupervised learning, insights come from the data without predefined labels or classes.
K-means is also an iterative partition algorithm, which is a good clustering algorithm that
ensures high similarity within clusters and low similarity between clusters. The clusters
representing our entire population of interacting molecules in the ORF7b interactome derive
from a base of significant experimental data and rigorous procedures for implementing
the network. This should produce high-quality clusters, which provide non-redundant
and low-noise results as they can reduce the quality and interpretability of the clusters.
Assigning a value to K is one of the major drawbacks of this algorithm. In our analysis, K
equals 10 (Figure 7).

Except for clusters 1 and 9, which have distinctive features and require separate
treatment, the most crucial parametric information is next to each cluster.

This result, which was obtained after many attempts with lower K values, has to be
considered as the best compromise. We used this K-value because it gave us the most
compact clusters and significant p-values (all p-values are always <1.0 × 10−16). The
ten metabolic modules are all functionally consistent, and in Figures S7 and S8, we also
show the links existing between the clusters. The numerous metabolic relationships existing
between the clusters, as shown in the figure, represent the normal metabolic machinery
necessary for cellular life. Only the GCC shows an overlay of two modules, but, as we
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will see, they resolve into two independent sub-graphs. The greatest interest is in these
two sub-graphs because they contain most of the identified HUB and bottleneck nodes
and control crucial metabolic pathways. The other sub-graphs seem to regulate typical
metabolic activities; thus, understanding the specific functions of these central modules and
where their constituent proteins operate within the cell is essential. This is a core–periphery
organization. Core–periphery is a characteristic we can find at group-level relationships in
biological networks, but not exclusively [120]. The situation involves meso-scale dominance
events [121]. It describes a scenario where a group of core nodes captures an excessive
number of contacts in the network. The peripheral nodes have fewer interconnections
with each other, although their sub-graphs connect to the central core. In networking, the
mesoscale describes sub-cellular events on length scales ranging from that of a single cell, up
to the size of molecular complexes, where groups of molecules self-organize to form large,
functional core structures [122]. While individual nodes perform only local operations,
their organization into clusters generates a richer and more diverse functional repertoire.
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Figure 7. Clustering. The analysis shows ten clusters that are all identifiable except for the two central
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each key hub indicates its degree. We did not highlight the links between clusters to ensure they are
visible. Two overlapping central clusters make up the Giant Connected Component (GCC), totaling
206 nodes, which accounts for 37% of the entire interactome.

3.11. Analysis of GCC Core

From the compact GCC area, the cluster analysis extracted two clusters (1 and 9),
both of which are significant and compact. Figure 8 shows cluster No. 1. The caption
shows the major topological parameters. This cluster is very compact. Its major role is to
regulate the EGFR family signaling pathway (EGFR, ERBB, ERBB2) where the receptors’
protein tyrosine kinase signaling show p < 6.85 × 10−48. It regulates the Jak-Stat pathway,
ERBB and ERBB2 signaling (p < 2.55 × 10−40), and the regulation of peptidyl-tyrosine
(p < 2.99 × 10−27). We can find the key details in the following GO terms: GO:0007169,
GO:0038127, and GO:1901184. But in cluster No. 1, we also find ITGB1, CAV1, EGF, EGFR,
PIK3CA, INS, GRB2, PRKCA, HRAS, and MTOR, just to mention the major nodes. Thus,
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the role of this cluster is also to control cell migration, cell motility, immune response,
phosphorylation, cell death, apoptotic cell processes, cell adhesion, cell migration, stress,
the insulin path, phagocytosis, lymphocyte activation, blood coagulation, and the cytokine-
mediated signaling pathway with very high statistical significance, as it appears from the
list calculated by STRING in the biological process (GO) category.
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Figure 8. Cluster No. 1–140 nodes, 1110 edges, p-value < 1.0 × 10−16. Average node degree 15.4,
avg. local clustering coefficient 0.622 (expected number of edges in a similar random network, 202),
network diameter 3, network radius 2, characteristic path length 1.91, network density 0.108. Main
HUB node, EGFR (degree = 123). In red, HUBs found in the whole net; in yellow, a bottleneck node.

Proteins operate in their specific environments; therefore, knowledge of where proteins
are located is crucial to understanding the metabolic processes of which they are a part.
We can perform this analysis with the help of Cytoscape. After transferring cluster 1 to
Cytoscape, with the help of the STRING app and Node Table (compartment analysis),
we selected the protein nodes with the highest statistical value (5.0) that operate in the
various cellular compartments. Level 5 collects the most important proteins in defining the
biological processes of which they are part.
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In Table 12, we see the cellular compartment in which cluster No. 1 proteins operate,
and we also see that there are various proteins already defined as dysregulated, so we can
know where they operate.

Table 12. Operational cellular compartments of cluster No. 1 proteins.

Compartment Proteins * Protein Number

Extracellular AREG, BTC, CD81, CD9, EGF, EGFR, ERBB3, EREG, HBEGF, HSPA8,
INS, LAMA1, LAMB1, MUC1, NRG1, NRG3, PLAU, SFN, TGFA, TSG101 20

Cytoskeleton CTNNA1, CTNNB1, GNAI1, GNAI3, LMNA, MAPK1, PPP2R1A, PTPN3 8

Plasma membrane

ADAM17, ARF4, BTC, CAV1, CAV2, CD44, CD81, CD82, CDH1, CTNNA1,
CTNNB1, EDNRA, EGFR, EPS15, ERBB2, ERBB2IP, ERBB3, ERBB4,
EREG, GAB2, GNAI1, GNAI3, HBEGF, HCK, HRAS, ITGA3, ITGB1,
ITGB4, JUP, KRAS, LAPTM4B, LPAR1, LPAR3, LYN, MUC1, NRG1,

NRG3, PDGFRA, PIK3C2B, PLCG1, PLCG2, PPP2R1A, PRKCA, PRKCB,
PTPN2, PTPN3, PTPRK, PTRF, SHC1, SLC9A1, SLC9A3R1, TGFA,

TSG101, USP8

54

Cytosol PIK3C2B, GRB7, ARF4, PPP2R1A, PLCG1, HCK, USP8, PRKCA, MAPK1,
RAB5A, FOS, HSPA8, CTNNB1, HIF1A, GAPDH 15

Mitochondrion PPP2R1A, MAPK1, HSP90AA1, LGALS3, ERBB4, PTRF, MT-CO2 7

Golgi CAV2, CBL, CDH1, HRAS, LYN, MAPK1 5

Endoplasmic Reticulum FOS, NCK1, PTPN2 3

Peroxisome No level 5 protein -

Endosome CDH1, EGFR, CAV1, ERBB2, PTPN1, RAB5A, MAPK1, TSG101, GRB2,
HGS, USP8, LPAR1, LAPTM4B, GRAP2 14

Lysosome LAPTM4B, HSPA8, MTOR, HCK 4

Nucleus

CAV2, CTNNB1, EGFR, ERBB2, ERBB2IP, ERBB4, FOS, GRAP2, GRB2,
HIF1A, HRAS, HSPA8, IGFBP3, JAK2, LGALS3, LMNA, LYN, MAPK1,

MUC1, NCK1, NCL, NRG1, PLCG1, PPP2R1A, PRKCB, PRKDC, PTPN11,
PTPN2, PTPN6, PTRF, STAT1, STAT3, STAT5B, TFAP2C

34

Note: (*) Only proteins with the highest statistical significance value of 5, according to Cytoscape (values range
from 0 to 5). We calculated protein node compartmentalization and values in Cytoscape using the STRING app.
Highlighting all the proteins in Table 9 would have made this table unreadable. (1) Bold black font indicates the
proteins that are present in more than one compartment. (2) We identified and underlined the proteins responsible
for the dysregulation of ERBB signaling, EGFR, protein tyrosine kinase activity, and regulation of peptidyl-tyrosine
phosphorylation, as shown in Table 9. (3) The proteins that are also involved in deregulating apoptosis and
anoikis to allow for diffusion are indicated in red italic font. Proteins in bold black font and underlined or in red
italic and bold font are common to two groups.

The nucleus and plasma membrane, as well as the cytoskeleton, are among the richest
compartments of functional activities where proteins crucial for the progression of these
activities operate. In Table 11, we find many of these proteins, for which symbolic nota-
tions are used to distinguish them (see the note of the Table 12). The table summarizes
two important proteomic characteristics as follows: (a) there are numerous proteins that
operate in a multipolar way, i.e., in several compartments (e.g., EGFR) and (b) there are
many dysregulated proteins, in particular, those involved in the fundamental processes
of signaling and in favoring cell diffusion. Various proteins localize in multiple compart-
ments, showing a shared protein pool even if unrelated. However, each protein has its
own level of expression and its own compartmental distribution. Taking into consideration
the entire picture, we can interpret this as a sign of functional advancements starting from
the membrane and progressing toward the nucleus. The limit is the absence of temporal
information that flattens the metabolic dynamics and makes it very difficult to make reliable
sequential explanations. But this is not the only intricacy. Figures S7 and S8 demonstrate
how single nodes can take on multiple roles to engage in various functional processes.
Even a single functional activity can have its nodes distributed in many modules. This is
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a straightforward demonstration of how difficult it is to describe the actual behavior of
concurrent functional processes without a temporal chronology, but the entire network, i.e.,
the operational context, can help.

Not only the regulation of space and time but also the compartmentalization charac-
terizes the cellular proteomes. The presence of similar proteins in different compartments
indicates the existence of distinct local proteomes [123], each carrying out specific metabolic
activities, making it challenging to detect any distortion. The nucleus and cytoplasm are
among the most populated compartments. The proteomes of these compartments show a
multipolar protein distribution, which makes them very ductile functionally. Therefore,
attributing static and specific roles to metabolism and to the proteins that operate within
is a process that does not correspond to reality. We cannot attribute a protein’s metabolic
function to its presence or absence. Its function is also determined by the reactions that
happen at different omic levels and compartments [124] and reactions that are always the
result of protein–protein interactions. Thus, the interactomic level reflects what happens at
the genomic or transcriptomic level, generating a network that differs from the underly-
ing ones. The event in question has gained prominence recently [125]. Some melanoma
cells show a dependence on external sources of methionine for their growth. The authors
describe the methylome, transcriptome, and proteome of these cells. Only the multilevel
contemporary study allowed the authors to understand the real metabolic behavior of
methionine addiction because the study of the methylome alone led to trivial conclusions.

In short, we obtained the spatial distribution of proteins in the ORF7b interactome,
but the temporal distribution is missing. Multi-localization of a protein increases the
probability of interactions, generating possible new functional characteristics in the context.
This expands the functional capabilities of the cell but makes any modeling that does not
include all the parameters involved difficult.

Because of important proteins, cluster No. 9 has the potential to perform multiple
functions (Figure 9). This cluster controls the process that modulates the cell transport
to, or maintained in, a specific location (GO:0032879, p = 2.30 × 10−34); the extent of
the addition of phosphate groups to a molecule (GO:0042327, p = 1.89 × 10−29); cell
migration (GO:0030334, p = 3.11 × 10−29); regulation of cell migration (GO:0030334,
p = 3.11 × 10−29); and the transmembrane receptor protein tyrosine kinase signaling path-
way (GO:0007169, p = 1.78 × 10−28). It is also associated with the negative regulation of
cell death (GO:0060548, strength = 0.92, p = 1.75 × 10−17) and programmed cell death
(GO:0043069, Str. = 0.90, p = 3.96 × 10−16) and in the negative regulation of the production
of miRNAs involved in gene silencing (GO:1903799, Str. 1.78, p = 4.6 × 10−4). Similar
considerations also apply to cluster No. 9.

Dysregulated proteins, such as CTNNB1, SRC, PTK2, ITCB3, or PRKCD, found in
cluster No. 9 (see Table 13), are present in many cellular compartments, including those
that are distant from each other or different from a chemical–physical point of view, such
as the cytosol and plasma membranes. This means that they regulate their expression over
time and that they require post-translational modifications that depend on the context.
Most analysis platforms collapse this information onto the native protein, so nodes have
more functional connections than context. This induces errors in the degree value and the
related topological evaluations, which can lead to alterations in the network.

An instance of this is the activation of the Human SRC (P12931, Proto-oncogene
tyrosine-protein kinase Src), a non-receptor protein tyrosine kinase that is triggered upon
binding to various cellular receptors, including integrins and other adhesion receptors, reg-
ulating a wide range of biological processes. It belongs to the Src kinase family and is func-
tionally redundant, making it challenging to identify its specific role in each compartment
and determine which member is involved without the knowledge of its spatio-temporal
characteristics in that specific context.
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Figure 9. Cluster No. 9—62 nodes, 437 edges, p-value < 1.0× 10−16. Average node degree 14.097,
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Table 13. Operational cellular compartments of cluster No. 9 proteins.

Compartment Proteins * Protein Number

Extracellular EDN1, F2, FAS, HSP90AB1, LAMA5, LAMC1, MET, NTN1, VEGFA 9

Cytoskeleton CDC42, CTNNB1, CTTN, LMNA, MAPK3, PTK2, PXN, YES1 8

Plasma membrane

AKT1, ARF6, CASP8, CAV1, CDC42, CDH1, CDH2, CTNNB1, CTNND1,
EFNA5, EFNB2, EPHA1, EPHA2, ESR1, FAS, HRAS, IGF1R, ITGB3, MET,

NEDD4, PDGFRB, PECAM1, PRKCD, PTK2, PTK2B, PXN, RAC1, RHOA, SRC,
TIAM1, TJP1, YES1

32

Cytosol AKT1, ARF6, CASP8, CTNNB1, MAPK3, PRKCD, PTK2, RHOA, SRC, YES1, 10

Mitochondrion GJA1, HSP90AA1, MAP2K1, MAPK3, SRC 5

Golgi CBL, CDH1, ESR1, HRAS, MAP2K1, MAPK3, NEDD4, RAC1, YES1 9

Endoplasmic Reticulum PRKCD, MAP2K1 2

Peroxisome No level 5 protein -

Endosome ARF6, CAV1, CDH1, MAP2K1, MAPK3, PRKCD, RAC1, SRC 8

Lysosome PDGFRB, PRKCD, SRC 3

Nucleus AKT1, AR, ARRB1, CTNNB1, ESR1, GJA1, HRAS, HSP90AB1, ITGB3, LMNA,
MAP2K1, MAPK8, NEDD4, PGR, PRKCD, PTK2, PTK2B, RAC1, STAT3 19

Note: (*) Only proteins with a statistical significance value of 5, according to Cytoscape analysis. These values
range from 0 to 5. We calculated protein node compartmentalization and values in Cytoscape using the STRING
app. In bold font are the proteins in common with Table 9.



Biomolecules 2024, 14, 541 34 of 52

3.12. Co-Regulation between Hub and Bottleneck Proteins, Transcription Factors, and miRNAs

Our findings thus far revealed a metabolic depiction that outlines the involvement of
a specific group of significant high-ranking proteins in a series of dysregulated metabolic
processes aimed at promoting the dissemination and spread of virus-infected cells through-
out the body because of the influence of the accessory viral protein, ORF7b. However, we
still have limited vision because we can only glimpse at the purposes and know some of
the involved actors, but we still cannot understand which actors planned and performed
the entire process.

Gaining insight into the intracellular mechanism of complex biological processes
driven by ORF7b also hinges on deciphering its intricate co-regulatory network. Identifying
hub and bottleneck proteins in protein groups dysregulated by viral infection prompts
investigation to understand their co-regulation. Within the co-regulatory network, there
are both post-transcriptional and transcriptional regulators that can regulate themselves
and each other.

A limitation that should give pause for thought is the evidence that hub and bottleneck
proteins control and regulate an enormous number of functional processes. Discovering
their involvement in a particular process does not necessarily indicate the reality and
existence of that process. Precise rules govern a functional process, primarily depending on
the context of the events and the chemical–physical characteristics of the compartmentalized
microenvironment where the event should occur. To ensure a functional event, the cell
must program when, where, and how it should occur. The metabolic network is not solely
dependent on proteins. To synchronize basic functional activities according to the circadian
cycle or unexpected events, several other actors are needed to accelerate or slow down an
intricate and dynamic system. The comprehension of co-regulatory mechanisms that are
fundamental to cellular identity and function requires the involvement of transcription
factors (TFs) and microRNAs (miRNAs). TFs and miRNAs work together to regulate
transcription and post-transcriptional processes [125,126].

The integration of computational and experimental interaction data in network models
has the potential to emphasize functional mechanisms in TF- and miRNA-mediated gene
regulation. These models can provide insight into the mechanisms that control gene
expression at the system level rather than at the individual gene level. Typically, TFs
act as activators or repressors, increasing or decreasing transcription, while miRNAs are
repressors. We can visualize the distinct activities by using two separate networks as
follows: transcriptional networks and post-transcriptional networks. It is noteworthy that
both networks are bipartite and direct. In each network, there are two distinct types of
nodes interconnected by unidirectional edges. One network contains interactions between
genes and transcription factors, which is known as a transcriptional regulatory network.
The other network contains interactions between genes and miRNAs, which is known as a
post-transcriptional regulatory network. We assume that in post-transcriptional regulations,
the regulatory actions of miRNAs toward targets are negative. However, it is possible to
obtain integrated gene regulatory networks that include genes, TFs, and miRNAs, provided
that the components are statistically more significant. The databases on TFs and miRNAs
are quite recent, and the data collected are both experimental and predictive because this
area of research is still very young. Selective filtering is required to obtain significant nodes.
As reported in Section 2, the reference databases of transcriptional and post-transcriptional
networks comprise experimental data, whereas the integrated co-regulatory database
comprises mixed data. This means that the comparison of the integrated co-regulatory
network with the transcriptional networks may yield diverse interactions, which depend
on the respective node rank in the two distinct systems.

3.13. Transcriptional and Post-Transcriptional Regulatory Networks

As a result, in transcriptional regulatory networks, TFs possess two types of action
since it is the TF that binds to its target gene rather than the reverse. The information
comprises an in-degree, which signifies the number of transcription factors binding a
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gene, and an out-degree, which signifies the number of genes bound by a transcription
factor. All this reflects the functional and biological aspects underlying these interactions.
High-grade TFs (i.e., hub TFs interacting on many genes) have a high key character of
biological functionality, while target genes bound by many TFs do not have a tendency
to be essential functionally. Therefore, analyzing this type of network provides insights
into biological systems that are not obtainable through single-gene studies. Figure 10
represents both the networks containing TFs and miRNAs, illustrating the transcriptional
and post-transcriptional networks of gene interactions, which include hubs and bottlenecks.
The transcriptional network reveals that EGFR, the top-ranking hub node within the PPI
network, possesses an in-degree value of 1 in relation to its interaction with ZNF263,
whereas ZNF263 exhibits an out-degree value of 3. Therefore, within this network, ZNF263
holds greater biological significance in relation to EGFR. Its role in this transcriptional
network involves functioning as a DNA-binding transcriptional repressor that targets RNA
polymerase II, resulting in the repression of EGFR, PIK3R1, and VAMP2. The TFs and
miRNAs represented in the two networks are those of higher rank with a higher probability
of interaction.
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Figure 10. Transcriptional network (left) and post-transcriptional network (right) of interactions
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3.14. Co-Regulatory Network

Establishing a co-regulated network involves the integration of HUBs and bottlenecks
with FTs and miRNAs. To determine the transcriptional regulatory relationships that these
nodes may hold, we employed hub and bottleneck as enrichment seeds. This co-regulated
network allowed us to pinpoint the 14 most reliable TFs and two miRNAs that were
associated with the expression of HUB and bottleneck genes.

The network (Figure 11) shows that among bottlenecks, SEC13 is one of the most
regulated genes. The protein encoded by this gene belongs to the SEC13 family of WD-
repeat proteins and is a component of several important complexes. It is a component of the
nuclear pore complex (NPC), which regulates transport between the nucleus and cytoplasm
and has a direct role in regulating gene expression [127]. It is also a component of the COPII
Coat Complex, where it plays a role in coated vesicles [128]. Four of the transcription factors
that regulate SEC13 also regulate PIK3R1, the gene responsible for encoding Human_P85A,
a protein that modulates glucose uptake in insulin-sensitive tissues by binding to activated
Tyr kinases on the cellular membrane. Because of its inhibitory action, it appears to be a
significant factor contributing to the hyperglycemia observed in patients with COVID-19.
EGFR is also controlled by several TFs. Governing each of these genes is multifaceted and
bolstered by two miRNAs, hsa-miR-576-5p and hsa-miR-1. The role of miRNA expression
levels in disease processes and physiological development is significant, as changes in
microRNA copy number or expression are associated with the onset of various human
diseases [129]. miRNAs are present at substantial numbers in humans [130].
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The figure shows the distribution of the potential gene–TF interactions (center and right side) and
gene–miRNA interactions (center and left side). This is only a schematic view of the most significant
molecules and their targets. We filtered the interacting network of miRNAs and TFs with betweenness
centrality ≥ 100 and 45. Figure S9 displays the log–log graph, which confirms a scale-free distribution
and shows some topological parameters.

The correlation between miRNAs and human genes during SARS-CoV-2 infection
is still an expanding research field including only initial studies. Some preliminary ev-
idence shows potential associations between miRNAs and genes that participate in the
reaction to infection. It is essential to highlight that the analysis of this subject is still
in progress. Despite this, there is ongoing research analyzing the potential association
between miRNAs and genes in the response to SARS-CoV-2 infection to regulate inflam-
mation. miRNA-155 [131] links the regulation of genes involved in inflammation, such as
tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Based on earlier research on
COVID-19, miRNA-146a might play a role in controlling the innate immune response [132],
and an increase in its expression could contribute to the disruption of inflammatory path-
ways. miRNAs might exert direct control over the replication of SARS2, as well as its
capacity to infect host cells [133]. This could involve both regulating viral proteins and
genes/proteins involved in human metabolism. Observations in cell lines and cancer pa-
tients led researchers to predict that miR-576-5p could down-regulate both PIK3CA and its
mRNA [134]. Meanwhile, their target mRNAs were up-regulated. Researchers have linked
hsa-miR-1 to the regulation of human genes, especially in cancer patients [135]. It has been
observed that this specific miRNA contributes to disturbing glycemia for individuals with
type 2 diabetes [136].

The co-regulatory network provides a better picture of metabolic events that the sim-
ple identification of a gene or protein in a metabolic pathway cannot provide, even more so
when we study the molecular mechanisms involved in pathology. Stating the involvement
of a protein or gene in a pathological state without fully grasping the coordinated activity
of genes, miRNAs, TFs, mRNAs, and proteins may not always lead to accurate conclusions.
Co-regulatory networks offer a more decisive direction by elucidating the general coordi-
nation of the aforementioned actors, besides the appraisal of the pathological consequences
of ORF7b.

3.15. Comparative Analysis of Negative Regulations according to GO

Figure 12 shows the set of negative regulations vital for cellular diffusion represented
by three transcriptional networks, which, upon comparison, exhibit remarkable similarities.
In all three networks, EGFR, HRAS, HSPA5, PIK3CA, PIK3R1, and SRC are the genes
involved in the negative control of programmed death. At the individual gene level,
DNA-dependent transcription exerts negative control over their transcription.

Below is a brief illustration of the most intriguing transcription factors found in the
networks. ZNF423 and ZNF263 (Zinc Finger Proteins 423 and 263) can act as both tran-
scriptional repressors and activators by binding to DNA, where ZNF423 plays a central
role. MXD4 (Max Dimerization Protein 4) is a transcriptional repressor complex. PHF8
(histone lysine demethylase PHF8) is a transcription activator that acts on the epigenet-
ically methylated histone 3 but is a repressor for the methylated histone 4. It acts as a
coactivator of rDNA transcription by activating polymerase I (pol I)-mediated transcription
of rRNA genes and playing a role in the cell cycle. However, its role is still unknown
in vivo. GABPA (GA Binding Protein Transcription Factor Subunit Alpha) is a transcription
factor that interacts with purine-rich repeats (GA repeats), so it positively regulates the
transcription of transcriptional repressor RHIT and the ZNF family such as ZNF205. MLX
(MAX Dimerization Protein MLX), its decoded product (Max-like protein X), forms many
sequence-specific DNA-binding protein complexes with various proteins. These complexes
act as transcriptional repressors. It plays a peculiar role as a transcriptional activator of
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glycolytic target genes; thus, it is involved in glucose-responsive gene regulation. Here, we
have another pro-glycemic effect that is common to patients with COVID-19.
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Figure 12. Comparison of three transcriptional networks related to negative metabolic
controls because of ORF7b interference. GO analysis (genes in blue, bottlenecks in red).
(Left side)—Negative regulation of transcription, DNA_dependent (p < 1.56 × 10−4) (TFs: ZNF263,
ZNF423, SMAD4, MXD3, GABPA, MLX, MXD4, PHF8) (Middle)—Negative regulation of apop-
totic process (p < 7.58 × 10−4) (TFs: ZNF263, ZNF423, MXD3, GABPA, MLX, MXD4, ZNF644)
(Right side)—Negative regulation of programmed cell death (p < 8.86 × 10−4) (TFs: ZNF263,
ZNF423, SMAD4, MXD3, GABPA, ZNF644, PHF8).

While Figure 13 shows the relationships between genes and miRNAs involved in block-
ing programmed death at the post-transcriptional level, Figure 14 shows its co-regulated
network, where we find Myc and TP53, two well-known transcription factors. MYC, (MYC
Proto-Oncogene or BHLH Transcription Factor, which codes for P01106 · MYC_HUMAN)
is involved in many diseases [137]. The Gene Ontology (GO) annotations that concern
MYC comprise DNA-binding transcription factor activity and the ability to function with
TAF6L to activate target gene expression through RNA polymerase II cis-regulatory region
sequence-specific DNA binding.

TP53, also known as Tumor Protein 53 and encoding for P04637, cellular tumor antigen
p53, acts as a tumor suppressor in response to cellular stresses to regulate the expression of
target genes [138]. However, in specific metabolic contexts, it can induce cell cycle arrest,
apoptosis, and changes in metabolism [139]. In fact, researchers have discovered that
SARS-CoV-2 infection leads to stabilizing TP53 on chromatin [140], which contributes to a
robust host cytopathic effect. The participation of this protein results in the alteration of
chromatin accessibility, cellular senescence, and the release of inflammatory cytokines via
TP53 in response to various SARS-CoV-2 spike variant-induced syncytia formations.

The protein appears to have a role in inflammation associated with cellular
senescence [140]. In addition, researchers discovered that TP53 plays a role in IFN-γ-
mediated signaling, apoptosis, and proteasomal degradation of CD4 T cells [141]. However,
uncertainties regarding the functionality of miRNAs persist because of technical difficulties
and the considerable number of miRNAs that are still subject to systematic profiling [130].
Because they have low intrinsic stability and contain RNAses [142], their measurements
can be compromised by degradation and the effects of laboratory manipulations [143,144].
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Figure 13. Post-transcriptional networks related to negative metabolic controls because of ORF7b
interference. GO analysis for the negative regulation of programmed cell death (p < 8.28 × 10−6)
(EGFR, HRAS, PIK3R1, HSPA5, PIK3CA, SRC).

TFs are well-established proteins with reliable experimental results, although miRNAs
remain somewhat enigmatic. TFs are proteins that control the rate of transcription of genetic
information from DNA to mRNA binding to DNA. Thus, their function is to regulate genes
by switching them on and off. This functional activity addresses gene expression to the
exact target cells at the right time and in the right amount. Groups of TFs function in a
coordinated fashion to direct cell division, cell growth, and cell death. TFs work alone or
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with other proteins in a complex by promoting (as an activator) or blocking (as a repressor)
the recruitment of RNA polymerase to specific genes.
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Figure 14. Co-regulated network related to negative metabolic controls because of ORF7b interference.
GO analysis for the negative regulation of programmed cell death (p < 1.82 × 10−5). (TFs: TP53,
MYC; Genes: SRC, EGFR, HRAS, PIK3R1, HSPA5, PIK3CA; miRNA: has-miR-1 and has-miR-576-5p).

We examined the various correlations between miRNAs, TFs, and the components of
the compact hub-and-spoke architectural system of the PPI network, obtaining information
on the fundamental co-regulations operated by some TFs and miRNAs. These findings
suggest that crosstalk motifs, comprising the direct and non-shared relationships between
regulators and their target genes, can have downstream effects on diverse biological pro-
cesses, in line with the features already highlighted in the interactome’s analysis network.
This analysis amplifies and substantiates our findings and deductions from the interactomic
analysis. Our result, however, has limitations. The human genome contains thousands of
coding and non-coding RNA genes. These genes are expressed differentially, in diverse
locations, at distinct times during normal homeostasis, or in response to environmental
cues. This differential expression also extends to TFs and miRNAs. Gene regulation is
specific to certain conditions and changes over time, meaning our findings only provide
a static view of the molecular mechanisms affected by ORF7b. While our conclusions are
valid, we can only show the presumed targets, not how they work dynamically.

4. Discussion

The guiding principle that underpins this research is that SARS-CoV-2 infection leads
to changes in the deep metabolic activities of infected cells to favor the acquisition and
maintenance of viral strategies compared with normal cells. The virus causes a reprogram-
ming of cellular metabolism by its proteins, where “metabolic reprogramming” refers to
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the recognition of normal metabolic pathways that are modified by viral proteins when
compared with those in normal tissue. This point is significant because the analysis of
“metabolic normality” is often overlooked. Our training in cancer has taught us to search
for mutations that can modify signaling processes. In viral infections, mutations are absent,
as viruses achieve the same aim by up- or down-regulating normal signaling pathways or
other metabolic processes.

Our results reveal the functional impact of the accessory protein ORF7b in SARS-CoV-
2 infection and identify molecules that control metabolic processes dysregulated by this
viral protein. Among the many functional activities highlighted, we focused on those that
promote the spread of infected cells in the organism.

The release of virions into the extracellular space is a common event among many
viruses, which has stimulated the study of virus egress/entry biology. Although some
viruses spread through infected cells [145,146], this is an understudied topic. Several
authors [65,147] have recently reported evidence from antibody experiments that SARS-
CoV-2 could spread through cell-to-cell transmission. However, no one has studied or
hypothesized any related molecular mechanism. In this article, we confirm those authors’
hypotheses and describe the deep molecular mechanism that underlies this feature of
SARS-CoV-2. This discovery contributes to our understanding of the human immune
response to the attack of this virus because cell-to-cell transmission is an effective means by
which viruses evade host immunity.

It should be considered that our data on spread, in some sense, support the the-
ory of virulence evolution, which assumes that high growth rates of pathogens should
both increase transmission between hosts and increase disease-induced morbidity or
mortality [105,148]. This logic accommodates the spread of infected cells, but the theory also
suggests that viral “tolerance” mitigates virulence without reducing viral load [148,149].
This also suggests that the host should select the pathogen with a higher growth rate to
gain a gain in transmission between hosts but without being detrimental to the original
host [149–151]. Today’s clinical data tells us that the virulence of COVID-19 is decreasing
with no type of specific intervention. Our data do not explain the effects of diffusion on
the virulence, but they pave the way for experimental designs with greater awareness of
what happens.

Using interactomics, we analyzed only functional and physical correlations between
ORF7b and the entire human proteome determined by experiments. To obtain reliable inter-
actomics results, from the set of interactors, we extracted only those that were characterized
by high significance. The investigation showed that the virus achieves its strategic goals
by interacting with metabolic processes controlled by human proteins such as EGFR, SRC,
HSPA5, MTOR, SEC13, SEC61A1, VAMP2, PIK3R1, PIK3CA, GRB2, and HRAS, which
are important for human metabolism because they are high-ranking HUB and bottleneck
proteins. Through a series of analyses using transcriptional co-regulation networks, we also
validated our results by identifying regulatory actions conducted by transcription factors
and miRNAs on genes that code for the identified key proteins.

Viruses do not perform metabolic processes but know how to interact with them
to their own advantage. Although researchers have made various attempts to identify
metabolic pathways and nodes under the control of the virus, as far as we know, this is
the first wide-ranging interactome map identified for a specific protein of SARS-CoV-2.
We identified some metabolic pathways under the control of ORF7b; nevertheless, we
have limited knowledge of the comprehensive set of viral proteins involved and the
specific mechanisms. Despite that, several authors have hypothesized some functional
activities of ORF7b in the infected cell and its synergism with other viral proteins, but
no one has attempted to study in depth the molecular and functional interactions within
human metabolism implemented by ORF7b. In particular, its involvement in SNARE-
driven vesicular transport, exocytic processes, and ERBB signaling has been identified but
without a functional characterization that identifies the actual role of ORF7b in synergy
with other viral proteins [152]. There are other studies that have endeavored to juxtapose
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the mechanisms of diseases between SARS1 and SARS2 [153,154], but none of them have
deciphered any common molecular mechanism. Both viruses lead to acute respiratory
distress, but many phenomenological observations show differences. One study predicted
that SARS-CoV-2 induces a systemic disease, which, unlike SARS1, damages various
organs in the body, such as the heart, kidney, and brain [155,156]. These results suggest
that the two viruses use different molecular mechanisms, but we do not know which
mechanisms they use. Out of curiosity, searching PubMed for “differences in molecular
mechanisms of SARS-CoV-1 and SARS-CoV-2” or “molecular mechanisms of SARS-CoV-1
and SARS-C0V-2 (or similar terms)” yielded no results. The continuous work conducted
by the curators of BioGRID, in selecting and evaluating the statistical significance of each
single experimentally characterized interaction between the viral proteins and the human
proteome, has allowed us to design this study with the methods of interactomics. Direct
knowledge of the deep molecular mechanisms implemented by individual viral proteins
is essential because only through this knowledge will we be able to design specific and
effective antiviral drugs. Conducting a study at a deep molecular level, which is a research
area still rather obscure in its modes of action in space and time, is an important approach
aimed at identifying those human proteins that play crucial roles in viral infection such as
hub nodes or as a bottleneck. These proteins represent the crossroads of multiple biological
activities and, therefore, are the best targets for disease control.

ORF7b is a tiny viral protein of 43 amino acids, a macro-polyanion with a net charge of
−4 at neutral pH (four negative residues and no positive charge); the central part from 9 to
29 is helical, and the protein surface is negative [6]. This protein does not appear to operate
on its own (see Table 9). What emerges from this study is the precise interference of ORF7b
with various molecular mechanisms at the basis of our metabolism. ORF7b showed diverse
behaviors, in terms of localization, membrane recruitment, and metabolic dynamics. The
results show its important role in conditioning cellular transport processes as well as in
some important signaling pathways (see Table 3). The topological characteristics of this
interactome reveal a group of proteins with structural and functional properties that are
implicated in multiple metabolic activities, some of which are dysregulated by ORF7b’s
action. Their high functional relationships characterize these proteins and their high ability
to regulate a multitude of significant metabolic and signaling pathways. The interactome
shows certain metabolic modules that perform necessary functional activities for normal
cellular metabolism. A large central core (GCC) comprising two connected clusters was
identified through cluster analysis as the primary functional location of these proteins.
The high number of tight connections favors a high metabolic rate, which accelerates any
functional activity.

The activity of these proteins extends to very different places in the cell (see Table 4)
according to a hub-and-spoke topological model and also to those tissues that have molec-
ular characteristics suitable for the entry of the virus (see Table 6). All this suggests
that ORF7b must have a remarkable ability to interact with different molecular part-
ners, allowing it to operate everywhere, at the membrane level and in the cytoplasm.
Indeed, the list of its main molecular interactors shows both membrane proteins and
cytoplasmic proteins. Some authors have hypothesized a role for ORF7b as an intrinsic
single-span membrane protein, in analogy with the 44-amino acid homolog ORF7b of
SARS [6]. This hypothesis is rather restrictive considering the wide spectrum of functions
in which this protein is involved and the spatio-temporal characteristics that a biological
object of this type must possess in order to be involved in various intracellular trans-
port processes (see GO:0006810, p-value 3.04 × 10−67) or even in guiding and regulating
target localization (see GO:0008104 and GO:0045184, with p-values of 1.4 × 10−58 and
2.85 × 10−58). But this protein must also have the ability to interact with different mem-
brane systems (see GOCC:0016020, GOCC:0031090, GOCC:0031982 or GOCC:0098588, with
p-values of 2.5 × 10−92, 2.07 × 10−77, 5.13 × 10−62 and 3.17 × 10−58) and to interfere with
metabolic signaling paths (see GO:0007169, GO:0007167; HAS-9006934, HAS-1227986, or
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HAS-6811558, with p-values of 1.23 × 10−66, 7.95 × 10−59, 4.44 × 10−84, 2.43 × 10−30, and
5.16 × 10−24).

The regulated functional re-localization seems to be one of the most important char-
acteristics of this protein [157]. ORF7b shows coherent functional solutions with viable
biochemical functional models. The closest class of proteins possessing these types of broad
properties is called the “Peripheral Membrane Proteins”, which is a class of proteins that
live at the membrane interface [158,159]. In 2002, Felix Goñi [160] introduced the concept of
“non-permanent membrane proteins” to encompass the wide variety of proteins that are not
found in a stable membrane-bound form under physiological conditions but interact with
the membrane in certain phases of their specific course of action. Despite the fundamental
biological meaning of these proteins, an experimental characterization of their structure
has always been vague because attempts at structure prediction often fail. Therefore, this
protein class has a poor representation of its 3D structures within the PDB because they are
difficult to study [161]. Representing them in a few words, they are soluble proteins that
bind transiently to the surface of biological membranes or even to proteins on the outer
side of the membrane where they perform their functions. The reversible attachment of
proteins to biological membranes shows how they can regulate cell signaling and many
other important cellular events through a variety of mechanisms [162,163]. Thus, the be-
havior of peripheral proteins, reversibly associated with the lipid bilayer [162,164], may
also explain the behavior of ORF7b, consistent with its structural/functional properties.
Therefore, this protein can be considered a reliable member of the class of “non-permanent
membrane proteins” [165].

Recent molecular dynamics simulation experiments provided molecular insights into
the protein’s dimerization [166]. This cited study shows different dimerization models,
both parallel and antiparallel. Among the various structures modeled, the authors suggest
the possibility that the parallel dimer may operate docked to the membrane, from 7 to 30,
and float in the cytoplasm from 31 to 43. Based on their results, they also observe that the
analysis of genetic mutations of ORF7b during the evolution of the pandemic showed a
loss of stability in the homodimer not compatible with the molecular mechanisms that
regulate the production of IFN, the functional activity for which this protein is most credited.
They conclude that the lack of detailed structural information on lateral protein–protein
associations hinders a thorough evaluation of packing, so there is not yet sufficient detail to
define consistent structure–function relationships. This information adds to the previous
considerations, but every hypothesis made remains valid.

Like other viruses, SARS-CoV-2 can cause reinfection/reactivation and persistent
infection, as supported by several experimental studies [167]. SARS-CoV-2 has the potential
to activate or modulate oncogenic cancer-promoted pathways, leading to chronic low-grade
inflammation and tissue damage, according to growing evidence [168]. Several authors
perceive oncogenesis as a potential long-term effect of SARS-CoV-2 infection, which could
lead to the onset of cancer by inhibiting tumor suppressor genes [169]. Utilizing similar
tactics as EBV or HSV1 by SARS-CoV-2 to manipulate p53 is clear, as the virus takes over
the protein using viral antigens, which leads to p53 deterioration [170]. By deactivating
both the external and internal apoptotic pathways of host cells, SARS-CoV-2 may spread
like cancer cells [171,172]. Our results suggest that the cancer-like effects of SARS-CoV-2
result from the virus’s capability to spread infected cells through its proteins, mimicking
cancer and its metastasis. The lack of adequate understanding of these mechanisms makes
it impossible to make accurate predictions about the long-term implications of long COVID.

However, we should make a last consideration given the recent advances in our
understanding of the N protein of SARS-CoV-2. Phosphorylation of the central disordered
region of the N protein forms dynamic, liquid-like condensates that also control viral
genome transcription [103]. The N protein contains three dynamic disordered regions that
house putative transiently helical binding motifs, and the protein undergoes liquid–liquid
phase separation [103,173]; thus, phosphorylation regulates the accessibility and assembly
of the N protein to bio-condensate [174]. Another critical function of N is to encapsulate the
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viral genome of ssRNA to evade immune detection and protect viral RNA from degradation
by host factors [174–177].

Viral proteins form condensates for their molecular strategies, such as infection and
signaling transduction [178,179]. Viruses execute their molecular tactics in specific parts
of cells. For instance, we should consider how phase separation in cell compartments
affects important processes like viral transcription or viral spread [178,179]. That ORF7b
interacts with N (Table 9) supports the involvement of ORF7b in viral diffusion phenomena,
with mechanisms of alteration of the cytoskeleton, but perhaps also with more complex
mechanisms involving liquid droplets. After all, phase separation is one of the basic
molecular processes that govern multiple cellular activities, such as cancer progression,
gene expression, and signaling transduction [180].

In SARS-CoV-2, the properties of the liquid-like condensate that forms phase-separated
compartments without a membrane and the transient nature of interactions within them are
determined by the interaction between the N protein and viral RNA because of its intrinsic
disorder properties [181]. The threshold for phase separation decreases as the number of
interacting sites of a molecule increases. This multivalency comes from structural domains,
where each domain contributes to binding [181]. Intrinsically disordered regions (IDRs)
often participate in phase separation, as they might provide a source of multivalency. In
fact, the low affinity of their individual interactions can enable liquid-like properties [181].

We studied SARS-CoV-2–host interactions in a simplistic context because crucial
information is missing from the databases. For example, there have been few studies
evaluating virus–host molecular interactions considering the range of post-translational
modifications. Without the enormous potential of the biological role of post-translational
modifications, we run serious risks of having distorted information on the biology of this
virus. Researchers have shown the crucial roles of phosphorylation and ubiquitylation in
other systems but have not yet identified the corresponding proteoforms in SARS-CoV-2–
host interactions.

However, many of the high-ranking proteins we studied and selected show that
they have all the characteristics necessary to act even through forms of bio-condensates.
Therefore, we cannot exclude that, together with the co-regulation that we highlighted,
there may also be a further form of regulatory activity exerted by the liquid-like condensates.
We cannot exclude it considering their well-established presence in cells and the important
roles they play.

5. Conclusions

The proposed model, although created on the most robust basis possible given our cur-
rent knowledge of the interactions between ORF7b and other SARS-CoV-2 proteins with the
human proteome (see “Robustness of the study” in the Supplementary Materials), will be
worth seeing again, supported by more precise knowledge on transcriptional modifications
and the spatio-temporal characteristics of its proteins and by the role of bio-condensates.
Deep biological aspects are still very little known and often overlooked. Without this, we
will continue to have inconsistent flat views of metabolism and viral action.

The results were examined in the context of our current understanding of the principles
responsible for cellular behavior emerging from an interactomic analysis. At the same
time, our work offers a mechanistic hypothesis to explain aspects of the virulence of
SARS-CoV-2, demonstrating key differences in using the mesoscopic approach of Systems
Biology compared with symptom-based macroscopic approaches, which tells us very little
about what might be happening at deep metabolic levels in the human body, as long as it is
based on omics data, both experimental and significant, because this is the real limit. Our
interactomics framework indeed offers a series of testable questions and predictions that
can stimulate future work, such as comparing deep mechanisms of virulence evolution in
diverse infection stages. Understanding the molecular mechanisms that select the evolution
of viral traits in the human host should allow us to better predict and combat the virulence
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of probable future threats and also understand the most suitable targets for designing
a drug.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biom14050541/s1. Figure S1: ARBOR representation of
ORF7b interactome; Figure S2: 75 protein network; Figure S3: Functional enrichment of the network;
Figure S4: Shortest path distribution; Figure S5: EGFR interactome in the human proteome according
to BioGRID; Figure S6: Role of EGFR in the hub-and-spoke model; Figure S7: Intensity of relation-
ships among subgraphs; Figure S8: Down-regulated processes of the core; Figure S9: Co-regulation
network of high rank proteins; Figure S10: Log-log distribution; Figure S11: Ranked values of nodes;
Figure S12: Scientific literature distribution; Figure S13: Protein size distribution; Figure S14: protein
disorder distribution. Table S1: List of 75 proteins of level 6 to 4 present in BioGRID as specific interac-
tors of ORF7b; Table S2: List of 51 proteins extracted from BioGRID and used on STRING to calculate
the human interactome model. References [13,90,182–196] are cited in the supplementary materials.
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