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Abstract: Tumor necrosis factor receptor-associated factor (TRAF) proteins play pivotal roles in a
multitude of cellular signaling pathways, encompassing immune response, cell fate determination,
development, and thrombosis. Their involvement in these processes hinges largely on their ability to
interact directly with diverse receptors via the TRAF domain. Given the limited binding interface,
understanding how specific TRAF domains engage with various receptors and how structurally
similar binding interfaces of TRAF family members adapt their distinct binding partners has been the
subject of extensive structural investigations over several decades. This review presents an in-depth
exploration of the current insights into the structural and molecular diversity exhibited by the TRAF
domain and TRAF-binding motifs across a range of receptors, with a specific focus on TRAF1.
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1. Introduction

Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins serve as vital
signaling mediators in diverse cellular pathways, notably in immune responses and apop-
tosis. They achieve this by binding to a range of cellular receptors, such as tumor necrosis
factor receptor (TNF-R), interleukin 1 receptor, Toll-like receptor (TLR), nucleotide-binding
oligomerization domain-like receptor (NLR), and cytokine receptors [1–4]. TRAF protein
comprises seven family members, TRAF1 to TRAF7, in mammals. One hallmark feature
of TRAF family proteins, with the exception of TRAF1, is the presence of a homologous
RING domain located at the N-terminus. This RING domain, reminiscent of those observed
in various E3 ubiquitin ligases, serves as the central component of the ubiquitin ligase
catalytic domain, playing a pivotal role in facilitating ligase activity [5,6]. Furthermore,
except for TRAF7, TRAF family members harbor a TRAF domain at the C-terminus, piv-
otal for interacting with diverse receptors and comprising approximately 230 amino acid
residues (Figure 1A). This domain can be further divided into two distinct subdomains:
the N-terminal coiled-coil domain (TRAF-N) and the C-terminal globular domain (TRAF-
C). In solution, TRAF family proteins assemble into a trimeric structure reminiscent of a
mushroom, driven by the interactions mediated through the TRAF domain, which acts as
the functional unit essential for TRAF signaling [7,8].

It is generally known that TRAF proteins fulfill dual roles, functioning both as E3
ubiquitin ligases and as scaffolds within cellular signaling pathways. The scaffolding
function primarily relies on the TRAF domain, facilitating interactions between various
membrane receptors and downstream effector molecules, notably protein kinases such as
ASK1, IRAKs, TAK1, and MEKK1 [9–12]. The E3 ligase activity of TRAFs has undergone
extensive investigation, leading to the identification of substrates specific to each family
member [6,13–16].

TRAF1 was initially recognized as an adaptor protein interacting with TNFR2, setting
it apart as a distinct member of the TRAF family due to its absence of an N-terminal RING
domain [17]. Because of this reason, TRAF1 lacks E3 ubiquitin ligase activity. Involvement
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of TRAF1 in TNFR2-mediated signaling within T cells is established, where it acts as a
negative regulator by direct interaction with TRAF2 to inhibit apoptotic cell death of T
cells [18–20]. In addition to its anti-apoptotic function, a pro-apoptotic role of TRAF1 in a
certain cellular context has been also reported in neuronal cells [21]. Furthermore, research
has demonstrated that TRAF1 performed a significant role in the pathogenesis of hepatic
steatosis and associated metabolic disturbances, suggesting its involvement as a positive
modulator of insulin resistance [22].

Given their pivotal roles in critical cellular signaling, TRAF proteins are implicated
in various human diseases, including metabolic diseases, cancer, and inflammatory
diseases, making them potential drug targets [23–27]. Consequently, structural studies
on the TRAF family were explored in the early 2000s to clarify the mechanisms by
which specific TRAF proteins interact with diverse receptors via constrained binding
interfaces and to understand how similar binding interfaces among TRAF family members
discern their particular binding partners. The structures of the TRAF domain within
TRAF2, TRAF3, and TRAF6, as well as their complexes with various receptors, were
initially solved through X-ray crystallography in the late 1990s and early 2000s, marking
significant milestones in understanding their molecular interactions [28–30]. Conversely,
the structural characterization of TRAF1, TRAF4, and TRAF5, along with their receptor
complexes, occurred more recently, allowing for a broader and deeper understanding of
the diverse roles played by TRAF family members in cellular signaling pathways [31–36].
This review intends to explore the current knowledge surrounding the structural and
molecular diversity within the TRAF domain, with a special focus on the TRAF1 family,
based on available structural information.
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Figure 1. An overview of the various aspects of the TRAF family structure focusing on TRAF1. (A) The
domain boundary in the TRAF family, showing the regions where specific functional domains are
located. (B) Representative cartoon figure showing the monomeric TRAF domain. The structure of
TRAF1 (PDB ID: 5E1T) was used as a representative example [31]. The color gradient, transitioning
from blue to red, illustrates the chain orientation from the N to C terminus, and secondary structures
such as helices and sheets are labeled. (C) The superposition of the structures of the TRAF domain,
likely showing the structural alignment of TRAF domains from different TRAF family members. PDB
IDs are presented next to the name of each protein. (D) A cartoon of the trimeric TRAF1 TRAF domain.
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Each chain is shown separately in distinct colors, providing a clear visual representation of the trimeric
structure. The illustration offers both top and side views. Within the structure, black circles are utilized
to highlight the receptor-binding region, emphasizing its importance in molecular interactions. (E) A
full-length structural model depicted alongside a schematic representation illustrating the interaction
between TRAF1 and its receptor.

2. TRAF Domains and Structure

The TRAF domain, which spans approximately 230 amino acids, is a defining feature
of TRAF family proteins, with six members (TRAF1–TRAF6) identified in mammals
based on this criterion [37]. This domain can be further divided into two subdomains:
the TRAF-N domain and the TRAF-C domain. While the TRAF-C domain predominantly
interacts with various receptors, the TRAF-N domain is primarily targeted by intracellular
signaling molecules. Even though TRAF domains share structural similarities, each
TRAF protein demonstrates distinct biological functions owing to its unique repertoire of
interacting partners.

The exploration of TRAF domain structures began with the unveiling of the TRAF2
TRAF domain structure by Dr. Wu’s group in 1999 [28], followed by the characterization of
the TRAF6 TRAF domain structure by the same group three years later [29]. Subsequently,
the structures of the TRAF domains of TRAF3 [35], TRAF5 [35], TRAF4 [32–34], and
TRAF1 [31] were also reported. The structural investigation revealed that the TRAF-N
domain adopts a coiled-coil structure, whereas the TRAF-C domain was a globular fold
consisting of seven to eight anti-parallel β-strands (Figure 1B). When aligning the structures
of all six TRAF family members, it becomes apparent that the TRAF-C domain remains
highly conserved, while the TRAF-N domain’s position and length vary across TRAF
proteins (Figure 1C). Sequence comparison further supports this observation, revealing
variability in the length of the TRAF-N domain across the family. Specifically, TRAF1,
TRAF4, and TRAF6 exhibit relatively shorter TRAF-N domains, whereas TRAF3 and
TRAF5 harbor relatively longer TRAF-N domains. While the overall structures of TRAF
family members are highly similar, noticeable structural variations exist. For instance,
certain loops within the TRAF domain of TRAF4 and TRAF6 exhibit differences in length
and position compared to other TRAF proteins (Figure 1C). Specifically, in TRAF4, the
loops connecting β5–β6 and β6–β7 within the TRAF domain are relatively elongated
compared to those observed in other TRAF members. Additionally, the TRAF-N coiled-
coil domain is uniquely situated solely in the outer layer in TRAF4 (Figure 1C). These
structural disparities among TRAF family members likely contribute to their functional
divergence. When in solution, the TRAF domain assembles into a stable and functionally
significant trimer, taking on a characteristic mushroom-like structure. Specifically, the
TRAF-C domain forms the cap, while the TRAF-N coiled-coil domain constitutes the stalk
(Figure 1D) [7,31]. Through structural and biochemical analyses, it has been uncovered that
several key interaction hot spots, notably positioned on β3, β4, β6, and β7 of the TRAF
domains, are essential for receptor accommodation (Figure 1D).

Drawing upon the structural insights provided by the RING domain, zinc-finger
domain, and trimeric TRAF domain, researchers have devised a model outlining the
reconstituted full-length TRAF structure [38]. Since TRAF1 does not contain any distinct
domains at the N-terminal part, it is inferred that the N-terminal part of TRAF1 might be a
flexible loop-like structure. Therefore, in the case of TRAF1, the TRAF domain, responsible
for interactions with trimeric active receptors, assembles into a functional trimer, whereas
the N-terminal segment may exhibit flexibility. (Figure 1E). Consequently, the overall
length of the entire TRAF1 molecule is estimated to be approximately 250 Å, and its shape
resembles a long stool or mushroom.

3. Understanding Receptor Interaction with TRAF Proteins

TRAF family members engage in interactions with a variety of receptors and intra-
cellular molecules, encompassing TNFR2, CD30, TRADD, GPVI, and TANK, facilitating
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important cellular signaling events. Early structural and biochemical investigations fo-
cusing on TRAFs, notably TRAF2 and TRAF3, along with their associated receptors, have
highlighted the utilization of three key regions, termed binding hot spots, for these interac-
tions (Figure 2A,B) [28,29,39,40]:
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Figure 2. Deciphering the TRAF-binding motif through structural insights from TRAF/receptor
complexes, focusing on the case of TRAF1. (A) Sequence alignment of TRAF1, TRAF2, TRAF3, and
TRAF4 shows the conserved receptor-binding hot spots. The residues involved in the formation of
binding hot spots 1, 2, and 3 are colored in red, blue, and cyan, respectively. (B) Table summarizing
the binding hot-spot-forming residues. (C) Phylogenetic tree of TRAF domains from different TRAF
families. h indicates human protein. Phylogenetic tree was generated using NCBI tree viewer:
https://www.ncbi.nlm.nih.gov/tools/treeviewer (accessed on 25 March 2024). (D) A magnified view
of a CD40-TRAF2 complex (PDB ID: 1D00) [39]. (E) A magnified view of a TANK-TRAF3 complex
(PDB ID: 1L0A) [41]. (F) A magnified view of a TANK-TRAF1 complex (PDB ID: 5H10) [42].

Hot spot 1, commonly referred to as the hydrophobic pocket, includes amino acid
residues on β4, β5, β6, and β7.

Hot spot 2, identified as the serine finger, is marked by three serine residues (with one
serine residue substituted by alanine in TRAF1 located within β6 and the loop connecting
β6 and β7.

Hot spot 3, labeled the polar pocket, comprises polar amino acid residues on β3 and
the loop connecting β3 and β4.

The high conservation of residues within these three hot spots across TRAF1, TRAF2,
TRAF3, and TRAF5 implies a shared receptor specificity, indicating common interaction
modes among these TRAF proteins (Figure 2A,B). However, in TRAF4 and TRAF6, the
residues within the three binding hot spots show a lack of conservation, although there are
some conserved residues in hot spot 1. This divergence suggests that TRAF4 and TRAF6
possess unique attributes, leading to differences in their binding mode and specificity to
receptors compared to typical TRAF family members, such as TRAF2 and TRAF3.

4. TRAF1 and Its Receptor Recognition

TRAF1 serves as an adaptor molecule involved in regulating the activation of NF-
kappaB and JNK pathways [43,44]. Initially recognized as a binding protein for TNF

https://www.ncbi.nlm.nih.gov/tools/treeviewer
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receptor type 2 (TNFR2) [18], the cellular functions of TRAF1 remain less elucidated
in comparison to other TRAF family members. While early studies suggested a neg-
ative regulatory role for TRAF1 in TNFR2 signaling in T cells through its interaction
with TRAF2 [18], recent research has revealed positive regulatory functions for TRAF1
downstream of TNFR2-, CD30-, and LMP1-mediated signaling pathways, often in as-
sociation with TRAF2 [20,45–47]. Despite its emerging roles in various human diseases,
including hepatic and cerebral ischemia/reperfusion injury and anaplastic large cell lym-
phoma [21,48,49], the structure of TRAF1 is the least studied among the TRAF family, and
much is still unrevealed.

The TRAF1 TRAF domain shares 53% sequence identity with TRAF2, 48% with TRAF3,
35% with TRAF4, 45% with TRAF5, and 33% with TRAF6 (Figure 2A). This sequence
analysis suggests that the TRAF1 TRAF domain is more closely related to those of TRAF2,
TRAF3, and TRAF5 than to those of TRAF4 and TRAF6. Additionally, phylogenetic tree
analysis indicates that the TRAF domain of TRAF1 is evolutionarily more conserved than
those of TRAF2, TRAF3, and TRAF5 (Figure 2C).

The conventional binding hot spots and interaction mechanisms of TRAF family
members, notably TRAF2 and TRAF3, have been extensively investigated. The minimal
consensus motif recognized by TRAF2 and TRAF3 in TRAF-binding proteins, including
members of the TNF-R family, CD40, and LMP1, was characterized as Px(Q or E)E# [where
x represents any amino acid, and # denotes that acidic or polar amino acids are preferred]
(Figure 2D). In structural studies of TRAF2 in complex with various peptides, the most
conserved amino acid within the TRAF-binding motif was denoted as P0, representing
the zero position of the TRAF-binding motif. Following this naming convention, residues
within the Px(Q or E)E motif are categorized as follows: P (P-2), x (P-1), Q or E (P0), E
(P1), and # (P2). Specifically regarding CD40, residues within its TRAF2-binding motif are
delineated as P (P-2), V (P-1), Q (P0), E (P1), T (P2), and L (P3) (Figure 2D). To incorporate
the Px(Q or E)E motif, specific residues within hot spot 1 of TRAF2 (namely, F410, L432,
F447, F456, and C469) engage in extensive van der Waals interactions with the P residue
positioned at the P-2 site. At the primary structural determinant located at the P0 position,
either Q or E interacts with residues within hot spot 2 of TRAF2, composed off the serine
triad (S453, S454, and S455). Specifically, at position P0, the Q forms hydrogen bonds with
all three serine residues, whereas E at position P0 is capable of forming only one hydrogen
bond. Additionally, the Glu residue at position P1 participates in an ionic interaction with
R393 and establishes a hydrogen bond with Y395 in TRAF2 (Figure 2D). Key residues
implicated in the interaction with the Px(Q or E)E motif exhibit high conservation among
TRAF1, TRAF2, TRAF3, and TRAF5, with the exception of one serine residue within the
serine triad, substituted by alanine in TRAF1 (A369). This conservation implies that TRAF1,
TRAF2, TRAF3, and TRAF5 employ a shared mode of interaction involving the Px(Q or
E)E motif.

In addition to the predominantly detected major TRAF-binding motif [Px(Q or E)E
motif], several structural studies, such as those on the TRAF2–LMP1 [39] and TRAF3–
TANK [49] complexes, have identified a minor motif [Px(Q/E)xxD motif]. In the Px(Q/E)xxD
motif, the effectiveness of the TRAF interaction relies on the side chains of residues at posi-
tions P-2, P0, and P3, whereas in the major binding motif, the interaction involves the side
chains of residues at positions P-2, P0, and P1 (Figure 2D,E).

In the case of TRAF1, the most recently solved TRAF1-TANK complex structure (this
is the only complex structure within the TRAF1 family) revealed a new TRAF-binding
motif, PxQxT motif [42]. The structural analysis of the TRAF1-TANK peptide interac-
tion provides valuable insights into the molecular mechanisms underlying their binding.
Despite expectations of the involvement of residues at positions P-2, P0, and P3 in the
interaction with TRAF1 based on the minor TRAF-binding consensus motif, the complex
structure revealed the participation of residues at positions P0, P1, and P2. Specifically,
the side chain of Q at the P0 position formed a hydrogen bond with S368 of TRAF1, while
residues C at P1 and T at P2 formed hydrogen bonds with D314 of TRAF1 (Figure 2F) [42].
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Surprisingly, the residue at P3 (D), which was expected to participate in the interaction
with R308 and Y310 of TRAF1, did not directly engage in the interaction in the observed
structure. This observation implies that the side chain of D at the P3 position could not
participate in the interaction as initially anticipated. Additionally, structural comparison
revealed flexibility in the serine triad-containing loop of TRAF1, which moved closer to
the TANK peptide upon binding. This movement was attributed to the formation of a
hydrogen bond between P0:Q on the TANK peptide and S368 on TRAF1, highlighting the
dynamic nature of the TRAF1-TANK interaction and providing insights into the structural
changes accompanying peptide binding. This case of interaction was also detected in
TRAF3 interaction studies [30,50,51]. Within the PxQxT motif, residue T (P2) binds to a
conserved aspartic acid residue (D314 in TRAF1 and D464 in TRAF3). Meanwhile, the
interaction modes of P (P-2) and Q (P0) mirror those observed in the major binding motif.
Notably, in the minor consensus motif PxQxxD, the presence of D does not significantly
impact the interaction with TRAF3.

In the case of TRAF4 and TRAF6, distinct binding motifs have been identified. The
TRAF4-binding motif was elucidated in a study involving a TRAF4 complex with two
platelet receptors, GPIb and GPVI [36]. According to this structural analysis, the TRAF4-
binding motif spans from position P-3 to P0 and is characterized as R-L-X-A, where X
can represent any amino acid and A can be substituted with a small uncharged residue.
Conversely, the mode of interaction between TRAF6 and receptors has been unveiled
through three available complex structures, namely TRAF6–CD40, TRAF6–RANK, and
TRAF6–MAVS [51]. The TRAF6-binding motif consists of six amino acid residues, denoted
as PxExxZ (where x represents any amino acid and Z signifies an acidic or aromatic amino
acid). Small hydrophobic residues can replace P in this motif. Following the conventional
labeling system, the nomenclature of this motif is as follows: P (P-2), x (P-1), E (P0), x (P + 1),
x (P + 2), and Z (P + 3). Given that the TRAF1 TRAF domain shares only 35% sequence
identity with TRAF4 and 33% with TRAF6, it is understandable that TRAF4 and TRAF6
employ different binding strategies compared to those used by TRAF1.

5. Concluding Remarks

Our summary provides a comprehensive overview of the present understanding
regarding TRAF-binding motifs and their interactions with diverse receptors. It is evident
that while TRAF family members share structural similarities, they exhibit distinct binding
specificities and preferences for interacting partners. In this discussion, we explored the
recently elucidated TRAF1–TANK structure, where the sequence PxQxT emerged as the
TRAF1-binding motif. Notably, we observed that Q at position P0 generates a hydrogen
bond with the S368 residue of TRAF1, while both C and T at P1 and P2, respectively, engage
in hydrogen bonding with D314 of TRAF1.

Recognizing conserved binding motifs like Px(Q/E)E, Px(Q/E)xxD, and PxQxT un-
derscores their significance in facilitating distinct protein–protein interactions. The shared
binding hot spots among TRAF1, -2, -3, and -5 enable them to interact with common
receptors, highlighting their overlapping roles in certain signaling pathways. Overall,
these findings emphasize the dynamic nature of TRAF-mediated signaling and the intricate
interplay between TRAF family members and their interacting partners in various cellular
processes. Our review will contribute significantly to our understanding of cellular signal-
ing mechanisms and pave the way for the development of targeted therapeutics aimed at
modulating TRAF-mediated pathways in various diseases.

As of now, the full-length structure of the TRAF family, including TRAF1, has not
been elucidated. The considerable length of TRAF proteins, coupled with their composi-
tion of numerous domains interconnected by flexible unstructured loops, likely presents
challenges in solving the full-length TRAF structure. However, with the development
of advanced structure determination techniques, there is optimism that the full-length
TRAF structure, which could significantly enhance our understanding of TRAF-mediated
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signaling pathways and various receptor recognition processes, will be elucidated in the
near future.
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