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Abstract: The skin is the outer layer of the human body, and it is crucial in defending against injuries
and damage. The regenerative capacity of aging and damaged skin caused by exposure to external
stimuli is significantly impaired. Currently, the rise in average life expectancy and the modern
population’s aesthetic standards have sparked a desire for stem-cell-based therapies that can address
skin health conditions. In recent years, mesenchymal stem cells (MSCs) as therapeutic agents have
provided a promising and effective alternative for managing skin regeneration and rejuvenation,
attributing to their healing capacities that can be applied to damaged and aged skin. However, it
has been established that the therapeutic effects of MSC may be primarily mediated by paracrine
mechanisms, particularly the release of exosomes (Exos). Exosomes are nanoscale extracellular
vesicles (EVs) that have lipid bilayer and membrane structures and can be naturally released by
different types of cells. They influence the physiological and pathological processes of recipient cells
by transferring a variety of bioactive molecules, including lipids, proteins, and nucleic acids such
as messenger RNAs (mRNAs) and microRNAs (miRNAs) between cells, thus playing an important
role in intercellular communication and activating signaling pathways in target cells. Among them,
miRNAs, a type of endogenous regulatory non-coding RNA, are often incorporated into exosomes
as important signaling molecules regulating protein biosynthesis. Emerging evidence suggests that
exosomal miRNAs from MSC play a key role in skin regeneration and rejuvenation by targeting
multiple genes and regulating various biological processes, such as participating in inflammatory
responses, cell migration, proliferation, and apoptosis. In this review, we summarize the recent
studies and observations on how MSC-derived exosomal miRNAs contribute to the regeneration and
rejuvenation of skin tissue, with particular attention to the applications of bioengineering methods
for manipulating the miRNA content of exosome cargo to improve their therapeutic potential. This
review can provide new clues for the diagnosis and treatment of skin damage and aging, as well
as assist investigators in exploring innovative therapeutic strategies for treating a multitude of
skin problems with the aim of delaying skin aging, promoting skin regeneration, and maintaining
healthy skin.

Keywords: mesenchymal stem cells; exosomes; miRNAs; skin regeneration and rejuvenation;
bioengineering approaches

1. Introduction

Skin, as the largest and outermost organ, functions as the first line of defense against
injury and infection by providing a physical barrier and immune protection. Wounds and
aging are two consequences of skin exposure to injuries. Wounds and skin damage can
be induced by trauma, lacerations, abrasions, burns, various surgeries, or an underlying
disease such as diabetes or vascular disease. In addition, everyone experiences aging from
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birth, and skin aging is a natural process and a direct reflection of the body’s aging. Skin
aging can be caused by both intrinsic and extrinsic factors, and both intrinsic and extrinsic
aging can result in a decrease in the structural integrity of the skin and a loss of physiological
function [1,2]. Furthermore, the ability of aging skin to regenerate is significantly impaired
due to the constant internal and external stress it is subjected to. Currently, wounds have
emerged as a major public health concern that may have a tremendous impact on health-
related quality of life and the cost of the health care system [3–5]. Additionally, delaying
skin aging is crucial in maintaining people’s normal physiological functions of the skin;
thus, the therapeutic strategy for preventing or delaying skin aging has attracted great
attention, which is necessary for developing skin care products and delaying the risk of skin
aging. In recent years, due to the continuous improvement of material life and the extension
of life expectancy, the level of modern people’s awareness of skin health has improved.
There is an increasing concern about accidents, burns, diseases, and medical treatments
that affect the skin. At the same time, the application of mesenchymal stem cells in the
treatment of skin regeneration is also becoming more and more widespread. For those
reasons, tissue regeneration and rejuvenation represent fields of interest in clinical practice.
Regeneration and rejuvenation therapies, which focus on the repair and regeneration of
damaged skin, as well as the prevention and reversal of skin aging, are in high demand in
our society.

Mesenchymal stem cells are pluripotent stem cells that originate from adult stem cells
and have the ability to self-renew and self-repair, as well as the capacity to differentiate
into multiple functional cells under certain conditions [6–9]. Primary MSC can be obtained
from diverse sources, including placental tissue, umbilical cord tissue, bone marrow,
adipose tissue, umbilical cord blood, and other tissues [6–9]. Recently, MSC have been
recognized as a therapeutic agent for skin regeneration and rejuvenation due to their
superior characteristics that can be applied to damaged and aged skin, such as their
ease of isolation and expansion, multi-potential, anti-inflammatory, anti-apoptotic, and
immunomodulatory properties, and their capability to replace damaged cells and restore
tissue function [6–9]. Nevertheless, increasing studies have shown that implantation of MSC
in vivo significantly promotes tissue repair or delays senescence, but it is surprising that
the implanted cells are only transiently detected within the tissues; these findings suggest
that MSCs perform their functions through a paracrine signal transduction mechanism,
particularly those involving extracellular vesicles [10,11].

Extracellular vesicles are a complex mixture of membrane-bound vesicles released
from most cells, and they can be divided into three different subgroups according to their
size and biogenesis: exosomes (Exos, 50–150 nm), microvesicles (MVs, 100–1000 nm), and
apoptotic bodies (ABs, 500–5000 nm) [12,13]. Exosomes are nanosized endocytic vesicles
originating from multi-vesicular bodies, which are usually secreted into the extracellular
matrix by fusion with the cytomembrane [12,14]. According to recent studies, exosomes
are the most important structures involved in paracellular secretion, which influence a
series of pathophysiological processes by transporting their contents into target cells and
participating in cell-to-cell communication [14]. Additionally, as an alternative to cell-free
therapy, exosomes have several advantages over stem cell transplantation, including sta-
bility, low toxicity, biocompatibility, immune rejection and tumorigenesis risk avoidance,
and skilled exchange of molecular goods, making them an ideal candidate for tissue
engineering and regenerative medicine [7,8,15,16]. Based on this, much attention has been
focused on the study of exosomes, especially mesenchymal-stem-cells-derived exosomes
(MSC-Exos). Indeed, MSC-Exos exert their effects mainly by releasing a variety of bioactive
molecules [17–19]. Exosomes, depending on their parental origin and microenvironment,
carry a large diversity of cargos, including mRNAs, long non-coding RNAs (lncRNAs),
miRNAs, proteins, and lipids, and play key roles in intercellular communication and infor-
mation transmission by transporting and delivering their biologically active molecules to
neighboring or distant cells through a unique mechanism [12–14]. In particular, exosomes
can be loaded with miRNAs that can be transferred to nearby cells or targeted cells and
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then internalized by recipient cells, resulting in an alteration of cellular functions [14,20].
MiRNAs are a type of endogenous, non-protein-coding, short RNA molecules that are
between 19 and 22 nucleotides long. They are significant post-transcriptional gene regula-
tors that can either fully or partially regulate a number of mRNAs, which prevents the
synthesis of proteins [20–22].

Skin damage and aging can occur when the skin is constantly exposed to various exter-
nal stimuli. In dermatology, there have been many reported cases in which MSC-secreted
exosomes have the potential for skin regeneration and rejuvenation, such as tissue damage
repair, chronic wound healing, inhibition of wound scar formation, and anti-aging [8,23–28].
MSC-Exos play a role in skin regeneration by increasing cell proliferation and neovascular-
ization and decreasing inflammation in skin injury lesions [26–28]. Simultaneously, skin
rejuvenation is facilitated by MSC-Exos through the production of collagen and elastic
fibers, inhibition of metalloproteinase activation, and enhancement of protection against ul-
traviolet B (UVB)-radiation-induced aging [23–25]. Therefore, the use of exosomes derived
from MSC for skin regeneration and rejuvenation is a novel treatment method that has
received much attention. Recently, increasing evidence has demonstrated that MSC-Exos
carry out critical functions in skin regeneration and rejuvenation by transferring their
cargo miRNAs that function as vital players in regulating a variety of biological processes,
including angiogenesis, the regression of inflammation, the proliferation and migration of
skin cells, as well as the production of collagen and elastic fibers [8,23,26,29–31].

In this review, we systematically summarize the latest applications of miRNAs derived
from MSC-Exos in improving diseased and aging skin, as well as the intracellular signaling
pathways mediated by miRNAs. Additionally, we emphasize the applications of bioengi-
neering methods for manipulating the miRNA content of exosome cargo to improve their
therapeutic potential. This review can provide a clear understanding for future clinical
diagnosis and treatment of skin damage and aging, as well as assist investigators in explor-
ing new therapeutic strategies and developing skin care products for treating a multitude
of skin problems, which can delay the risk of skin aging, promote skin regeneration, and
maintain healthy skin.

2. Skin Regeneration and Rejuvenation-Associated miRNAs

Recent research indicates that exosomal miRNAs from MSC play a critical role in skin
regeneration and rejuvenation, including wound healing, reducing skin scar formation,
skin anti-aging, and hair regrowth. The relevant studies are summarized in Table 1.

Table 1. Exosomal miRNAs derived from mesenchymal stem cells involved in the process of skin
regeneration and rejuvenation.

miRNA Source of MSC Targets or Pathways Processes and Effects References

Wound healing

miR-181c UCMSC TLR4;
NF-κB/P65 lnflammatory cytokine production ↓ [32]

miR-146a MSC IRAK1, TRAF6,
NF-κB

lnflammatory cytokine production ↓;
Inflammatory gene expression ↓ [33,34]

miR-223 BMSC Pknox1 M2-phenotype macrophage polarization ↑ [35]

miR-let-7b UCMSC TLR4/NF-κB/
STAT3/AKT

M2-phenotype macrophage polarization ↑;
lnflammatory cytokine production ↓ [36]

miR-34a-5p
miR-124-3p

miR-146a-5p
ADSC ARG1, CD206,

TSG-6, TGF-β1 M2-phenotype macrophage polarization ↑ [37]
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Table 1. Cont.

miRNA Source of MSC Targets or Pathways Processes and Effects References

miR-146a
miR-132 ADSC ROCK1/PTEN Pro-angiogenic gene expression ↑;

Proliferation and tube formation of HUVEC ↑ [38]

miR-17-5p UCMSC AKT/HIF-1α/
VEGF

Proliferation, migration, and tube formation
of HUVEC ↑ [26]

miR-221-3p BMSC AKT/eNOS

Proliferation, migration, and tube formation
of HUVEC ↑;

VEGF secretion ↑; Granulation tissue
formation ↑

[39]

miR-126 BMSC PIK3R2;
PI3K/AKT

Proliferation, migration, and tube formation
of HUVEC ↑ [40]

miR-126-3p
SMSC MAPK/ERK;

PI3K/AKT
Migration of HMEC ↑; Capillary-network

formation ↑ [41]

BMSC SPRED1/Ras/ERK Proliferation, migration, and tube formation
of HUVEC ↑ [42]

miR-125a ADSC DLL4 Endothelial tip cell formation ↑ [43]

miR-486-5p ADSC Sp5/CCND2
Proliferation and migration of HSF and

HMEC ↑;
HMEC angiogenesis ↑

[44]

miR-19b↓ ADSC H19/SOX9/
Wnt/β-catenin

Proliferation, migration and invasion of HSF
↑; Collagen fibre formation ↑ [45]

miR-19b ADSC CCL1/TGF-β
Proliferation and migration of HSF and

HaCaT cells ↑;
HSF, HaCaT and endothelial cell apoptosis ↓

[46]

miR-135a AMSC LATS2 Proliferation and migration of fibroblasts ↑ [28]

miR-93-3p BMSC APAF1 Proliferation and migration of HaCaT cells ↑;
Cellular apoptosis ↓ [27]

miR-150-5p MSC PTEN Proliferation and migration of HaCaT cells ↑ [47]

miR-27b MSC ITCH

Proliferation and migration of HSF and
HaCaT cells ↑;

Collagen fiber proliferation ↑;
Epithelialization ↑

[48]

miR-10b ADSC PEA15 Proliferation and migration of HaCaT cells ↑;
Cellular apoptosis ↓ [49]

miR-125b UCMSC TP53INP1
Proliferation and migration of endothelial

cells ↑;
Cellular apoptosis ↓

[50]

Skin scar

miR-141-3p ADSC TGF-β2/Smad2/3

Proliferation and migration of hypertrophic
scar

fibroblasts ↓; Myofibroblast
transdifferentiation ↓

[51]

miR-21,
miR-23a,

miR-125b,
miR-145

UCMSC TGF-β2/Smad2 Myofibroblast transdifferentiation ↓; Collagen
deposition ↓ [25]

miR-29a ADSC TGF-β2/Smad3

Migrating and proliferating of hypertrophic
scar

Fibroblasts ↓; Collagen deposition and ECM
fibrosis ↓

[24]
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Table 1. Cont.

miRNA Source of MSC Targets or Pathways Processes and Effects References

miR-181a ADSC Sirtuin1 Myofibroblast transdifferentiation ↓; Collagen
deposition ↓ [52]

miR-138-5P MSC SIRT1 Proliferation, migration and protein
expression in human skin fibroblasts ↓ [30]

miR-192-5P ADSC IL-17RA/Smad

Proliferation and migration of hypertrophic
scar

fibroblasts ↓; Myofibroblast
transdifferentiation ↓; Collagen deposition ↓

[53]

miR-21-5p BMSC SPRY2
Migrating and proliferating of hypertrophic

scar
fibroblasts ↓; Collagen deposition ↓

[54]

Anti-aging

miR-145-5p

PMSC CDKN1A;
ERK/AKT

Proliferation and migration of senescent
fibroblasts ↑; Cellular senescence ↓; Cellular

apoptosis ↓
[55]

dMSC CAMK1D;
PTEN

Proliferation and migration of senescent
dermal fibroblasts↑; Cellular senescence ↓;

Cellular apoptosis ↓
[56]

miR-146a ADSC
Src kinase;

VE-cadherin;
Caveolin-1

Angiogenesis ↑; Cellular senescence ↓;
Migration of senescent endothelial cells ↑ [57]

miR-126 BMSC Spred-1 Angiogenesis ↑; Tissue regeneration ↑ [58]

miR-29b-3p BMSC
MMP-2;

TGF-β/Smad;
MAPK/AP-1

Migration of human dermal fibroblasts ↑;
Photoaging ↓; Matrix metalloproteinase ↓;

Procollagen ↑
[23,59,60]

miR-302b DPSC ERK Cell proliferation ↑; Stemness ↑; Cellular
senescence ↓ [61]

miR-498 dMSC CAMK1D;
PTEN

Proliferation and migration of senescent
dermal fibroblasts ↑; Cellular senescence ↓;

Cellular apoptosis ↓
[56]

miR-493-3p UCMSC TNF-α/NF-κB Growth and migration of fibroblasts ↑;
Procollagen ↑; Oxidative stress levels ↓;

Cellular senescence ↓
[62]

miR-196a-5p UCMSC NF-κB

Hair loss

miR-22 ↓ ADSC Wnt/β-catenin;
TNF-α

Hair growth ↑; Hair regeneration ↑; Dermal
thickness ↑;

Proliferation and migration of DPC ↑;
Anti-apoptosis ↑

[63]

miR-122-5p ADSC TGF-β1/Smad3 Hair bulb size ↑; Dermal thickness ↑ [64]

Note: ↑: Promoting; ↓: Inhibiting.

Mesenchymal-stem-cell-exosomes-derived miRNAs are involved in multiple processes
of wound healing, including regulating inflammation responses, promoting angiogenesis,
and modulating cell proliferation, migration, and apoptosis (Figure 1) [65,66].
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Figure 1. Multiple regulatory mechanisms of MSC-Exos on wound healing are mediated by exo-
some miRNAs. MSC-Exos are capable of promoting wound healing through a variety of regulatory
mechanisms mediated by exosome-shuttling miRNAs. (A) MSC-Exos exert wound healing effects by
inhibiting the production of inflammatory factors and inflammatory genes and promoting the polar-
ization of M1 macrophages to M2, mediated by multiple exosomal miRNA pathways. (B) MSC-Exos
promote wound healing via exosomal miRNA-pathway-mediated angiogenesis of human umbilical
vein endothelial cells and human dermal microvascular endothelial cells. (C) MSC-Exos enhance
wound healing through miRNA-mediated pro-proliferative, pro-migratory, and anti-apoptotic effects
on a variety of skin cells, including human skin fibroblasts (HSFs), endothelial cells (ECs), and human
keratinocytes (HaCaT).
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2.1. Wound Healing
2.1.1. Exosomal miRNAs Derived from MSC Modulate Inflammatory Responses

The stage of inflammation is crucial for skin regeneration [67]. However, the persis-
tence of inflammation is not conducive to wound healing, and the degree of inflammation
has a significant impact on the effect of wound healing [65,67]. The initiation and disap-
pearance of inflammatory reactions are the main parts of skin regeneration and also the
key to determining the quality and time of healing. Neutrophils and macrophages are the
two primary types of cells involved in the inflammatory response.

It is now clear that miRNA-mediated inflammatory responses are mainly associated
with two pathways: the Toll-like receptor (TLR) pathway and the nuclear transcription
factor-kappa B (NF-κB) pathway [31]. Studies have shown that miR-181c plays an im-
portant role in immune cell metabolism and the control of inflammation by fine-tuning
immune function. The umbilical cord mesenchymal-stem-cells-derived exosomes (UCMSC-
Exos) carrying miR-181c have a more potent effect on alleviating excessive inflammation
in burn rats by inhibiting the TLR4 signaling pathway, which in turn leads to a decrease
in the activation of NF-κB/p65, a crucial mediator in controlling the production of in-
flammatory mediators [32]. MiR-146a is one of the important regulatory molecules in
the inflammatory response. The inflammatory response is frequently triggered by pro-
inflammatory stimuli such as interleukin-1b (IL-1b), tumor necrosis factor-α (TNF-α), and
TLR. The pro-inflammatory genes IL-1 receptor-associated kinase 1 (IRAK1) and TNF
receptor-associated factor 6 (TRAF6) are crucial adapter molecules that promote activation
of the NF-κB pathway by Toll-like receptors and the interleukin 1 signaling pathway [33,34].
MiR-146a, which is produced from exosomes of mouse bone marrow mesenchymal stem
cells (BMSCs), enhances wound healing by suppressing the expression of pro-inflammatory
genes IRAK1 and TRAF6 [33,34].

Macrophages are important effector cells that have multiple phenotypes and functions
in wound healing. Numerous investigations have demonstrated the advantageous effects of
macrophage polarization toward macrophage 2 (M2) on wound healing [35]. Inflammation
shifts from the inflammatory phase to the tissue repair phase when the inflammatory phe-
notype macrophage1 (M1) switches to the wound healing/fibrosis-promoting phenotype
M2 [66]. Overall, wound healing can be improved by promoting macrophage polarization
from the pro-inflammatory phenotype M1 to the anti-inflammatory M2 phenotype. A study
reports that miR-223 shuttled by BMSC-derived exosomes accelerates wound healing by
targeting the Pknox1 protein to regulate macrophage polarization, shifting macrophages
from an M1 phenotype to an M2 phenotype [31,35]. Another study has shown that ex-
osomes secreted by adipose mesenchymal stem cells (ADSCs) are highly expressive of
miR-34a-5p, miR-124-3p, and miR-146a-5p, which are important miRNAs associated with
the M2 phenotype of macrophages and can induce M2-type macrophage polarization by
targeting a variety of transcription factors and proteins, including arginase 1 (Arg1), CD206,
tumor necrosis factor-inducible gene 6 (TSG-6), and transforming growth factor beta 1
(TGF-β1), thereby reducing inflammation and enhancing wound healing [37].

Interestingly, pretreatment of MSC with chemical or biological factors may enhance the
biological activity of MSC-derived exosomes [39]. For instance, exosomes that are derived
from MSC treated with pro-inflammatory cytokines like interferon γ (IFN-γ), TNF-α, and
lipopolysaccharide (LPS) can have enhanced immunosuppressive and anti-inflammatory
properties and shift macrophages from an M1 to an M2 phenotype by shuttling miRNAs
that regulate macrophage polarization [17,68,69]. A more specific example is that exosomal
miR-let-7b from umbilical cord mesenchymal stem cells (UCMSCs) pretreated with LPS
promotes macrophage activation and polarization towards an M2-like profile via the
TLR4/NF-κB/signal transducer and activator of transcription 3 (STAT3)/serine/threonine-
protein kinase B (AKT) regulatory signaling pathway and increases the expression of
anti-inflammatory cytokines in macrophages, which attenuates the inflammatory response
and accelerates wound healing in cutaneous wounds [36].
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In conclusion, proper wound healing requires the regulation of M1–M2 polarization.
At the site of the wound, inflammation clears away harmful pathogens and damaged
cells. However, uncontrolled inflammation can cause wounds to heal slowly or not at all.
MSC-Exos promote macrophage polarization from the pro-inflammatory phenotype M1
to the anti-inflammatory phenotype M2, thereby improving wound healing. Altering this
balance can lead to consequences such as failure to heal wounds or increased tissue fibrosis.

2.1.2. Exosomal miRNAs Derived from MSC Promote Angiogenesis

New vascular complexes must quickly form during wound healing in order to supply
enough oxygen and nutrients to the newly formed granulation tissue. Pro-angiogenic
chemicals that encourage angiogenesis and aid in wound healing can be released by
MSC [7].

The most significant element causing angiogenesis is vascular endothelial growth
factor (VEGF), a pro-angiogenic factor that can control endothelial cell migration and
differentiation as well as enhance endothelial cell recruitment to promote angiogenesis
and endothelialization of wound tissues. Moreover, VEGF can stimulate the induction
of signaling axes such as mitogen-activated protein kinase (MAPK), phosphatidylinositol
3-kinase (PI3K)/AKT, which also enhance endothelial cell survival, proliferation, migration
and wound angiogenesis [7]. Wei et al. demonstrated that exosome-derived miR-17-5p
from UCMSC promoted angiogenesis and accelerated wound healing in diabetes through
the AKT/hypoxia inducible factor-1 alpha (HIF-1α)/VEGF pathway [26].

The biological activity of MSC-derived exosomes may be enhanced by preconditioning
them with chemical or biological factors, which further potentiate the effects of proangio-
genic factors. For example, the research from Yu et al. has found that exosomes isolated from
atorvastatin-pretreated BMSC, compared with those from non-pretreated BMSC, exhibit
much more excellent abilities in facilitating wound regeneration by promoting the prolifer-
ation, migration, tube formation, and VEGF level of endothelial cells and granulation tissue
formation via the miR-221-3p-mediated activation of the AKT/endothelial nitric oxide syn-
thase (eNOS) pathway [39]. MiR-126 is regarded as the endothelial-specific microRNA that
governs vascular integrity and angiogenesis [70]. By targeting phosphoinositol-3 kinase
regulatory subunit 2 (PIK3R2), miR-126 generated from BMSC stimulates the PI3K/AKT
signaling pathway and encourages the migration and proliferation of human umbilical
vein endothelial cells (HUVECs), hence promoting angiogenesis and wound healing [40].
Through the activation of MAPK/extracellular signal-related kinases (ERK) and PI3K/AKT,
synovial MSC-derived miR-126-3p encapsulated in hydroxyapatite-chitosan composite
hydrogel has been proved to improve wound surface re-epithelialization and accelerate
angiogenesis [41].

In addition to enhancing the expression of VEGF, angiogenesis can be promoted by
regulating the expression of other factors or signaling pathways [7]. Likewise, IFN-γ-
pretreated exosome miR-126-3p promotes the proliferation, migration, and angiogenesis of
HUVEC by targeting sprouty-related EVH1 domain-containing protein 1 (SPRED1) and the
downstream Ras/ERK pathway [42]. MiR-125a, which is released by adipose-mesenchymal-
stem-cells-derived exosomes (ADSC-Exos), inhibits delta-like 4 (DLL4) and stimulates the
production of endothelium tip cells to increase angiogenesis and expedite wound heal-
ing [43]. MiR-132 and miR-146a derived from ADSC exosomes up-regulates the expression
of angiopoietin1 (ANGPT1) and kinase insert domain receptor (KDR) (pro-angiogenesis
genes) and down-regulates the expression of vasohibin-1 (VASH1) and anti-angiogenesis
genes thrombosopondin-1 (THBS1) through rho associated coiled-coil containing protein
kinase 1 (ROCK1)/phosphatase and tensin homolog(PTEN) signaling pathways to promote
endothelial cell angiogenesis [38]. By suppressing Sp5/cyclin D2 (CCND2) expression, miR-
486-5p released by ADSC-EVs stimulates angiogenesis in human microvascular endothelial
cells (HMECs), which mediates the process of skin wound healing [44].
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2.1.3. Exosomal miRNAs Derived from MSC Regulate Cell Proliferation, Migration,
and Apoptosis

MiRNAs shuttled by MSC exosomes have emerged as important signaling molecules
in skin wound healing, affecting skin cell proliferation, migration, and apoptosis. The
biological process of wound healing is also crucial for skin repair and regeneration, which
mainly involves the proliferation and migration of human keratinocytes, fibroblasts, and
endothelial cells [22].

The migration and replication of keratinocytes during the proliferative phase are nec-
essary for wound closure because they drive the re-formation of the epidermis. MiRNAs,
which are closely related to the proliferation and migration of keratinocytes, are considered
as potential targets for developing novel wound-healing drugs or wound-healing thera-
pies [22]. In Shen et al.’s study, the exosome miR-93-3p secreted by BMSC was observed
to promote the migration and proliferation of epithelial HaCaT cells by targeting apop-
totic peptidase-activating factor 1 (APAF1), thereby playing a protective role in wound
healing [27]. Cheng and his colleagues’ research indicated that MSC-derived exosomal
miR-150-5p accelerates skin wound healing via the PTEN-mediated PI3K/AKT pathway
since miR-150-5p down-regulates PTEN, thereby promoting the proliferation and migration
of H2O2-induced HaCaT cells and inhibiting their apoptosis [47]. In a similar study, it
was found that miR-10b from ADSC-EVs can enhance skin wound healing by targeting
PEA15 to promote cyclin dependent kinase 6 (CDK6) expression, thereby promoting the
proliferation and migration of H2O2-damaged HaCaT cells while inhibiting their apopto-
sis [49]. MSC-derived EVs harboring miR-27b activate the JUNB/IRE1α axis and enhance
the proliferation and migration of HaCaT and HSF cells by inhibiting itchy E3 ubiquitin
protein ligase (ITCH) in vitro and in vivo to promote skin wound healing [48].

Fibroblasts are the primary target and effector cells of skin wound healing and also
interact with surrounding keratinocytes and collagen during the healing process [45]. By
producing growth factors like VEGF, platelet-derived growth factor (PDGF), and other
growth factors, fibroblasts encourage the migration, proliferation, and alignment of en-
dothelial cells. By suppressing Sp5/CCND2 expression, miR-486-5p released by ADSC-EVs
encourages HSF migration and proliferation, which mediates the process of skin wound
healing [44]. Exosomal miR-135a generated from human amniotic mesenchymal stem
cells (AMSCs) has been shown to down-regulate large tumor suppressor 2 (LATS2) levels,
which in turn speeds up skin fibroblast migration and facilitates cutaneous wound healing
in rats [28]. Qian et al. have demonstrated that overexpression of lncRNA H19 (H19) in
ADSC-Exos can down-regulate miR-19b and increase the expression of sex-determining
region Y (SRY)-related high-mobility-group box 9 (SOX9), which in turn can activate the
Wnt/β-catenin pathway and promote the proliferation and migration of HSF, thereby
accelerating the regeneration of skin wounds [45]. On the other hand, the work of Cao et al.
showed that the ADSC-derived exosome miR-19b targeted the chemokine CC motif ligand
1 (CCL1), modulated the TGF-β signaling pathway, accelerated the roles of HaCaT cells
and HSF in injury recovery, and also attenuated endothelial cell apoptosis, thereby pro-
moting wound healing [46]. Hypoxic conditions can be applied to enhance the biological
properties of MSC-derived exosomes to promote wound healing. To enhance skin wound
healing, umbilical cord mesenchymal stem cells were pretreated with hypoxic conditions,
and their derived exosome miR-125b targeted the tumor protein p53 inducible nuclear
protein 1 (TP53INP1) to inhibit TP53INP1-mediated apoptosis and stimulate endothelial
cell migration and proliferation [50].

2.2. Skin Scar

Wound healing is a complex process that involves the proper coordination of a range
of regulatory factors to allow the repair of damaged tissue and the restoration of normal
skin function. In the process of wound healing, the imbalance of any factor at any stage can
lead to the formation of skin scars. Scars are areas of fibrous tissue that replace normal skin
after an injury and are a natural consequence of the wound healing process. Hypertrophic
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scars and keloids are types of skin scars that can be caused by a variety of factors, such as
pathological fibrosis, inadequate wound closure, extracellular matrix (ECM) overproduc-
tion, chronic inflammation, and excessive collagen deposition [71–73]. MSC derivatives
such as exosomes have shown similar therapeutic potential to MSC, and their shuttling
miRNAs have beneficial paracrine effects on mitigating scar formation by regulating the
proliferation, migration, and myofibroblast transdifferentiation of hypertrophic scar fibrob-
lasts, reducing collagen deposition, inhibiting ECM fibrosis, and regulating the expression
of scar-related proteins (Figure 2).
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Figure 2. Role and regulatory mechanisms of exosomal miRNAs derived from mesenchymal stem
cells in improving skin scar regeneration. Mesenchymal-stem-cell-derived exosomal miRNAs exert
their ability to ameliorate scarring by targeting relevant molecules to inhibit the expression of
scar-associated proteins, suppress fibroblast proliferation and migration, inhibit the deposition of
extracellular matrix (ECM) (e.g., collagen), and prevent the transdifferentiation of myofibroblasts.

Myofibroblast aggregation is a key factor involved in scar formation, and the induction
of TGF-β by miRNAs is closely related to the differentiation of myofibroblasts. For example,
blocking the TGF-β2/Smad2 pathway is a way to effectively prevent myofibroblast aggrega-
tion and reduce scar formation in vitro and in vivo [74]. MiR-141-3p delivered from ADSC
exosomes has been shown to possess important functions in treating hypertrophic scars
by inhibiting the proliferation, migration, and myofibroblast transdifferentiation of hyper-
trophic scar fibroblasts in vitro through targeting TGF-β2 and inhibiting the TGF-β2/Smad
pathway [51]. Similarly, UCMSC-exosome-enriched specific miRNAs (miR-21, miR-23a,
miR-125b, miR-145) mediate the anti-scarring effect of UCMSC in vitro and in vivo by
inhibiting the TGF-β2/Smad2 pathway during the wound healing process [25]. Exosomal
miR-29a produced from miR-29a-modified human adipose-derived mesenchymal stem
cells has also been shown to have the same effects as miRNAs described above in reduc-
ing the formation of pathological scars. Targeting the similar TGF-β2/Smad3 signaling
pathway, miR-29a reduces the formation of scars by inhibiting collagen deposition and
ECM fibrosis and preventing the migration and proliferation of hypertrophic scar fibrob-
lasts [24]. Intriguingly, one study has reported that a magnetic Fe3O4 nanoparticle and
a static magnetic field can be utilized to stimulate BMSC to secrete exosomes enriched
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with miR-21-5p, which enhances wound healing with a higher wound closure rate and
less scar formation in rats. Exosomal miR-21-5p has been shown to play a crucial role in
these effects by inhibiting SPRY2 and activating the PI3K/AKT and ERK1/2 signaling
pathways [54]. Sirtuin1, a class III histone deacetylase, is considered an ideal target for scar
prevention and treatment [75]. A study found that ADSC exosomes can also reduce scarring
by modulating the miR-181a/sirtuin1 axis [52]. Silent information regulator 1 (SIRT1) is
a NAD (+)-dependent protein-modifying enzyme, which can up-regulate the expression
of scar-related molecules such as NF-κB, α-smooth muscle actin (α-SMA) and TGF-β1 in
HSF. MiR-138-5P in MSC-Exos can directly target SIRT1 by binding to the 3′-UTR of SIRT1,
which can inhibit the proliferation, migration, and protein expression of hypertrophic scar
fibroblasts and thus alleviate pathological scars [30].

A hypertrophic scar is a fibroproliferative disorder of the dermis after a severe burn
injury, which often results in aesthetic disfigurement and dysfunction in patients. Studies
have shown that ADSC-Exos can modulate skin fibrosis and have a specific effect on
hypertrophic scars. ADSC-Exos can effectively inhibit the proliferation and migration of
hypertrophic scar fibroblasts and alleviate fibrosis. Further research has found that the
antifibrotic effect of ADSC-Exos-derived miR-192-5P on hypertrophic scar fibroblasts is
closely related to inrleukin-17 receptor A (IL-17RA), and the Smad signaling pathway
is associated with almost all fibrotic diseases. Li et al.’s work showed that miR-192-
5p in ADSC-Exos can reduce HSF fibrosis and specifically target IL-17RA to alter the
Smad pathway in proliferative scar formation, thereby speeding up wound healing and
decreasing collagen synthesis following severe burn injury [53].

2.3. Anti-Aging

The process of biological aging is an inherent attribute of living organisms and is
influenced by genetics, but it is also influenced by environmental factors and time to a
greater extent [76]. When there is excessive intracellular or extracellular stress or injury,
the cell cycle is irreversibly arrested, resulting in cellular senescence [76]. The G1 phase
persistent arrest of the cell cycle and the inflammatory response known as the senescence-
associated secretory phenotype (SASP) are the hallmarks of aging [8,76]. The acquisition of
SASP occurs by activating the SA secretome and altering the milieu surrounding senescent
cells through the DNA damage response (DDR) [77,78]. SASP mainly works by attracting
phagocytic immune cells and eliminating acutely senescent cells, then replacing them
with newly dividing cells [76,79]. However, the acquisition of SASP also results in the
activation of DDR and SASP in nearby cells, chronic inflammation, and normal cellular
senescence, which lowers immune function and creates a pro-inflammatory environment
that first occurs locally and then spreads to the systemic level, accelerating the aging of the
body [78,80].

While aging in the skin is perhaps the most manifest among other tissues, it is poten-
tially also one of the most amenable targets for both prevention and rejuvenation due to
its prominent location on the surface. The preferred rejuvenation measure among numer-
ous ways would be to reactivate stem cells within the skin tissue, which would reverse
the exhaustion of stem cells. Indeed, it has been confirmed that the paracrine effects of
MSC are linked to their immunomodulatory properties and strong regenerative capacity,
which make them even more effective than stem cell therapy [61,81]. As a result, increas-
ing evidence has shown that extracellular vesicles or exosomes are a new component of
SASP and age-related disease markers [82]. In recent years, extracellular vesicles derived
from mesenchymal stem cells (MSC-EVs), particularly miRNAs in MSC-EVs, have been
extensively studied for skin anti-aging or skin rejuvenation treatment (Figure 3).

One study reported that miR-145-5p loaded on placental-mesenchymal-stem-cell-
derived extracellular vesicles (PMSC-EVs) can inhibit high glucose-induced fibroblast
senescence injury by targeting CDKN1A and activating the ERK/AKT signaling path-
way [55]. Excessive accumulation of reactive oxygen species (ROS) can stimulate acetylated
p53 to promote cell senescence and apoptosis [83,84]. In a mouse cell aging model, miR-146a
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derived from ADSC exosomes has been demonstrated to mitigate oxidative-stress-induced
endothelial cell senescence by blocking Src kinase activation and inhibiting downstream
targets VE-cadherin and Caveolin-1, thus decreasing the levels of DDR, ROS and SASP,
which ultimately can stimulate angiogenesis and promote wound healing [57]. Similarly, in
the model of high glucose-induced senescent human dermal fibroblasts (HDF), exosomes
derived from human decidua mesenchymal stem cells (dMSC) were efficacious in delaying
cellular senescence. The mechanism is to inhibit the expression of calcium/calmodulin-
dependent protein kinase 1D (CAMK1D) and PTEN gene through the up-regulation of
miR-145-5p and miR-498, thereby promoting the proliferation and migration of human
dermal fibroblasts and inhibiting their apoptosis [56]. Interestingly, Chen et al. developed a
continuous nutrient supply culture (CC) strategy to culture and collect umbilical cord MSC-
derived EVs (CC-UCMSC-EVs) and found that CC-UCMSC-EVs reduced the accumulation
of inflammatory factors through miR-493-3p and miR-196a-5p-mediated inhibition of the
NF-κB signaling pathway, promoted the growth and migration of fibroblasts, and increased
the regeneration of collagen fibers through activation of the TGF-β/Smad pathway, which
ultimately led to the achievement of anti-photoaging repair efficacy of skin [62].

Biomolecules 2024, 14, x FOR PEER REVIEW 11 of 24 
 

 

While aging in the skin is perhaps the most manifest among other tissues, it is 
potentially also one of the most amenable targets for both prevention and rejuvenation 
due to its prominent location on the surface. The preferred rejuvenation measure among 
numerous ways would be to reactivate stem cells within the skin tissue, which would 
reverse the exhaustion of stem cells. Indeed, it has been confirmed that the paracrine 
effects of MSC are linked to their immunomodulatory properties and strong regenerative 
capacity, which make them even more effective than stem cell therapy [61,81]. As a result, 
increasing evidence has shown that extracellular vesicles or exosomes are a new 
component of SASP and age-related disease markers [82]. In recent years, extracellular 
vesicles derived from mesenchymal stem cells (MSC-EVs), particularly miRNAs in MSC-
EVs, have been extensively studied for skin anti-aging or skin rejuvenation treatment 
(Figure 3). 

 
Figure 3. Anti-aging mechanisms of exosomal miRNAs from different sources of mesenchymal stem 
cells. Exosomes derived from different sources of mesenchymal stem cells exert their anti-aging 
effects on senescent skin through different miRNA-mediated targets or signaling pathways. After 
exosome treatment, senescent skin can be rejuvenated by reducing the levels of the DNA damage 
response (DDR), reactive oxygen species (ROS), the senescence-associated secretory phenotype 
(SASP), and inflammation, as well as promoting cell proliferation, migration, angiogenesis, and the 
release of associated factors. 

One study reported that miR-145-5p loaded on placental-mesenchymal-stem-cell-
derived extracellular vesicles (PMSC-EVs) can inhibit high glucose-induced fibroblast 
senescence injury by targeting CDKN1A and activating the ERK/AKT signaling pathway 
[55]. Excessive accumulation of reactive oxygen species (ROS) can stimulate acetylated 
p53 to promote cell senescence and apoptosis [83,84]. In a mouse cell aging model, miR-
146a derived from ADSC exosomes has been demonstrated to mitigate oxidative-stress-
induced endothelial cell senescence by blocking Src kinase activation and inhibiting 
downstream targets VE-cadherin and Caveolin-1, thus decreasing the levels of DDR, ROS 
and SASP, which ultimately can stimulate angiogenesis and promote wound healing [57]. 
Similarly, in the model of high glucose-induced senescent human dermal fibroblasts 
(HDF), exosomes derived from human decidua mesenchymal stem cells (dMSC) were 

Figure 3. Anti-aging mechanisms of exosomal miRNAs from different sources of mesenchymal stem
cells. Exosomes derived from different sources of mesenchymal stem cells exert their anti-aging effects
on senescent skin through different miRNA-mediated targets or signaling pathways. After exosome
treatment, senescent skin can be rejuvenated by reducing the levels of the DNA damage response
(DDR), reactive oxygen species (ROS), the senescence-associated secretory phenotype (SASP), and
inflammation, as well as promoting cell proliferation, migration, angiogenesis, and the release of
associated factors.

Bone-marrow-mesenchymal-stem-cells-derived extracellular vesicles (BMSC-EVs) also
play an extremely important role in skin anti-aging. For instance, Wang et al. have
demonstrated for the first time that miR-126 enriched in BMSC-EVs rejuvenates senescent
endothelial progenitor cells (EPCs) and promotes tissue regeneration and angiogenesis
by targeting spred-1 [58]. In addition, exosomal miR-29b-3p shuttled by BMSC-EVs can
alleviate UVB-induced photoaging and promote the migration of human dermal fibroblasts
(HDF) by targeting matrix metalloproteinase-2 (MMP-2) [23]. The activation of TGF-
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β/Smad signaling pathways and inhibition of MAPK/activator protein-1 (AP-1) signaling
pathways may play a vital role in preventing UVB-induced cell senescence [23,59,60].
In another research, exosomal miR-302b derived from dental pulp stem cells (DPSCs)
can promote cell rapid proliferation and delay aging by up-regulating HIF-1α and multi-
functional factors like octamer binding transcription factor 4 (OCT4), SOX2, KLF4, and
cMYC through the ERK pathway, changing the mitochondrial metabolism pathway from
oxidative to glycolytic metabolism [61].

In conclusion, MSC-derived exosomes possess anti-aging effects through their unique
miRNAs. They have the potential to reduce senescent cells in tissues by inducing prolifera-
tion and reducing SASP in senescent cells. It has been reported that removing senescent
cells from tissues leads to a pro-regenerative environment [85]. Therefore, using MSC-
derived exosomal miRNAs to remove senescent cells could be a more effective method for
promoting skin tissue regeneration or rejuvenation.

2.4. Hair Loss

It is widely accepted that hair regeneration plays a significant role in the complete
regeneration of the skin. Furthermore, hair loss or alopecia is one of the obvious phenotypes
associated with aging. Alopecia can be triggered by numerous factors, including aging.
Aging-associated alopecia is known to be associated with follicle quiescence and minia-
turization [86–88]. Hair follicles (HFs) undergo regular cycles of growth, degeneration,
and regeneration [89]. HF stem cells found in the dermal papilla at the base of the follicle
and the bulge region are responsible for regulating the regenerative phase, which shows a
decline in activity as we age [90,91]. Additionally, dermal papilla cells (DPCs) are known to
support hair growth and regulate the hair cycle, and the key to regulating hair regeneration
is the development of the HF cycle from the resting period to the growth period [92,93].

Stem cells, particularly exosomes derived from stem cells, are now being used to
treat hair loss, reverse skin aging, and achieve rejuvenation effects. Stem-cell-derived
exosomes play a key role in this process of regulating cellular pathways that are crucial
for the growth, differentiation, and function of hair epithelial cells, such as inhibition and
activation of BMP/TGF-β and WNT signaling pathways [63,64,93–95]. The growth and
development of the HF are usually controlled by exosomal miRNAs through intercellular
communication [64,93,95]. MSCs have garnered increased attention among all types of stem
cells because of their potential to regenerate and repair tissue as well as their application
for hair regeneration. In recent years, it has been proven that MSC-derived exosomes
transport miRNAs, which can affect hair restoration and prevent hair loss. It has been
proven that exosomes from ADSC have been shown to promote the proliferation, migration,
and apoptosis remission of DPC, and ADSC exosome therapy has a positive impact on the
promotion of hair regeneration by regulating miR-22, Wnt/β-catenin signaling, and TNF-α
signaling [63]. MiR-22 is a key regulator of the hair cycle that promotes the transition from
anagen to catagen. ADSC-Exos stimulated HF growth by down-regulating miR-22 and
activating the Wnt/β-catenin pathway [63]. ADSC-Exos carrying miR-122-5p antagonize
the inhibition of dihydrotestosterone (DHT) on HF growth and up-regulate β-catenin and
versican expression in vitro and in vivo, restoring HF size and dermal thickness [64]. ADSC-
Exos enhance normal HF growth in androgen alopecia (AGA) by activating miR-122-5p
and inhibiting the TGF-β1/Smad3 axis [64].

3. Improving Exosomal miRNA Content and Function through
Bioengineering Approaches

MSC-derived exosomes have received increasing attention because of their therapeu-
tic potential and lower adverse effects. The nanosize and the surface lipid and protein
composition of the exosomes enable them to easily traverse microvessels and other tissues,
enabling MSC therapy to overcome its limitations [96]. MiRNA content manipulation in
exosomes will be crucial for enhancing future therapeutic applications. Consequently, the
isolation, purification, and manipulation of exosome cargo are necessary to expedite the
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efficacy of miRNA-based therapy and optimize its yield [4]. The content and function of
exosomal miRNAs may be related to the type of MSC, the environment, RNA-binding
proteins, and other factors [96]. Currently, an enhancement in exosomal miRNA content
and function can be achieved through a variety of strategies, such as hypoxia pretreatment
of parental cells, using virus vectors or biomaterials as carriers, manipulating environmen-
tal factors, and other miRNA loading or transfection methods mediated by physical or
chemical means (Figure 4).
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Figure 4. Bioengineering methods to improve exosomal miRNA content and function. A variety
of bioengineering approaches can be employed to enhance the content and function of miRNAs
secreted by exosomes, such as hypoxic preconditioning of parental cells, modulation of environmental
factors, modified calcium chloride transfection methods, electroporation, sonication, co-incubation
of exosomes with hydrophobically modified RNAs, and regulation of miRNA machinery proteins.
In addition, the use of viruses or biomaterials as vectors can significantly improve the content and
function of exosomal miRNAs by increasing their delivery rate.

3.1. Hypoxia-Induced MSCs Produce Wound-Protective Exosome miRNAs

Hypoxic environment is a very common condition during skin wounds, inflammation,
and infection. However, hypoxia is a vital regulator of gene expression in an early wound
environment. It has been shown that MSC-Exos derived from hypoxia pretreatment
are capable of up-regulating miRNA content in exosomes, and MSC-Exos for skin belly
regeneration are more effective in a hypoxic environment compared with MSC-Exos in
a normal oxygen environment [50]. It has been demonstrated that hypoxia can enhance
the exosome-mediated paracrine effects of UCMSC on endothelial cell proliferation and
migration and then induce the transcription of miR-125b in UCMSC. Exosomal miR-
125b activated in the hypoxic microenvironment can target and inhibit the expression of
TP53INP1, a protein with multiple functions involved in cell cycle arrest and apoptosis,
implying that the regulation of exosomal miR-125b/TP53INP1 signaling is crucial for
accelerating skin wound repair by promoting cell growth and migration and decreasing
cell apoptosis [50].
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3.2. Improving the miRNA Content and Function by Using Virus Vectors or Biomaterials
as Carriers

Pretreatment of MSC can directly increase the level of miRNAs in MSC-derived
secretions. And beyond that, the transduction of MSC with lentivirus is another method
for up-regulating the content of miRNAs in secretions. However, virus vectors usually
have the disadvantages of potential mutations, toxicity, and production difficulties [31]. In
addition to the conventional virus vectors, there are also materials such as liposomes and
nanoparticles that can act as carriers and possess less toxicity and greater effectiveness [31].

Up-regulation of miR-223 has been shown to drive macrophage polarization toward
the anti-inflammatory M2 phenotype, which may contribute to accelerating wound heal-
ing [97]. Saleh and co-workers used hyaluronic acid nanoparticles as a vehicle to deliver
miR-223 to wound sites, resulting in a successful inhibition of the inflammatory response
and faster wound healing [97]. One study reported that silk fibroin is a biocompatible
polymer that can be made into nanostructures called nanosilks. Nanosilks are character-
ized by high intensity density ratios and exhibit strain hardening. They have previously
produced free radical-scavenging cerium oxide nanoparticles (CNPs) conjugated to anti-
inflammatory miRNAs (CNP-miR-146a), which can shorten wound healing time after treat-
ment and can be efficiently delivered to the wound via nanofilament solution to promote
wound closure in diabetic mice [98,99]. A study has proven that exosomes derived from
miR-126-3p overexpressed synovial mesenchymal stem cells (SMSCs) are encapsulated
in hydroxyapatite-chitosan composite hydrogels as a wound dressing, which possesses
the property of longer controlled release and successfully promotes wound surface re-
epithelialization, accelerates angiogenesis, and expedites collagen maturity by activating
PI3K/AKT and MAPK/ERK pathways for the healing of diabetic chronic wounds [41].
In another study, bilayered thiolated alginate/PEG diacrylate hydrogels were used as
a controlled release carrier of BMSC-EVs to achieve rapid and scarless wound healing;
BMSC-EVs containing enriched miR-29b-3p were released from the upper layer of the
hydrogels and suppressed excessive angiogenesis and collagen deposition during the late
proliferation and maturation phases, thus reducing the formation of hypertrophic scars
and accelerating scarless wound healing [100].

3.3. Modulative Environmental Factors Regulate Exosomal miRNA Content and Function

The composition of exosomes is closely related to the growth environment from
which MSCs are derived, and several studies have implemented techniques to manipulate
environmental factors, such as the fact that exosomes derived from MSC grown in 3D
culture conditions contain more contents like miRNAs and are more effective in promoting
functional recovery. Another study reported that exosomes released from placenta-derived
mesenchymal stem cells (PMSCs) with nitric oxide (NO) stimulation revealed superior
angiogenic effects as a result of the enhanced expression of proangiogenic molecules such as
miR-126 in the exosomes, implying that NO has the potential to enhance the proangiogenic
compositions of exosomes and their proangiogenic capacity [101]. Wound healing can
be enhanced by both BMSC-Exos and magnetic nanoparticles. In Wu et al.’s work, bone
mesenchymal stem cells were stimulated with a magnetic Fe3O4 nanoparticle and a static
magnetic field to create novel exosomes. These exosomes improved angiogenesis and
fibroblast function, speeding up wound closure, and the up-regulation of miR-21-5p in
these exosomes may have been a contributing factor [54]. Yang et al. utilized blue light
(455 nm) to illuminate UCMSC to produce exosomes with improved therapeutic efficacy by
elevating levels of miR-135b-5p and miR-499a-3p in exosomes to enhance proangiogenic
capacity [102].

3.4. Other Methods to Improve the miRNA Content of Exosomes

Exosomes contain a lipid membrane bilayer structure, which makes it possible for
hydrophobic compounds to passively enter through direct incubation [103]. For example,
Sun et al. utilized hydrophobic binding to load the hydrophobic drug curcumin into mouse
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lymphoma EL-4 exosomes through direct incubation for anti-inflammatory and antioxidant
treatment without causing any damage to the membrane integrity of the exosomes [104,105].
However, RNA is unable to passively diffuse across the hydrophobic exosome lipid bilayer
membrane during incubation due to its hydrophilic nature [104]. Therefore, hydrophobic
modification of RNAs is required for easy entry into exosomes through co-incubation.
For instance, let-7b miRNAs that have been hydrophobically modified down-regulate
their oncogene target high mobility group AT-hook 2 (HMGA2) in vivo and increase their
biodistribution to non-small-cell lung cancer after delivery [106]. The data indicate that the
cholesterol fraction is coupled to siRNA and stabilized with complete phosphorothioate
tails in order to modify the siRNA to have higher hydrophobic properties, which enables
effective and steady loading of siRNA onto the exosome via direct co-incubation without
destroying the entire vesicle [107].

In addition to the hydrophobic binding methods described above, membrane perme-
abilization strategies, including electroporation, sonication, and other methods, have also
been developed for loading exosome cargo [104].

Electroporation is an effective tool for performing gene transfection and introducing
exogenous RNAs into exosomes, or MSC, and electrical impulses in microseconds to
milliseconds are utilized to cause a temporary decrease in the stability of MSC and exosome
membranes, enabling cargo to enter cells or exosomes [108]. For example, miR-17-92 can be
loaded into MSC through electroporation to enhance their nerve protection function [96].
Xiong and his colleagues loaded miR-542-3p into BMSC-Exos using electroporation, which
strengthened the proliferation, migration, and angiogenesis of HSF and HMEC in vitro
and expedited wound closure [109]. Ultrasound is also a method of loading miRNAs by
applying a low sound frequency to destroy the integrity of the exosome membrane and
transfer RNAs to the exosomes, which has been confirmed to significantly raise the miRNA
content of exosomes [96]. There is also a modified method for transfection using calcium
chloride, which includes a slow mixture of phosphate-buffered saline and CaCl in two
solutions containing the desired small RNA and a heat shock step to directly load miRNA
mimics or inhibitors into isolated exosomes to promote the miRNA delivery process [96].

Furthermore, miRNA machinery proteins play a significant role in regulating miRNA
content. For instance, the Argonaut-2 protein (Ago2) and Dicer are two important miRNA
effectors [110,111]. It has been proven that Ago2 and Dicer can enrich miRNAs to regulate
local axon outgrowth; knocking down the Ago2 in BMSC can attenuate the effects of
BMSC-EVs and decrease the content of miRNAs [110–112].

4. Conclusions and Prospect

The skin is the largest organ in the human body, the initial protective barrier, and
our most crucial organ for protecting ourselves from infection and harm. Despite the fact
that most skin-related diseases are usually not life-threatening, they can have a significant
impact on an individual’s quality of life, mental health, and health care budgets [3–6]. Skin
regeneration and rejuvenation are aimed at restoring the structure and the function of skin,
reducing scar formation, improving the quality and effectiveness of damaged skin, and
counteracting age-related morphogenetic changes [113,114].

Skin rejuvenation and the repair of damaged skin remain a major challenge in modern
medicine. As previously mentioned, the ability of MSC to induce anti-inflammatory
conditions and promote angiogenesis, as well as other promising properties, highlights the
infinite potential and importance of MSC in the field of skin regeneration [7]. However, the
use of MSC-based exosome therapy has made a significant contribution to the advancement
of skin regeneration and rejuvenation, which offers a more feasible approach for bench-to-
bedside translation compared to cell-based therapy. Despite the fact that MSC has assumed
an important role in clinical research in this area of skin rejuvenation, MSC-Exos therapy still
poses considerable challenges to be overcome before it can enter clinical practice. MSC-Exos,
as a cell-free therapy, have significant advantages over MSC treatment due to their stability
and ability to overcome various safety concerns such as oncogenesis, immunogenicity,
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and genomic mutations [7,8,15]. Adipose stem cell exosomes, for instance, work better to
cure acne scars when combined with fractional carbon dioxide laser, according to a clinical
investigation. The study also showed that an adjuvant treatment combined with ADSC-
Exos possesses clinical efficacy and safety in acne scarring applications [115]. Similarly,
exosomes from ADSC were used to effectively and safely treat aging facial skin through
a combination of treatments with microneedling. This combination greatly promoted
facial skin recovery [116]. Therefore, we consider that a possible therapeutic technique to
stimulate skin regeneration is to combine MSC exosomes with traditional methods.

New studies have demonstrated the potential of MSC-Exos in skin therapy. MSC-
based exosome therapy has opened the door to innovative approaches for repairing
and regenerating damaged skin, as well as preventing and reversing skin aging. The
present understanding is that the function of exosomes is determined by their contents.
Moreover, exosome content can vary due to a number of factors, including tissue source,
cell type, donor characteristics, and isolation methods. It is therefore necessary to stan-
dardize exosome contents to ensure that they contain consistent and reliable components,
regardless of their source. The variability in exosome content can be controlled by es-
tablishing standardized protocols for isolation, purification, and characterization and
ensuring the survival of specific bioactive molecules. MiRNA is one of the contents of
exosomes and plays an important role in the regulation of exosome function. MSC can
release miRNAs in exosomes, which can be taken up by certain recipient cells and induce
phenotypic and functional changes [14,20]. MiRNAs are small molecules that can target
multiple genes simultaneously, are relatively stable, and are suitable for technical manip-
ulation [20–22]. Despite the advantages and benefits of MSC-based exosome therapy,
there are still obstacles such as low production yield, low miRNA content in exosomes,
and functional heterogeneity derived from different MSC sources. Thus, increasing
attention has been focused on controlling the miRNA content secreted by the exosome,
and there are various bioengineering methods available for isolation, purification, and
manipulation of exosome release. However, the variety of miRNA sources and modes
of action may produce different results for different or the same wound types. As a
result, it is necessary to further deepen the exploration of miRNA delivery time and
delivery route. To evaluate miRNA expression accurately, all factors must be taken into
account, and the miRNA analysis method must be improved for clinical application. It
is important to note that there are still many outstanding issues regarding the clinical
application of exosomes, such as the mechanism of activity, effectiveness, and safety of
MSC-Exos. Therefore, in order to overcome these challenges, efforts should be made to
develop standardized guidelines and quality control measures for exosome production.

Meanwhile, there is still a need for an in-depth understanding of the potential mech-
anisms of exosomal miRNAs of MSC origin in dermal therapy and to conduct extensive
clinical trials to ensure the efficacy and safety of any therapeutic interventions, especially
in the case of topical applications. The development of molecular-based medicines and
novel material carriers opens up vast opportunities for more effective and precise exosomal
miRNA-based skin therapies. However, the market availability of any therapeutic agent is
potentially risky until clinical studies are completed. In conclusion, MSC exosomal miRNAs
act as skin boosters to delay skin aging, promote skin regeneration, and maintain skin
health, providing a novel therapeutic approach to the diagnosis of skin damage and aging.
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MSC Mesenchymal stem cells
EVs Extracellular vesicles
mRNAs Messenger RNAs
miRNAs MicroRNAs
Exos Exosomes
MVs Microvesicles
MSC-Exos Mesenchymal stem cells-derived exosomes
lncRNAs Long non-coding RNAs
UCMSC Umbilical cord mesenchymal stem cells
UCMSC-Exos Umbilical cord mesenchymal stem cells-derived exosomes
NF-κB (NF-κB) Nuclear transcription factor-kappa B
TLR Toll-like receptor
IL-1b Interleukin-1b
TNF-α Tumor necrosis factor-α
IRAK1 IL-1 receptor-associated kinase 1
TRAF6 TNF receptor-associated factor 6
BMSC Bone marrow mesenchymal stem cells
ADSC Adipose mesenchymal stem cells
ARG1 Arginase 1
TSG-6 Tumor necrosis factor-inducible gene 6
TGF-β1(TGF-β1) Transforming growth factor beta 1
IFN-γ Interferon-γ
VEGF Vascular endothelial growth factor
MAPK Mitogen-activated protein kinase
M1/2 Macrophage1/2
LPS Lipopolysaccharide
AKT Serine/threonine-protein kinase B
PI3K Phosphatidylinositol 3-kinase
HIF-1α Hypoxia inducible factor-1 alpha
eNOS Endothelial nitric oxide synthase
PIK3R2 Phosphoinositol-3 kinase regulatory subunit 2
HUVEC Human umbilical vein endothelial cells
ERK Extracellular signal-related kinases
SPRED1 Sprouty-related EVH1 domain-containing protein 1
DLL4 Delta-like 4
ANGPT1 Angiopoietin1
KDR Kinase insert domain receptor
THBS1 Thrombospondin-1
VASH1 Vasohibin-1
CCND2 Cyclin D2
HMEC Human dermal microvascular endothelial cells
HaCaT Human keratinocytes
APAF1 Apoptotic protease-activating factor 1
PTEN(PTEN) Phosphatase and tensin homolog
CDK6 Cyclin dependent kinase 6
HSF Human skin fibroblasts
ECM Extracellular matrix
SIRT1 Silent information regulator 1
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IL-17RA Interleukin-17 receptor A
STAT3 Signal transducer and activator of transcription 3
PDGF Platelet-derived growth factor
LATS2 Large tumor suppressor kinase 2
H19 lncRNA H19
ADSC-Exos Adipose mesenchymal stem cells-derived exosomes
ITCH Itchy E3 ubiquitin protein ligase
SRY Sex-determining region Y
SOX9 SRY-related high-mobility-group box 9
CCL1 Chemokine CC motif ligand 1
TP53INP1 Tumor protein p53 inducible nuclear protein 1
α-SMA α-smooth muscle actin
SASP Senescence-associated secretory phenotype
DDR DNA damage response
MSC-EVs Mesenchymal stem cells-derived extracellular vesicles
PMSC-EVs Placental mesenchymal stem cells-derived extracellular vesicles
ROS Reactive oxygen species
BMSC-EVs Bone marrow mesenchymal stem cells-derived extracellular vesicles
EPC Endothelial progenitor cells
HDF Human dermal fibroblasts
MMP-2 Matrix metalloproteinase-2
AP-1 Activator protein-1
DPSC Dental pulp stem cells
UVB Ultraviolet B
OCT4 Octamer binding transcription factor 4
DPC Dermal papilla cells
HF Hair follicles
DHT Dihydrotestosterone
AGA Androgen alopecia
CNP Cerium oxide nanoparticles
SMSC Synovial mesenchymal stem cells
PMSC Placenta-derived mesenchymal stem cells
NO Nitric oxide
HMGA2 High mobility group AT-hook 2
Ago2 Argonaut-2 protein
AMSC Amniotic mesenchymal stem cells
dMSC Decidua mesenchymal stem cells
ROCK1 Rho associated coiled-coil containing protein kinase 1
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