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Abstract: So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian coun-
tries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism
using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium
sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT
significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating
the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms,
including colon shortening and body weight loss, were attenuated by SSHT. Moreover, represen-
tative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin
A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured.
A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings
suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including
saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible
for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in
SSHT preparations.

Keywords: So Shiho Tang; saikosaponins; ginsenoside Rb1; baicalin; glycyrrhizic acid; macrophages;
ulcerative colitis

1. Introduction

Inflammatory responses are a major component of the immune system’s defense
against harmful stimuli [1]. Ulcerative colitis (UC) is an inflammatory bowel disease (IBD)
that affects the colon and rectum [2]. Patients with UC experience recurrent gastroin-
testinal symptoms, including abdominal pain, bloody diarrhea, rectal urgency, tenesmus,
and weight loss [3]. Although the precise etiology of UC is complex and not fully de-
fined, evidence implicates genetics, lifestyle, gut microbiota, and immune responses in its
pathogenesis [4]. The current therapies for UC include steroids, immunomodulators, and
surgery [5]. Moreover, preventing the occurrence of chronic inflammatory conditions may
help improve UC symptoms [6].
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During the inflammatory process, macrophages are activated by inflammatory stimuli,
such as lipopolysaccharide (LPS), to secrete inflammatory mediators [7]. For example,
sensing of LPS by toll-like receptor (TLR)-4 activates the mitogen-activated protein ki-
nase (MAKP) pathway, resulting in nitric oxide (NO) and prostaglandin E2 secretion and
subsequent expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) [8,9]. Additionally, the transcription factor nuclear factor erythroid 2-related factor
2 (NRF2) functions as a modulator of redox homeostasis [10]. Several studies have reported
the role that NRF2 plays in macrophage activation by alleviating the macrophage inflamma-
tory response by inhibiting pro-inflammatory cytokine transcription [11]. Khor et al. [12]
also reported an increased expression of inflammatory markers, including iNOS and COX-
2, in Nrf2-deficient mice, which increased their susceptibility to dextran sulfate sodium
(DSS)-induced colitis. Therefore, exploring these pathways to suppress the inflammatory
response may be a potential approach for protecting against inflammation-related diseases.

Traditional herbal medicines are widely used for the prevention and treatment of UC,
symptom remission, and inflammatory inhibition [13]. So Shiho Tang (SSHT, Xiao Chai
Hu Tang in Chinese and Sho-saiko-to in Japanese) is a combined formula of seven herbs:
Bupleurum root, Pinellia tuber, jujube fruit, ginseng root, glycyrrhiza root, ginger rhizome,
and Scutellaria root [14]. SSHT is traditionally used to treat chronic liver diseases, infectious
diseases, and gastrointestinal disorders [14]. However, the mechanism or mechanisms
underlying the protective effects of SSHT against inflammation-related UC remain unclear.
This study investigated the beneficial effects of SSHT on the inflammatory response in
LPS-induced RAW 264.7 macrophages and colitis in DSS-induced mice. Additionally,
five compounds from SSHT were selected as representative components and subjected to
chromatography and quantitation.

2. Materials and Methods
2.1. Materials and Reagents

For sample extraction, ethanol, methanol, and ethyl acetate (extra-pure-grade) were
purchased from Duksan Pure Chemicals Co. (Ansan, Republic of Korea). For high-
performance liquid chromatography (HPLC) quantification, HPLC-grade acetonitrile,
methanol, and water were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
Formic acid (99%, HPLC-grade) was obtained from Wako Pure Chemical Industries Ltd.
(Osaka, Japan), and acetic acid (99%) and LPS (from Escherichia coli O111:B4, L4391) were
provided by Sigma-Aldrich (St. Louis, MO, USA). Glycyrrhizic acid (CAS No. 1405-86-3,
CFN99151, CFS202002, purity 99.5%), ginsenoside Rb1 (CAS No. 41753-43-9, CFN99964,
CFS202101, purity 98.9%), baicalin (CAS No. 21967-47-9, CFN99111, CFS202003, pu-
rity 98.0%), saikosaponin A (CAS no. 20736-09-8, CFN99987, CFS202102, purity 99.4%),
and saikosaponin B2 (CAS No. 58316-41-9, CFN99126, CFS202102, purity 99.7%) were
supplied by Chemfaces (Wuhan, China). Antibodies against NOS2 (iNOS), COX-2, p38,
phosphorylated-p38 (pp38), ERK, phosphorylated-ERK (pERK), JNK, phosphorylated-JNK
(pJNK), NRF2, β-actin, anti-rabbit and anti-mouse IgG HRP-linked antibodies were pur-
chased from Cell Signaling Technology (Danvers, MA, USA) and Santa Cruz Biotechnology
(Santa Cruz, CA, USA).

2.2. Solution Preparation

A 1000 µg/mL glycyrrhizic acid stock solution was prepared using 70% methanol,
passed through a 0.2 µm polyvinylidene fluoride (PVDF) syringe filter (Whatman Inter-
national Ltd. Maidstone, Kent, UK), and serially diluted to obtain 15.625, 31.25, 62.5, 250,
and 500 µg/mL standard solutions. An 800 µg/mL ginsenoside Rb1 stock solution was
prepared using water, passed through a 0.2 µm PVDF syringe filter, and diluted serially
to obtain 50, 100, 200, 400, and 800 µg/mL standard solutions. A 1000 µg/mL baicalin
stock solution was prepared using 70% ethanol, passed through a 0.2 µm PVDF syringe
filter, and serially diluted to obtain 15.625, 31.25, 125, 500, and 1000 µg/mL standard solu-
tions. Saikosaponin A and B2 stock solutions (1000 µg/mL) were prepared using methanol,
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passed through a 0.2 µm PVDF syringe filter, and serially diluted to obtain 7.8125, 15.625,
62.5, 125, and 250 µg/mL standard solutions for saikosaponin A and 15.625, 31.25, 62.5, 250,
and 1000 µg/mL for saikosaponin B2. Three standard (calibration) curves were prepared
from the diluted solutions at five points (n = 6/point).

2.3. Sample Preparation

SSHT dry extract (HC-DE-2101; Hanpoong Pharm & Foods, Wanju, Republic of Korea)
comprises the root of Bupleurum falcatum L. (2.33 g), tuber of Pinellia ternata Breitenbach
(1.67 g), fresh rhizome of Zingiber officinale Roscoe (1.33 g), root of Scutellaria baicalensis
Georgi (1.00 g), fruit of Zizyphus jujuba Miller var. inermis Rehder (1.00 g), root of Panax
ginseng C. A. Meyer (1.00 g), and root and rhizome of Glycyrrhiza uralensis Fischer (0.67 g).

To quantify glycyrrhizic acid in G. uralensis, one dose (1.31 g) of SSHT powder was
extracted with 50 mL of 70% methanol, refluxed for 2 h, and filtered; 70% methanol was
added to a final volume of 100 mL. To extract P. ginseng ginsenoside Rb1, two doses (2.62 g)
of SSHT powder were treated with 100 mL of 70% methanol, refluxed for 30 min, filtered,
and concentrated to dryness. The residue was dissolved in 10 mL of water and used as
the sample solution. For baicalin in S. baicalensis, one dose (1.31 g) of SSHT powder was
treated with 100 mL of 70% ethanol, refluxed for 1 h, and filtered; 70% ethanol was again
added to a final volume of 100 mL. For saikosaponin A and B2 in B. falcatum, two doses
(2.62 g) of SSHT powder were treated with 50 mL of 80% methanol, refluxed for 2 h, filtered,
and concentrated to dryness. The residue was dissolved in water (50 mL) and extracted
twice with ethyl acetate (50 mL). The ethyl acetate fraction was concentrated to dryness
and dissolved in methanol (2 mL). All sample solutions were passed through a 0.2 µm
PVDF syringe filter before being injected for HPLC analysis.

2.4. HPLC Analysis Conditions

Four different analytical methods were developed, validated, and applied for the
quantitative analysis of the five representative compounds extracted from SSHT. The
details of each analysis method, equipment, and column used are summarized in Table 1.

Table 1. Quantitative analysis methods for glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin
A and B2 in So Shiho Tang (SSHT).

Glycyrrhizic Acid Ginsenoside Rb1 Baicalin Saikosaponin A and B2

HPLC
Instrument

Waters 2695 Separation
Module

Waters e2695 Separation
Module

Waters e2695 Separation
Module

Waters e2695 Separation
Module

Detector Waters 2996 PDA Waters 2998 PDA Waters 2998 PDA Waters 2998 PDA

Column
Phenomenex Gemini® C18

110 Å column
(5 µm, 4.6 × 250 mm)

YMC-Pack Pro C18 LC
column

(5 µm, 4.6 × 150 mm)
Luna® C18(2) 100 Å column

(5 µm, 4.6 × 250 mm)
Phenomenex Gemini® C18

110 Å column
(5 µm, 4.6 × 250 mm)

Column
Temp. 25 ◦C 25 ◦C 25 ◦C 25 ◦C

Sample
Temp. 20 ◦C 25 ◦C 20 ◦C 25 ◦C

Detection 254 nm 195 nm 277 nm 203 nm (saikosaponin A)
253 nm (saikosaponin B2)

Flow Rate 1.0 mL/min 1.0 mL/min 1.0 mL/min 0.8 mL/min

Injection 10 µL 10 µL 10 µL 10 µL

Mobile
Phase

A: Methanol
(0.5% Formic acid)

B: Water
(0.5% Formic acid)

A: Acetonitrile
(0.1% Formic acid)

B: Water
(0.1% Formic acid)

A: Acetonitrile
(1.0% Acetic acid)

B: Water
(1.0% Acetic acid)

A: Acetonitrile
B: Water
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Table 1. Cont.

Glycyrrhizic Acid Ginsenoside Rb1 Baicalin Saikosaponin A and B2

Gradient
Condition

Time
(min)

A
(%)

B
(%)

Time
(min

A
(%)

B
(%)

Time
(min)

A
(%)

B
(%)

Time
(min)

A
(%)

B
(%)

0 70 30 0 20 80 0 22 78 0 30 70

30 70 30 40 50 50 35 22 78 30 36 64

31 100 0 45 100 0 36 100 0 50 39 61

40 100 0 50 100 0 45 100 0 55 100 0

41 70 30 51 20 80 46 22 78 60 100 0

50 70 30 60 20 80 60 22 78
61 30 70

70 30 70

HPLC, high-performance liquid chromatography.

2.5. Validation of HPLC Quantification Method

The HPLC assay methods developed for use in SSHT quality assurance were au-
thenticated by evaluating and verifying numerous factors, including specificity, linearity,
detection and quantitation thresholds, accuracy, precision, and robustness. These analyses
complied with ICH Guideline Q2(R2) [15].

2.5.1. Specificity

The retention times and UV spectra of the standard compounds and test samples were
compared to ensure that the target compounds were accurately identified and distinguished
from other components in the sample. For specificity data, HPLC chromatograms and
UV spectra were generated for standard compounds and sample solutions. Furthermore,
accuracy studies were conducted to validate the specificity of the analytical method. This
involved analyzing known standard compounds with well-defined properties and concen-
trations. The accuracy and reliability of the analytical method were assessed by comparing
the obtained results with the expected values.

2.5.2. Working Range (Linearity, Detection Limit [DL], and Quantitation Limit [QL])

The linearity between analyte concentrations and responses was assessed throughout
the working range of the analytical procedure. This involved plotting the signals obtained
as a function of the analyte concentration or content. The test results were evaluated by gen-
erating a regression line using the least squares method. A minimum of five concentrations
were selected and appropriately distributed across the desired range to establish linearity.
Three replicate injections were administered at each concentration, resulting in three linear
lines. This approach ensured the reliability and accuracy of the linearity assessment.

The DL is the lowest concentration of analyte that can be reliably detected; the QL
is the lowest concentration that can be accurately quantified within the specified limits
of precision and accuracy. The DL and QL were estimated using the approach described
in the “Based on the Standard Deviation of a Linear Response and a Slope” ICH Q2(R2)
Guideline [15], according to Equations (1) and (2):

DL =
3.3σ

S
(1)

QL =
10σ

S
(2)

where the slope of the calibration curve, S, was estimated from the regression line of the
analyte, whereas the σ (the standard deviation of the response) estimate was obtained from
the standard deviation of the y-intercepts of the regression lines.
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2.5.3. Accuracy

Accuracy was assessed throughout the reportable range of the analytical procedure
and was commonly demonstrated by comparing the measured results with an expected or
known value. To evaluate the accuracy of the analytical procedure, known concentrations of
glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2 standards
were spiked into the SSHT sample solutions. Before the addition of these five chemical
standards, the contents of glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and
saikosaponin B2 in the sample solutions were determined. The accuracy of the analytical
procedure was determined and verified by comparing the measured and expected values.

2.5.4. Precision (Repeatability, Intermediate Precision, and Reproducibility)

Repeatability can be assessed using two different procedures. A minimum of nine
determinations should be performed, covering the reportable range of analytical proce-
dures. This typically involves analyzing samples at different concentrations, with three
concentrations selected and each tested in triplicate. Alternatively, in this study, a minimum
of six measurements were conducted at a test concentration of 100%. This ensured the
procedure consistently produced reliable and precise results across the reported range at
the desired test concentration.

The same experiment was conducted on different days in the same laboratory to assess
intermediate precision. This evaluated the variability in results due to factors such as
analysts, equipment, or environmental conditions, which may vary daily.

Reproducibility was evaluated through an inter-laboratory trial, wherein the developed
analytical procedures were performed by the Korea Pharmaceutical Test and Research. This
assessed the performance of methods when implemented in an external laboratory setting.

2.5.5. Robustness

Robustness testing was conducted to demonstrate the reliability and resilience of
the analytical procedure under intentional variations or perturbations in the parameters.
Therefore, three columns with similar specifications were tested under identical analytical
conditions. By subjecting the method to robustness testing with different brand columns
but the same specifications, we were able to assess the method’s ability to consistently
deliver accurate and reliable results despite variations in column sources or manufacturers.

2.6. Cell Culture

RAW 264.7 macrophages were purchased from the American Type Culture Collection
(Manassas, VA, USA). They were cultured at 37 ◦C in a humidified atmosphere containing
5% CO2 in Dulbecco’s Modified Eagle Medium (Corning, Mediatech Inc., Manassas, VA,
USA) supplemented with 10% fetal bovine serum (FBS, Atlas Biologicals, Fort Collins,
CO, USA) and 1% penicillin/streptomycin (Gibco BRL, Carlsbad, MD, USA). The in vitro
groups comprised the normal group, i.e., a vehicle group that did not receive treatment;
the LPS group, i.e., a control group treated with only LPS; and the SSHT groups treated
with LPS and various concentrations of SSHT.

2.7. Cell Viability Assay

RAW 264.7 cells were seeded on a 96-well plate at a density of 1 × 105 cells per well
and incubated for 24 h. Subsequently, the cells were treated with various concentrations of
SSHT (50, 100, 250, 500, 750, or 1000 µg/mL) or the individual compounds (saikosaponin
A, saikosaponin B2, ginsenoside Rb1, baicalin, and glycyrrhizic acid) at concentrations of 5,
25, and 50 µM for 2 h before being treated with 1 µg/mL LPS. After 24 h of incubation, cell
viability was measured using an Ez-Cytox kit (DoGenBio, Seoul, Republic of Korea).

2.8. Griess Assay

Cells were seeded in a 96-well plate and incubated for 24 h. The cells were pre-treated
with SSHT or the compounds (saikosaponin A, saikosaponin B2, ginsenoside Rb1, baicalin,
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and glycyrrhizic acid) at various concentrations and subsequently treated with LPS. After a
24 h incubation, 100 µL of the supernatant was mixed with 100 µL of Griess reagent (0.1%
naphthylethylenediamide and 1% sulfanilamide in 5% phosphoric acid). Cells treated
with dexamethasone (Dex, 10 µM) served as a positive control. The absorbance at 540 nm
was measured using a microplate reader (PowerWave XS; Bio-Tek Instruments, Winooski,
VT, USA).

2.9. Western Blot Analysis

Cells were seeded in a 6-well plate at a density of 1 × 106 cells/mL for 24 h. Subse-
quently, they were treated with SSHT (100 and 250 µg/mL) before LPS treatment. The cells
were then washed with DPBS and lysed using a lysis buffer (radio-immunoprecipitation
assay buffer supplemented with a protease inhibitor cocktail). The disrupted cells were
centrifuged at 13,400× g at 4 ◦C for 20 min. The supernatant was collected, and the protein
concentration was measured using a BCA protein assay kit (Thermo Fisher Scientific).
Thirty-microgram samples of protein were loaded onto 8% and 10% SDS polyacrylamide
gels and transferred to polyvinylidene difluoride membranes. The membranes were
blocked for non-specific binding with 5% skim milk for 1 h. Subsequently, they were
washed with TBST and incubated with primary antibodies (p38, pp38, JNK, pJNK, ERK,
pERK, NRF-2, NOS2, COX-2, and β-actin) at 4 ◦C overnight. The membranes were washed
with TBST and incubated with secondary antibodies (anti-rabbit or anti-mouse) for 1 h at
room temperature. β-Actin served as the loading control. Each treatment condition was run
in triplicate lanes, and protein bands were detected using a FUSION Solo chemiluminescent
detection system (Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany).

2.10. Animals Experiment

All experimental procedures involving animals were reviewed and approved by the
Institutional Animal Care and Use Committee of Gachon University (approval number:
GU1-2022-IA0008-00). Male BALB/c mice, aged 5 weeks and weighing 20–21 g, were
purchased from DBL (Chungcheongbuk-do, Republic of Korea). Mice were housed in
cages, fed standard laboratory chow under 12 h light/dark cycles, and acclimatized for
1 week before the experiment. Thereafter, the mice were randomly divided into four groups
(n = 5 per group): (1) control group (normal), (2) DSS group (control), (3) DSS + SSHT
250 mg/kg/day, and (4) DSS + SSHT 500 mg/kg/day. Mice were administered 2.5% DSS
in sterilized drinking water for 5 days to induce colitis [16,17]. The control mice received
only drinking water. Mice were orally administered SSHT or saline solution for 10 days,
starting the first day of DSS treatment. Body weight and water intake were recorded daily.
Mice were sacrificed after the final oral administration of SSHT on Day 10. The colons were
collected for further analysis.

2.11. General Assessment of Colitis

The disease activity index (DAI) was used to evaluate the severity of colonic inflam-
mation. DAI was calculated based on body weight change, fecal consistency, and fecal
blood [18]. To measure the length of the colon, it was placed on a flat surface and measured
using a ruler.

2.12. Statistical Analysis

Results were represented as the mean ± standard deviation (SD). All data were
analyzed using Statistical Package for Social Sciences version 26.0 (SPSS Inc., Chicago, IL,
USA). Comparisons between groups were performed using one-way analysis of variance
with post hoc Tukey’s analysis. p < 0.05 was considered statistically significant.
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3. Results
3.1. Chromatography and Quantitation of the Five Compounds in SSHT

Five compounds, glycyrrhizic acid from Glycyrrhizae Radix, ginsenoside Rb1 from
Ginseng Radix, baicalin from Scutellariae Radix, and saikosaponin A and B2 from Bupleuri
Radix, were chosen as markers of SSHT dry extract. The specificity of the assay methods
was ascertained by juxtaposing the chromatographic profile and the data derived from
the standards and the sample, considering factors such as retention time and UV spectra
(Figure 1).
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Figure 1. HPLC profiles of SSHT. Glycyrrhizic acid ((A), 254 nm), ginsenoside Rb1 ((B), 195 nm),
baicalin ((C), 277 nm), saikosaponin A ((D), 203 nm), and saikosaponin B2 ((E), 253 nm). The
upper line represents the SSHT sample, and the lower line represents the standard solution. The
concentration of each marker is as follows: glycyrrhizic acid, 62.5 µg/mL; ginsenoside Rb1 and
baicalin, 500 µg/mL; and saikosaponin A and B2, 250 µg/mL.

The developed assay methods were assessed based on linearity, DL, QL, accuracy,
precision, and robustness for validation. The regression equation and coefficient (r2)



Biomolecules 2024, 14, 451 8 of 19

showed superior linearity from 0.9990 to 0.9996 across all markers (Table 2). This was
established based on the prepared calibration curves. For glycyrrhizic acid, ginsenoside
Rb1, baicalin, saikosaponin A, and saikosaponin B2, the DL was 5.24, 4.40, 3.08, 0.73, and
3.46 µg/mL and the QL was 15.89, 13.33, 9.34, 2.21, and 10.49 µg/mL, respectively.

Table 2. Detection wavelength, working range, regression equation, r2, detection limit (DL), and
quantitation limit (QL) for each compound.

Analyte
Detection

Wavelength
(nm)

Working Range
(µg/mL) Regression Equation r2 DL

(µg/mL)
QL

(µg/mL)

Glycyrrhizic acid 254 15.625–500 y = 7650.5x − 512.89 0.9990 5.24 15.89

Ginsenoside Rb1 195 50–800 y = 4217.8x − 7960.6 0.9996 4.40 13.33

Baicalin 277 15.625–1000 y = 31, 296x − 44, 462 0.9995 3.08 9.34

Saikosaponin A 203 7.8125–250 y = 5809.3x − 5866.6 0.9994 0.73 2.21

Saikosaponin B2 253 15.625–1000 y = 20, 863x + 76, 320 0.9990 3.46 10.49

The accuracy of the analytical procedure was assessed by spiking the sample solutions
with known amounts of chemical standards. The mean recoveries (%) at low, medium, and
high concentrations within the working range were 98.60%, 97.44%, 102.26%, 97.19%, and
117.73% for glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin
B2, respectively. By performing this accuracy evaluation, the reliability and precision of
the analytical procedure for determining the concentrations of these compounds in SSHT
samples were verified.

Precision was validated using the relative standard deviation (RSD, %) of repeatability,
intermediate precision, and reproducibility. All RSD values for the repeatability were
below 2.00%, excluding the 100% concentration repeatability of ginsenoside Rb1, which
was 2.62%, indicating appropriate precision validation results. For intermediate precision
and reproducibility, all RSD values remained below 2.49% and 3.92%, respectively.

The robustness was verified by assessing the system suitability of the analyte peak
in the sample solution (%RSD of area, capacity factor, symmetry factor, and resolution)
when an identical analysis method was performed using three different brands of columns
with similar specifications. The comprehensive validation results are presented in the
Supplementary Materials, specifically in Tables S1–S5.

The glycyrrhizic acid and baicalin contents in SSHT adhered to the Korean Herbal
Pharmacopoeia (KHP) criteria. The contents of additional indicator substances, such as
ginsenoside Rb1, saikosaponin A, and saikosaponin B2, are shown in Table 3.

Table 3. Content of five compounds in SSHT and the criteria established by Korean Herbal Pharma-
copoeia (KHP).

Compound Content in SSHT Dry Extract
(mg/g) Criteria in KHP (mg/g)

Glycyrrhizic acid 5.333 ± 0.040 1.6

Ginsenoside Rb1 1.301 ± 0.037 N/A *

Baicalin 55.148 ± 0.138 11.9

Saikosaponin A 0.216 ± 0.013 N/A

Saikosaponin B2 0.750 ± 0.007 N/A
* N/A: Not applicable, the content criteria are not specified in KHP.
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3.2. Effects of Saikosaponin A, Saikosaponin B2, Ginsenoside Rb1, Baicalin, and Glycyrrhizic Acid
on Nitrite Production in LPS-Stimulated RAW 264.7 Cells

The Griess assay was conducted to measure the potential anti-inflammatory effect of
the SSHT components. Cell viability was first detected to evaluate the cytotoxic effects
of saikosaponin A, saikosaponin B2, ginsenoside Rb1, baicalin, and glycyrrhizic acid on
RAW 264.7 cells (Figure 2A). Although the viability of cells treated with saikosaponin B2,
ginsenoside Rb1, baicalin, or glycyrrhizic acid was slightly affected, it was maintained
over 80%, demonstrating that these components at concentrations of 5, 25, or 50 µM could
be used in subsequent experiments. However, the cell viability of saikosaponin A at 25
and 50 µM decreased to 11%, demonstrating strong cytotoxic effects on LPS-induced RAW
264.7 cells.
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Figure 2. Effect of SSHT components on cell viability and nitrite production in lipopolysaccharide
(LPS)-stimulated RAW 264.7 cells. (A) Viability of LPS-stimulated RAW 264.7 cells following treatment
with saikosaponin A or B2, ginsenoside Rb1, baicalin, or glycyrrhizic acid. (B) Nitrite levels in
LPS-stimulated RAW 264.7 cells treated with saikosaponin A or B2, ginsenoside Rb1, baicalin, or
glycyrrhizic acid. Dexamethasone (Dex, 10 µM) was the positive control. Data are presented as
the mean ± standard deviation (SD; n = 3). # p < 0.05 vs. normal group. * p < 0.05, ** p < 0.001 vs.
LPS group.

Furthermore, nitrite production was evaluated (Figure 2B). LPS treatment at 1 µg/mL
significantly increased the nitrite levels compared with normal untreated cells, whereas
treatment with ginsenoside Rb1 and baicalin significantly decreased the nitrite levels in
a concentration-dependent manner (5, 25, and 50 µM). Similar results were observed
following treatment with saikosaponin B2 at all concentrations (5, 25, and 50 µM). In
contrast, the nitrite levels in cells treated with 5 or 25 µM glycyrrhizic acid did not differ
significantly from those of LPS-treated cells.
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3.3. Effect of SSHT Extract on Nitrite Production and iNOS and COX-2 Expression in
LPS-Stimulated RAW 264.7 Cells

A cell viability assay was performed to assess the cytotoxicity effect of SSHT on RAW
264.7 cells. SSHT at various concentrations (50, 100, 250, 500, 750, and 1000 µg/mL) had
no significant effects on cell viability (Figure 3A). Next, we evaluated the inhibitory effect
of SSHT on nitrite production (Figure 3B). Compared with the normal group, 1 µg/mL
of LPS significantly increased nitrite production, which was inhibited by treatment with
SSHT or Dex. In addition, the abundance of inflammatory mediators was assessed through
Western blotting. LPS significantly upregulated the abundance of iNOS and COX-2 in RAW
264.7 cells, and this effect was inhibited by SSHT treatment in a concentration-dependent
manner (Figure 3C–E).
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Figure 3. Effect of SSHT on nitrite production and inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX-2) abundance in LPS-stimulated RAW 264.7 cells. (A) Viability of RAW
264.7 cells following treatment with SSHT (50–1000 µg/mL). (B) Nitrite production by RAW 264.7 cells
following treatment with LPS or SSHT. Dex (10 µM) was the positive control. (C–E) Abundance of
iNOS and COX-2 in LPS-induced RAW 264.7 cells treated with SSHT (100 and 250 µg/mL). Data are
presented as the mean ± SD (n = 3). # p < 0.05 vs. normal group. * p < 0.05 vs. LPS group. Original
blot images can be found in Supplementary File S1.

3.4. Effect of SSHT on Modulating MAPK Signaling Pathway in LPS-Stimulated RAW
264.7 Cells

The MAPK (JNK, ERK, and p38) signaling pathway has important roles in inflamma-
tory responses, including inflammation-related diseases [19]. LPS treatment (1 µg/mL)
markedly increased the phosphorylation of p38, ERK, and JNK (Figure 4). However, SSHT
treatment suppressed the LPS-stimulated increase in p38 and ERK phosphorylation in a
concentration-dependent manner, with no impact on total protein. However, the effect of
SSHT on JNK phosphorylation did not differ significantly from the LPS control group.
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Figure 4. Effect of SSHT on p38, JNK, and ERK phosphorylation and total protein levels in LPS-
stimulated RAW 264.7 cells. Cells stimulated with or without LPS were treated with or without SSHT
(100 and 250 µg/mL). Data are presented as the mean ± SD (n = 3). # p < 0.05 vs. normal group.
* p < 0.05 vs. LPS group. Original blot images can be found in Supplementary File S1.

3.5. Effect of SSHT on NRF2 Expression in LPS-Stimulated RAW 264.7 Cells

The transcription factor NRF2 functions as a modulator of cellular and organismal
defenses against endogenous and exogenous stressors, eliciting an anti-inflammatory
effect [20,21]. LPS-stimulated RAW 264.7 cells exhibited decreased NRF2 protein expres-
sion. Notably, 250 µg/mL SSHT treatment reversed this LPS-mediated decrease in NRF2
(Figure 5).
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Figure 5. Effect of SSHT on nuclear factor erythroid 2-related factor 2 (NRF2) protein expression in
LPS-stimulated RAW 264.7 cells. SSHT treatment (250 µg/mL) reversed NRF2 protein expression.
Data are presented as the mean ± SD (n = 3). # p < 0.05 vs. normal group. * p < 0.05 vs. LPS group.
Original blot images can be found in Supplementary File S1.
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3.6. Effect of SSHT in DSS-Induced Colitis Mice

Changes in body weight, DAI, and colon length were measured to assess the protective
effects of SSHT on DSS-treated mice. After 10 days of treatment, the body weight of mice
in the DSS-treated group decreased in a time-dependent manner, which was ameliorated
by SSHT treatment (Figure 6A). Water intake did not differ significantly among the groups
(Figure 6B). Mice treated with DSS showed an increased DAI score compared with normal
mice. However, SSHT at 500 mg/kg significantly decreased the DAI from day 9 (Figure 6C).
Moreover, SSHT at 500 mg/kg significantly recovered colon length compared with control
DSS-treated mice (Figure 7). These results indicated that SSHT has a potential protective
effect in mice with DSS-induced colitis.
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the ileocecal junction and the proximal rectum, close to the subpelvic passage. The colon was placed
on a non-absorbable surface, and its length was measured with a ruler while ensuring that the organ
was not stretched. Representatives of one out of three similar independent experiments are shown
per group. * p < 0.05 vs. control group.

4. Discussion

Among traditional medicines, SSHT has been studied to better understand multiple
therapeutic mechanisms through multiple targets and in combination therapies for various
diseases [22,23]. In the present study, mice with DSS-induced colitis exhibited significant
recovery of colon length and a decreased DAI following SSHT treatment. Furthermore, an
anti-inflammatory effect was evidenced by reduced NO production and downregulation
of inflammatory factors via the MAPK signaling pathway. Moreover, the HPLC quantifi-
cation performed in this study analyzed the five selected representative compounds in
SSHT. The associated methodology can be applied to achieve quality assurance during
SSHT preparation.

IBD is an immune-mediated chronic relapsing inflammatory disease [24]. Although
UC is a major type of IBD, its etiology is complex and not fully understood. UC is
typically characterized by continuous inflammation induced by abnormal mucosal im-
mune responses and disrupted epithelial barrier function [25,26]. Therefore, targeted
anti-inflammatory agents are considered an effective option for UC management [27]. As
the DSS-induced colitis model is similar to human UC, it has been established as an ideal
model for studying intestinal inflammation [28]. Classical UC symptoms, including body
weight loss, colon length shortening, and increased DAI, are reflected in DSS-induced
colitis [29,30]. In the present study, administering DSS (2.5%) induced body weight loss,
colon length shortening, and increased DAI [16,31]. Meanwhile, high-dose SSHT treatment
(500 mg/kg) significantly recovered these symptoms, demonstrating suppression of the
inflammatory response in DSS-induced mice. In this study, we monitored the body weight
and water intake of the mice and compared the colon length of the mice as a preliminary
study. Nevertheless, the present study has some limitations. For example, a detailed
histopathological assessment of the colon tissues and granulocyte infiltration should be
conducted in future studies. In addition, the animal dose (mg/kg) should be multiplied
by the correction factor (Km) ratio according to the HED (human equivalent dose) [32].
Considering that 250 and 500 mg/kg of SSHT were orally administered in the current study,
the HED would be 500 mg/kg × 0.081 = 40.54 mg/kg. A previous study reported that the
standard SSHT tablets are 0.4 g, and 4–6 tablets are taken three times per day. Alternatively,
one or two 10 g granule packets are taken three times per day [33]. Importantly, administer-
ing 250 or 500 mg/kg SSHT for 10 days to mice did not induce apparent adverse effects,
toxicity, or mortality. Accordingly, the experimental doses were deemed safe by design.

Different macrophage subtypes have unique roles in intestinal inflammation and
homeostasis [34–36]. Patients with IBD reportedly have increased proportions of pro-
inflammatory macrophages (i.e., M1 phenotype) [36]. Therefore, to assess the effect
of SSHT on UC-related inflammatory responses, the corresponding mechanism was ex-
plored in vitro in LPS-stimulated RAW 264.7 cells. LPS-treated RAW 264.7 cells secrete
large amounts of NO radicals, indicating that the LPS-induced inflammatory response in
macrophages is mediated by NO production [37]. NO is a signaling molecule crucial in
inflammation pathogenesis [38]. Specifically, high NO levels can induce the release of pro-
inflammatory cytokines, supporting further NO generation and continuing a cyclic process
that propagates the inflammatory process [39]. The development of many inflammatory
diseases, including UC, is accompanied by the activation and overexpression of iNOS and
COX-2. Accordingly, their inhibitors could serve as therapeutic agents in inflammatory
diseases [39–42]. Our findings revealed that SSHT treatment reduced NO levels, with a
dramatic decrease at higher concentrations. However, a dose-dependent effect was not
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observed at a dose of 500 µg/mL onward. Notably, SSHT also suppressed iNOS and COX-2
expression in LPS-stimulated macrophages.

MAPK signaling pathways, including p38, JNK, and ERK, can be activated by macrophage
stimulation to increase iNOS and COX-2 expression, which play important roles in inflam-
mation [43–45]. The inactivation of the MAPK signaling pathway reduces the synthesis of
pro-inflammatory cytokines, suggesting it as a potential target for anti-inflammation [46]. LPS in-
duces inflammatory responses by activating the MAPK pathway in RAW 264.7 macrophages [47].
Consistent with the results of the previous studies, LPS stimulation activated the MAPK pathway
by upregulating the expression of phosphorylated p38, JNK, and ERK in this study. Conversely,
pp38 and pERK were inhibited by SSHT in a concentration-dependent manner. Notably, pJNK
was not affected by SSHT. These findings suggest that the anti-inflammatory activity of SSHT
may be related to the MAPK signaling pathway by inhibiting LPS-induced phosphorylation of
p38 and ERK.

NRF2 acts as a promoter to regulate the expression of cytoprotective genes against
oxidative stress and inflammatory responses [48,49]. Under stress, NRF2 can be liberated
from the KEAP–NRF2 complex and facilitate its subsequent translocation [50]. LPS, a
component of bacterial cell walls, activates the TLR-4 on host cells to initiate oxidative
stress and inflammatory responses [51]. Reactive oxygen and nitrogen species contribute to
LPS-triggered macrophage activation by regulating nuclear transcription factors, including
NRF2 [52]. In this study, LPS treatment increased NO generation and iNOS protein ex-
pression, demonstrating that LPS induced oxidative stress and the inflammatory response.
Moreover, LPS decreased NRF2 expression in RAW 264.7 cells, indicating that LPS may
inhibit NRF2 ubiquitination and proteasomal degradation by activating oxidative stress in
macrophages. Notably, SSHT treatment suppressed NO production and increased NRF2
expression in LPS-stimulated RAW 264.7 cells, demonstrating that SSHT may exert an
anti-inflammatory effect by activating NRF2 expression. However, the relationship be-
tween LPS stimulation and NRF2 activation, as well as the underlying mechanisms by
which SSHT promotes KEAP1 degradation and/or prevents NRF2 ubiquitination and
proteasomal degradation, remain unclear and require further investigation. NRF2 can
attenuate intestinal oxidative stress and inflammatory factors by polarizing macrophages
toward the M2 anti-inflammatory phenotype [53]. In the current study, high concentrations
of SSHT significantly upregulated NRF2 expression in LPS-stimulated RAW 264.7 cells.
Therefore, SSHT might upregulate NRF2 expression to exert an anti-inflammatory effect,
direct macrophage polarization, and normalize immune processes in the colonic mucosa
and submucosa [53].

Activation of NRF2 by kinases such as p38, ERK, and JNK is assumed to promote its
release from KEAP1 and subsequent nuclear translocation [54]. Therefore, considering the
close relationship between KEAP1/NRF2 and HO-1, additional analyses are required to
elucidate the effects of SSHT on members of the KEAP1/NRF2/ARE signaling pathway
and its downstream genes.

The KHP mandates that, per 1.0 g of dry matter, SSHT dry extract should contain at
least 1.6 mg of glycyrrhizic acid from Glycyrrhizae Radix and a minimum of 11.9 mg of
baicalin from Scutellariae Radix, thus establishing the quality standards for SSHT prepara-
tion. In this study, 1 g of SSHT dry extract contained 399.6, 133.3, 107.1, 35.2, and 16.6 mg
of baicalin, glycyrrhizic acid, saikosaponin B2, ginsenoside Rb1, and saikosaponin A, re-
spectively. Saikosaponin A induced cytotoxic effects at 25 and 100 µM. Similar findings
showing cytotoxic effects of saikosaponin A on LPS-induced RAW 264.7 cells at concentra-
tions of 12.5–100 µM were also reported in a previous study [55]. In contrast, treatment of
LPS-induced RAW 264.7 cells with saikosaponin B2 (5–50 µM) induced a mild inhibitory
effect on NO production, which was consistent with a previous study, indicating that NO
production may be effectively suppressed by saikosaponin B2 at higher doses [56]. More-
over, Uto et al. [57] indicated that glycyrrhizic acid alone cannot suppress the LPS-induced
increase in NO production but could synergistically suppress NO production with the other
constituents of licorice. Meanwhile, Park et al. [58] reported that ginsenoside Rb1 exhibited
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NO inhibitory activity with an IC50 value > 0.05 mM, similar to the results of the present
study. Moreover, Kuo et al. [59] indicated that 0.1 µg/mL LPS induced NO generation,
which was dose-dependently inhibited by baicalin (10–50 µM). Similarly, we observed that
baicalin elicited NO inhibitory activity in a dose-dependent manner. Therefore, higher
doses of the single compounds from SSHT may be required to inhibit NO production.
Meanwhile, SSHT showed a significant inhibitory effect on NO production, confirming
that the synergistic and additive effects of medicinal herbs and herbal extracts can enhance
therapeutic effects [60].

Natural flavonoids, including baicalin, can effectively treat inflammatory disorders [61].
Baicalin, a major bioactive component of Scutellariae Radix, is traditionally used to treat di-
arrhea, high blood pressure, inflammation, and respiratory infections [62]. Wang et al. [63]
reported that baicalin is distributed throughout the intestinal tract and exerts protective
effects against IBD by repressing inflammatory responses. In vitro and in vivo, baicalin
reduces colon injury in colitis animal models and regulates pro-inflammatory mediator
proteins in LPS-induced RAW 264.7 cells [64,65]. Furthermore, saponins from many pop-
ular herbal medicines, such as ginseng and bupleurum, exert strong anti-inflammatory
effects on intestinal inflammation-related digestive diseases [66]. Meanwhile, glycyrrhizic
acid is a triterpenoid saponin isolated from Glycyrrhizae Radix that has been used as a
drug carrier and supplement to other drugs in traditional Chinese medicine to reduce
toxicity and improve efficacy [67–69]. Glycyrrhizae Radix extract or its components exert
excellent anti-inflammatory properties, accounting for their use in relieving cough and
alleviating pain [70]. Moreover, glycyrrhizic acid nanoparticles reduce the levels of inflam-
matory mediators increased by LPS in RAW 264.7 cells [71]. Mechanistically, glycyrrhizic
acid exerts anti-inflammatory responses by suppressing p38/MAPK and nuclear factor-κB
(NF-κB) p65 signaling in colitis models [72]. Similarly, saikosaponins—the main bioac-
tive components of Bupleuri Radix—are widely used to treat inflammatory diseases [73];
saikosaponin B2 enhances anti-inflammatory activity by blocking the NF-κB signaling
pathway in LPS-induced macrophages [56]. Additionally, saikosaponins alleviate DSS-
induced colitis by regulating the NRF2/heme oxygenase-1 pathway [74]. Over 80 saponins
have been isolated from P. ginseng (also known as Korean ginseng) [75]. Ginsenoside Rb1
exerts neuroprotective, anti-obesity, and anti-depression effects by suppressing different
inflammatory pathways, including oxidative stress, the NF-κB/MAPK pathway, the AKT
pathway, and amyloidogenic processes [76–78]. Based on these studies, saikosaponins,
baicalin, glycyrrhizic acid, and ginsenoside Rb1 may represent marker compounds in
SSHT with important anti-inflammatory properties. These compounds could be isolated to
investigate their efficacy against inflammation-related diseases.

In conclusion, the findings of this study demonstrate the anti-inflammatory effects of
SSHT in DSS-induced colitis mice and LPS-stimulated RAW 264.7 macrophages (Figure 8).
Quality assessment was performed on key anti-inflammatory components of SSHT, namely
saikosaponin A and B2, baicalin, glycyrrhizic acid, and ginsenoside Rb1, all of which
inhibited nitrite production at high concentrations, with the exception of saikosaponin A.
Collectively, these results provide a theoretical foundation for future studies on SSHT and
its bioactive compounds.
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