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Abstract: Mitochondria, the energy hubs of the cell, are progressively becoming attractive targets
in the search for potent therapeutics against neurodegenerative diseases. The pivotal role of mito-
chondrial dysfunction in the pathogenesis of various diseases, including Parkinson’s disease (PD),
underscores the urgency of discovering novel therapeutic strategies. Given the limitations associated
with available treatments for mitochondrial dysfunction-associated diseases, the search for new
potent alternatives has become imperative. In this report, we embarked on an extensive screening of
4224 fractions from 384 Australian marine organisms and plant samples to identify natural products
with protective effects on mitochondria. Our initial screening using PD patient-sourced olfactory
neurosphere-derived (hONS) cells with rotenone as a mitochondria stressor resulted in 108 promising
fractions from 11 different biota. To further assess the potency and efficacy of these hits, the 11 biotas
were subjected to a subsequent round of screening on human neuroblastoma (SH-SY5Y) cells, using
6-hydroxydopamine to induce mitochondrial stress, complemented by a mitochondrial membrane
potential assay. This rigorous process yielded 35 active fractions from eight biotas. Advanced analysis
using an orbit trap mass spectrophotometer facilitated the identification of the molecular constituents
of the most active fraction from each of the eight biotas. This meticulous approach led to the discov-
ery of 57 unique compounds, among which 12 were previously recognized for their mitoprotective
effects. Our findings highlight the vast potential of natural products derived from Australian marine
organisms and plants in the quest for innovative treatments targeting mitochondrial dysfunction in
neurodegenerative diseases.

Keywords: mitochondria modulators; high-throughput screening; natural products

1. Introduction

The mitochondrion, often referred to as the cell’s “powerhouse” is pivotal for the
functioning of eukaryotic cells, as it is responsible for most of the chemical energy supply
needed to fuel cellular activities. This energy is mainly produced through oxidative
phosphorylation (OXPHOS), a process that generates chemical energy stored as adenosine
triphosphate (ATP), which is used to power complex biochemical processes in the cell [1,2].
In addition to their central role as the site of chemical energy generation, mitochondria are
also crucial in regulating healthy cellular apoptosis, calcium homeostasis, biosynthesis of
lipids and amino acids, and generating reactive oxygen species (ROS).

Neurons, with their high energy demands, contain hundreds of thousands of mito-
chondria, which are responsible for meeting most of their ATP needs for the functioning
of the CNS [3–5]. The quality of these mitochondria is critical, as they must be highly
functional to support the complex activities of neurons in the CNS [3]. Dysfunction in
mitochondria, particularly in the OXPHOS system, has been linked to various diseases,
notably neurodegenerative disorders like Parkinson’s disease (PD), Huntington’s disease,
and Alzheimer’s disease [2,3,6–9]. The mechanisms behind these links are multifaceted.
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Firstly, diminished ATP production due to impaired mitochondrial function plays
a significant role in the energy deficits observed in neurons affected by these diseases.
Such deficits can compromise neuronal function and survival, potentially leading to cell
death [3,5,10]. Secondly, about 90% of ROS are generated as by-products of the OXPHOS
process [1,6,11,12]. Although ROS serve as signaling molecules under normal conditions,
their overproduction or the failure of antioxidant defenses can induce oxidative stress,
harming DNA, proteins, and lipids. This oxidative damage, a common feature of neurode-
generative diseases, likely drives further neuronal damage [3,5]. Thirdly, mitochondria
play a key role in regulating intracellular calcium levels, which are crucial for various
cellular processes, including neurotransmitter release, synaptic plasticity, and cell survival.
Mitochondrial dysfunction can lead to dysregulated calcium homeostasis, exacerbating
neuronal injury and death [1,6]. Fourthly, impaired mitophagy, a specific form of autophagy
that removes damaged mitochondria from the cell, has been linked to neurodegenerative
diseases such as PD [13,14]. Mutations in genes like PINK1 and Parkin, which are in-
volved in mitophagy, can cause genetic PD, underscoring the importance of mitochondrial
quality control in neurodegeneration [15,16]. Lastly, mitochondria play a crucial role in
the intrinsic apoptosis pathway by releasing pro-apoptotic factors such as cytochrome
C. Dysregulation of apoptotic signaling pathways due to mitochondrial dysfunction can
trigger inappropriate neuronal cell death, contributing to neurodegeneration [12,17,18].

Recognizing the pivotal role of mitochondrial function in various diseases, extensive
research has focused on identifying compounds that can modify mitochondrial functions.
Compounds such as berberine, resveratrol, and epigallocatechin-3-gallate are known to
trigger mitochondrial biogenesis and influence mitochondrial dynamics by promoting
both fusion and fission [19–25]. Curcumin and its derivatives have been demonstrated to
regulate mitochondrial dynamics to remedy dysfunction, and flavonoids like quercetin
have shown potential in ameliorating memory impairment through mitochondrial regula-
tion [26–31]. Additionally, compounds such as polydatin and acacetin have been found
to induce mitophagy, enhancing mitochondrial function and offering protective effects in
disease models [32,33]. Although these products show promise in enhancing mitochon-
drial function and offering disease model protection, the variability in the effectiveness of
these compounds across different cell types and disease models highlights the need for
more targeted approaches in their application and calls for novel, safe, and more potent
mitochondrial modifiers.

Throughout history, natural products have served as the foundation of modern drug
discovery. Notably, about half of FDA-approved drugs are either unmodified natural
products or their synthetic derivatives [34,35]. Interest in natural product drug discovery
seems to have waned over time; however, there has been a resurgence of interest in and
commitment to natural product drug discovery in recent years [36,37]. This, in part, is due
to technological advancement that has made it possible to screen thousands to hundreds of
thousands of molecules against disease targets in a very short timeframe [36–38].

In our search for mitochondrial modulators with protective effects, we have estab-
lished high-throughput screening assays and tested fractions sourced from a wide variety
of Australian plants and marine sponges. These fractions have been obtained using a
customized lead-like fractionation protocol developed in our laboratory [36]. To target
lead-like natural products more efficiently, we diverged from the conventional approach
of testing crude extracts. Instead, we directly examined 4224 fractions from 384 biota
samples employing the CyQuant assay, a highly sensitive, quick, and robust cell viability
assay [39]. Twenty fractions, representing 11 biota samples, were identified to protect the
cells from rotenone, a mitochondrial complex I inhibitor [40]. Subsequently, the fractions
from 11 active biota were further evaluated for their mitochondria modulatory activities
using an MTT assay targeting mitochondrial nicotinamide adenine dinucleotide phosphate
(NADPH)-dependent dehydrogenases [41,42], as well as a mitochondrial membrane po-
tential (MMP) assay for protection against neurotoxins. Finally, the most active fractions
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were subjected to LC-Orbitrap MS analysis to identify natural products that can defend the
mitochondria from toxic assaults (Figure 1).
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A common approach utilized to search for mitoprotective metabolites is to test com-
pounds largely based on previously reported antioxidant or neuroprotective activity [43–45].
This work diverges from that by screening a large library of natural products to boost
the chances of finding novel mitoprotective compounds. Overall, we have successfully
established and implemented a robust process for the identification of mitoprotective com-
pounds from natural products using a stepwise combination of three different assays, two
cell lines, and two mitochondrial toxins. We have also described how each assay seamlessly
dovetails with the next, leading to the identification of 57 metabolites, including 45 new
mitoprotective compounds.

2. Materials and Methods
2.1. Ethics Statement

This work uses patient-derived cells which were collected under the ethical approval
of the Griffith University ethics committee. Human olfactory neurosphere-derived cells
were derived from nasal biopsies following approved ethical standards, as previously
reported by Cook et al. [46]. The human neuroblastoma cell line SH-SY5Y was obtained
from the ATCC (CRL-2266), Manassas, VA, USA.

2.2. Cell Culture

Human olfactory neurosphere-derived (hONS) cells were obtained from biopsies of
the olfactory mucosa of PD patients and healthy controls [47,48]. The hONS cell line was
cultured in DMEM/F-12 medium (Gibco, Invitrogen, Waltham, MA, USA) supplemented
with 10% fetal bovine serum (Gibco, Invitrogen) and incubated at 37 ◦C with 5% CO2.

The SH-SY5Y cells were cultured in DMEM/F-12 (Sigma Aldrich, St. Louis, MI, USA)
medium supplemented with 10% fetal calf serum, 5% non-essential amino acids, and 5%
glutamax (Gibco, Invitrogen) and incubated at 37 ◦C with 5% CO2.

2.3. Plant Material

Biota samples were obtained from NatureBank, Vancouver, BC, Canada, a unique
drug discovery platform that focuses on extracts and fractions of a diverse range of natural
products sourced from Australian plants, fungi, and marine organisms [49]. The 384 biota
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samples screened in this project were Australian plants and marine sponges sourced from
Queensland and were selected based on availability at the request time.

2.4. Extraction and Fractionation

The 384 biotas obtained from NatureBank were extracted using a modified lead-like
extraction protocol previously established by NatureBank [36,50]. Briefly, plant material
(600 mg) was washed in a solid-phase extraction cartridge with 4 mL of hexane to remove
fatty components, followed by extraction with 4 mL of dichloromethane and methanol,
successively. The hexane phase was discarded, while the dichloromethane and methanol
extracts were combined and dried. The dried extracts were reconstituted in methanol and
passed through polyamide gel to remove tannins, and the extracts were dried and stored.
Marine sponges were extracted in a similar way with 4 mL dichloromethane/methanol
(80:20 v/v) followed by 4 mL methanol.

Extracts were fractionated using the lead-like fractionation protocol developed by
NatureBank [50]. Briefly, the lead-like extracts dissolved in DMSO were subjected to HPLC
separations using a Phenomenex Onyx Monolithic C18 column (4.6 mm × 100 mm) with a
gradient solvent system of MeOH:H2O (0.1% TFA), as shown in Table 1. Fractions were
collected every 60 s over 11 min. A total of 4224 fractions were collected for testing.

Table 1. HPLC solvent gradient.

Time MeOH (%) H2O (%) Flow Rate (mL)
0.01 10 90 4
3.00 50 50 4
3.01 50 50 3
6.50 100 0 3
7.00 100 0 3
7.00 100 0 4
8.00 100 0 4
9.00 10 90 4
11.00 10 90 4

2.5. Cell Viability Assays

CyQuant assay
A CyQUANT Cell Proliferation Assay Kit (Life Technologies, Carlsbad, CA, USA) was

used to evaluate the cellular response of hONS cells to rotenone, as described by Murtaza
et al. [47]. Cells were seeded at 625 cells per well in a 384-well plate and treated with
200 nm rotenone for 96 h. The fluorescence intensity of each sample was measured using
the Synergy2 plate reader (Biotek Instruments, Winooski, VT, USA) set with an excitation
of 485 nm and emission detection at 530 nm.

MTT assay
To enhance cell adhesion, all plates were pre-treated with 0.01% w/v poly-D-lysine

(Sigma Aldrich, St. Louis, MI, USA) at least 3 h before the assay. Cells were seeded at an
optimized density of 5 × 104 cells/well in a 96-well plate, leaving 3 empty wells as controls.
The MTT assay was performed as previously described [51], the cells were incubated at
37 ◦C for 24 h, and then treated with 100 µg/mL of DMSO-solved fractions for 2 h at a
final DMSO concentration of 0.5%. After pretreatment with fractions, cells were subjected
to 6-OHDA challenge at the working concentration of 60 µM in FBS-free media, followed
by incubation for another 24 h. To quantify cell viability based on mitochondrial function,
the cells were incubated with 0.5 mg/mL MTT and incubated for 4 h at 37 ◦C. To dissolve
insoluble formazan crystals produced from reducing MTT by the cells, 80 µL of 20% SDS
was added, and plates were wrapped with foil and placed on an orbital shaker at 100 rpm
for 4 h at room temperature. The absorbance of solubilized formazan products was then
measured at 570 nm.
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2.6. Mitochondrial Membrane Potential (MMP) Assay

A Codex Homogeneous Mitochondrial Membrane Potential Assay Kit (Codex BioSolu-
tions, Inc., Gaithersburg, MD, USA) was used for the MMP assay; the assay was performed
in line with the manufacturer’s protocol and as described by Sakamuru et al. [52] with some
modifications. To determine the appropriate toxin dose, cells were seeded at an optimized
density of 5 × 104 cells/well in a 96-well plate. After 24 h, culture media were replaced
with 100 µL media containing 6-OHDA concentrations ranging from 1.56 µM to 200 µM
and incubated for 6 h at 37 ◦C. When fractions were tested, fractions solved in DMSO were
added to the wells at 100 µg/mL 30 min after the addition of 6-OHDA at the optimized
concentration. After incubation, the cells were loaded with the mitochondrial membrane
potential indicator (m-MPI) and incubated at 37 ◦C for 30 min. The plate was subsequently
washed once with 1X m-MPI assay buffer, after which 80 µL of 1X m-MPI assay buffer was
added to each well for reading of the plate with a Spectramax iD5 Multi-Mode Microplate
reader. The mitochondrial membrane potential was quantified by the ratio between the
J-aggregate form of the mitochondrial MPI indicator (m-MPI) with green fluorescence
(485 nm excitation and 535 nm emission) and the monomer form of the m-MPI with red
fluorescence (540 nm excitation and 590 nm emission).

2.7. Untargeted Phytochemical Characterization of Active Fractions by HRMS

Acquisition of the phytochemical profile of fractions was carried out on a Vanquish™
Flex UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA) connected to an
Orbitrap Exploris 120 mass spectrometer (Thermo Scientific, Waltham, MA, USA). Separa-
tion of fractions was achieved on a Phenomenex Luna C18 column, (2.1 mm × 100 mm,
1.7 µm) using a mobile phase of A: 0.1% formic acid in water and B: methanol at a flow rate
of 0.6 mL/min. The gradient program was as follows: 0 min, 10% B; 5 min, 10% B; 15 min,
100% B; 20 min, 10% B. The injection volume was 5 µL, and the column temperature was
set at 35 ◦C.

Mass spectrometry data were recorded on an Orbitrap Exploris 140 mass spectrometer
equipped with a heated ESI source and operated in the positive-ion mode with the following
settings: ion spray voltage: 2.5 kV, sheath gas: 5.08 L min−1, auxiliary gas: 9.37 L min−1,
ion transfer tube temperature: 320 ◦C, vaporizer temperature: 350 ◦C, scan range (m/z):
150–2000, and collision-energy voltage: 35 V. The full scan was operated at a mass resolution
of 60,000 and MS2 scan at 15,000. Data were acquired using Thermo Xcalibur software and
analyzed with Compound Discoverer 3.3.

2.8. Data Analysis

Data analysis was performed using Graph Pad Prism version 10.1 for Microsoft
windows (GraphPad Software, San Diego, CA, USA) using two-way analysis of variance,
followed by Dunnett’s multiple comparison test. Statistical significance was defined as
* p < 0.05 and ** p < 0.01. All determinations were performed in triplicate (at least), and
results are presented as means ± SDs.

3. Results and Discussion
3.1. Extraction and Fractionation

A total of 384 biota were randomly chosen from NatureBank, and the extracts and
fractions were obtained using a modified lead-like extraction and fractionation proto-
col previously established by NatureBank [36,50]. This protocol has been optimized to
prioritize molecules with drug-like physiochemical properties by frontloading extracts
and subsequent fractions while excluding molecules that lack drug-like or lead-like char-
acteristics [36,50]. Generally, the lead-like extraction and fractionation protocol retains
components with a log P < 5 [36,50]. Extracts were then fractionated using HPLC, with
fractions collected at 60 s intervals for 11 min (Figure 2), resulting in 4224 fractions for
screening.



Biomolecules 2024, 14, 440 6 of 20

Biomolecules 2024, 14, x FOR PEER REVIEW 6 of 21 
 

characteristics [36,50]. Generally, the lead-like extraction and fractionation protocol re-
tains components with a log P < 5 [36,50]. Extracts were then fractionated using HPLC, 
with fractions collected at 60 s intervals for 11 min (Figure 2), resulting in 4224 fractions 
for screening. 

 
Figure 2. A schematic chromatogram illustrating the HPLC fractionation of a representative positive 
biota. Dotted lines indicate the time periods for each fraction. 

3.2. Effect of Fractions on Cell Proliferation Using High-Throughput CyQuant Assay 
The effect of fractions used in this study on cell proliferation was evaluated by expos-

ing PD-sourced hONS cells to rotenone in the presence of test fractions. There is a well-
established link between PD and mitochondrial dysfunction, as extensive research evi-
dence has linked PD to features of mitochondrial dysfunction, such as oxidative stress, 
poor calcium homeostasis, disruption to the MMP, abnormal mitochondrial morphology, 
disruptions to the OXPHOS process as a result of reduced complex enzyme activity, im-
balanced apoptosis, impaired mitophagy, and mitochondrial dynamics [3,14,53–56].  

PD-patient derived hONS cells have been reported to show disease-specific altera-
tions such as mitochondrial dysfunction and oxidative damage even in the absence of mi-
tochondrial toxins [48]. Hence, it was possible to aggravate mitochondrial dysfunction in 
these cells and cause apoptosis using very low doses of neurotoxins, such as the 200 nm 
rotenone applied in this study. Rotenone is a well-known neurotoxin that induces mito-
chondrial dysfunction in cellular and animal disease models [40,47,57]. Its primary mech-
anism of action involves causing mitochondrial dysfunction by inhibiting mitochondrial 
complex I, an enzyme critical to the oxidative phosphorylation process [40]. Numerous 
studies have shown that the inhibition of mitochondrial complex I activity is accompanied 
by deleterious effects, such as impaired mitochondrial biogenesis and dynamics, oxidative 
stress, decreased ATP production, and apoptosis [40,57]. To identify modulators within 
the 4224 selected fractions affecting rotenone-induced toxicity in hONS cells, we first em-
ployed the CyQuant assay, a fluorescence-based method for quantifying and assessing 
cell proliferation and cytotoxicity [39]. We calculated Z-scores for all vehicle control-
treated samples and set a threshold of a Z-score in the range of −2.5–2.5. The CyQuant 
values for all extract-treated samples were normalized to control-treated samples, and a 
relative Z-score was calculated based on the means and standard deviations of all control-
treated samples. Figure 3 shows the relative Z-scores for all samples together with the 
threshold values as indicated by the two red lines. There were 108 fractions with relative 
Z-scores outside the threshold range; these constituted the initial hits. The 108 fractions 
were subsequently subjected to a confirmatory round (in triplicate) of the assay using the 
same parameters as the first. This resulted in 20 hit fractions with relative Z-scores ranging 
from −2.5 to 2.5. The 20 fractions were from 11 biotas (Table 2), which included eight Aus-
tralian plants and three marine sponges (Figure 4). 

Figure 2. A schematic chromatogram illustrating the HPLC fractionation of a representative positive
biota. Dotted lines indicate the time periods for each fraction.

3.2. Effect of Fractions on Cell Proliferation Using High-Throughput CyQuant Assay

The effect of fractions used in this study on cell proliferation was evaluated by ex-
posing PD-sourced hONS cells to rotenone in the presence of test fractions. There is a
well-established link between PD and mitochondrial dysfunction, as extensive research evi-
dence has linked PD to features of mitochondrial dysfunction, such as oxidative stress, poor
calcium homeostasis, disruption to the MMP, abnormal mitochondrial morphology, disrup-
tions to the OXPHOS process as a result of reduced complex enzyme activity, imbalanced
apoptosis, impaired mitophagy, and mitochondrial dynamics [3,14,53–56].

PD-patient derived hONS cells have been reported to show disease-specific alterations
such as mitochondrial dysfunction and oxidative damage even in the absence of mitochon-
drial toxins [48]. Hence, it was possible to aggravate mitochondrial dysfunction in these
cells and cause apoptosis using very low doses of neurotoxins, such as the 200 nm rotenone
applied in this study. Rotenone is a well-known neurotoxin that induces mitochondrial
dysfunction in cellular and animal disease models [40,47,57]. Its primary mechanism of
action involves causing mitochondrial dysfunction by inhibiting mitochondrial complex
I, an enzyme critical to the oxidative phosphorylation process [40]. Numerous studies
have shown that the inhibition of mitochondrial complex I activity is accompanied by
deleterious effects, such as impaired mitochondrial biogenesis and dynamics, oxidative
stress, decreased ATP production, and apoptosis [40,57]. To identify modulators within the
4224 selected fractions affecting rotenone-induced toxicity in hONS cells, we first employed
the CyQuant assay, a fluorescence-based method for quantifying and assessing cell prolifer-
ation and cytotoxicity [39]. We calculated Z-scores for all vehicle control-treated samples
and set a threshold of a Z-score in the range of −2.5–2.5. The CyQuant values for all
extract-treated samples were normalized to control-treated samples, and a relative Z-score
was calculated based on the means and standard deviations of all control-treated samples.
Figure 3 shows the relative Z-scores for all samples together with the threshold values
as indicated by the two red lines. There were 108 fractions with relative Z-scores outside
the threshold range; these constituted the initial hits. The 108 fractions were subsequently
subjected to a confirmatory round (in triplicate) of the assay using the same parameters as
the first. This resulted in 20 hit fractions with relative Z-scores ranging from −2.5 to 2.5.
The 20 fractions were from 11 biotas (Table 2), which included eight Australian plants and
three marine sponges (Figure 4).
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Table 2. List of eleven biotas from which hits were obtained during the second round of screening.

Genus Species Source
1 Balanops <None> Plant
2 Alnus trabeculosa h-m. Plant
3 Anredera <None> Plant
4 Furcraea <None> Plant
5 Cestrum <None> Plant
6 Ilex <None> Plant
7 Balanophora <None> Plant
8 Rhaphoxya 3249 Marine
9 Aaptos aaptos Marine
10 Dendrilla 3106 Marine
11 Ternstroemia <None> Plant

3.3. Evaluating the Mitoprotective Effects of Hit Fractions by MTT Assay

To further validate the hits from the high-throughput CyQuant assay and assess their
efficacy and potency, different cell models and assays were employed. Mitochondria exhibit
tissue-specific properties and are known to show differences across tissues and cell lines [58].
Furthermore, PD patient-sourced hONS cells are primary cells, presenting diverse genetic
and morphological characteristics among individual PD patients, which further complicates
the validation process [48]. Given these considerations, we opted to confirm our findings
from the CyQuant high-throughput screening using the human neuroblastoma cell line
SH-SY5Y. SH-SY5Y cells resemble human dopaminergic neurons in many aspects and are
widely used as model cells for studying mitochondrial dysfunction [59]. A recent review
highlighted that approximately 41% of studies focusing on mitochondrial dysfunction used
the SH-SY5Y cell line [1]. This is unsurprising, given that neuronal cells have high energy
demands. Mitochondria play a crucial role in their health and functionality, catering to
their high metabolic needs [1–3]. To establish a robust assay, we optimized conditions
such as cell seeding density, the choice of neurotoxin and toxin concentration, and the
DMSO tolerability of the cells. An optimized seeding density of 5.0 × 104 cells/well
in a 96-well plate was established for SH-SY5Y cells, and three mitochondrial complex
I inhibitory neurotoxins, namely, 6-hydroxydopamine (6-OHDA) [60,61], rotenone [40],
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and 1-methyl-4-phenylpyridinium (MPP+), were tested [59]. DMSO was used as a carrier
control.
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As shown in Figure 5, rotenone showed a relatively low apparent IC50 of 0.59 µM.
However, it presented minimal efficacy of ~30% due to a significant solubility challenge, as
it forms precipitates in culture media. MPP+ has no solubility issues. However, it exhibited
very low potency towards the SH-SY5Y cells. In contrast, 6-OHDA showed almost 100%
efficacy and a moderate potency. Therefore, 6-OHDA was selected as the most suitable
toxin to induce mitochondrial dysfunction, and a working concentration of 60 µM was
used to maintain a cell viability range of 50–70%, allowing for scalability in the following
large-scale experiments.
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SH-SY5Y cells can tolerate a DMSO concentration of up to 1% v/v in culture media,
maintaining at least 91% cell viability. To keep the DMSO concentration minimal without
affecting the solubility of the fractions, the DMSO concentration was kept at 0.5% in the
media containing tested fractions in the following studies.

For all 11 biotas, fractions 1–7 were tested for their protective effect on the mitochondria
at concentrations of 100, 50, and 25 µg/mL, using the optimized MTT assay conditions
(Figure 6). We excluded fractions 8–11 due to their minimal mass, which rendered them
unsuitable for functional tests. The controls encompassed untreated cells, cells treated
with DMSO, cells treated with 6-OHDA, and cells treated with 6-OHDA + DMSO. Treated
groups were cells incubated with fractions in the presence of 6-OHDA and DMSO. Any
fraction with statistically significant cell viability above that of cells treated with 6-OHDA
and DMSO, which was 38.98%, was considered protective. Due to the number of data, only
fractions showing significant protection against 6-OHDA-induced toxicity are shown in
Figure 6. However, the full data sets for all 11 biotas, including inactive fractions, have
been included in the Supplementary Materials. A total of 77 fractions were tested, and 40
(51.94%) fractions showed statistically significant protection (p < 0.05) against 6-OHDA-
induced toxicity at a treatment concentration of 100 µg/mL (Figure 6A). Furthermore,
28 (36.36%) and 31 (40.26%) fractions showed statistically significant protection at lower
concentrations of 50 and 25 µg/mL, respectively (Figure 6B,C).
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To a very large extent, the data from the MTT assay corroborate the results from the
CyQuant assay, with 18 of the initial 20 hits from the CyQuant assay returning as positive
despite the different cell model and assay. This, essentially, is a strong indicator that these
fractions potentially contain protective mitochondrial modulators.

It is also noteworthy that fraction F7 of Ternstroemia sp. (Figure S12), F1–F7 of Ilex
sp. (Figure S12), and F1–F7 of Furcraea sp. (Figure S13) showed significant toxicity to the
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mitochondria at both 50 and 25 µg/mL, resulting in lower cell viability when compared
to the control group. These results suggest that these fractions could potentially contain
mitochondrial modulators with toxic effects on the mitochondria. This is remarkable, and
compounds responsible for this effect are potentially relevant in the treatment of diseases
like cancer, with the mitochondrion strongly emerging as a target for cancer therapy, as
there is increasing research evidence showing that inducing mitochondrial toxicity by
targeting OXPHOS could be a potent way to destroy cancer cells [62–64].

3.4. Evaluating the Mitoprotective Effects of Fractions by Mitochondrial Membrane Potential
(MMP) Assay

To further ascertain that the active fractions identified from the MTT assay were indeed
acting on mitochondria, it was essential to use an assay with greater mitochondrial speci-
ficity. Hence, the active fractions were further tested using the mitochondrial membrane
potential (MMP) assay.

ATP is generated in the mitochondria through the electron transport chain by creating
an electrochemical gradient through a series of redox reactions [52,65]. This electrochemical
gradient generates MMP, which is a direct measure of ATP production ability and a key
metric for evaluating mitochondrial function and overall cellular health [65,66]. A decrease
in MMP is one of the main features of mitochondrial dysfunction, and this decrease has
been linked to apoptosis [52,66,67].

MMP was evaluated using the water-soluble mitochondrial membrane potential indi-
cator (m-MPI), a dye that aggregates in healthy mitochondria as red fluorescent monomers
emitting light at 590 nm [52]. When the MMP is depolarized, the m-MPI dye transitions
to green fluorescent monomers with emission at 535 nm. The ratio between these two
fluorescence values can then serve as a measure of MMP [52,67]. A total of 34 fractions with
at least 60% efficacy at 100 µg/mL from the MTT assay were subjected to the MMP assay.
We found that 6-OHDA induced mitochondrial dysfunction in SH-SY5Y cells by reducing
MMP, with a mere 1.56 µM concentration decreasing MMP by more than 56% (Figure 7A).
All the tested fractions, except for fraction F7 of Dendrilla sp. (11.42%), restored MMP to
levels ranging between 36% and 134% when compared to cells treated with 6-OHDA and
DMSO, where the level was 20.56% (Figure 7B). Notably, fraction F2 of Balanophora sp. fully
restored MMP, followed by fractions F3 of Dendrilla sp. and F6 of Aaptos sp., which restored
MMP to levels above 80%.

These findings corroborate the data from the MTT assay and further confirm that the
selected fractions potentially contain components capable of rescuing mitochondria from
toxic attacks.

3.5. Chemical Constituents of Selected Active Fractions

In Table 3, we present the top eight most active fractions, which exhibit MMP activities
ranging from 60% to 133%. Additionally, we detail their CyQuant, MTT, and MMP activities,
along with the corresponding mitoprotective compounds identified from these fractions.

These fractions were selected for orbitrap LCMS chemical profiling, and the data
were analyzed using compound discoverer 3.3 with a native untargeted natural products
identification workflow. Mass data were searched in the Chemspider database, while
a spectral similarity search was performed in mZcloud for MS2 fragmentation data of
detected compounds. Compounds with at least 70% mZcloud match confidence and a
mass error between –2 ppm and +2 ppm were selected, resulting in the identification of
57 compounds across eight fractions. Table 4 shows a list of identified compounds from all
the positive biota fractions with their retention times, molecular formulae, and molecular
weights. The extracted ion chromatogram and mass spectra of analyzed fractions are
included in the Supplementary Materials (Figure S14–S20).
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Table 3. Summary data for all eight fractions and identified mitoprotective compounds.

CyQuant MTT (%) MMP (%) Compound(s)
Cell + 6-OHDA + DMSO × 38.98 20.58 -

Ternstroemia sp._F4
√

67.70 75.04 1, 4, 6, 7, 9, 10, 12
Cestrum sp._F1

√
63.39 65.69 4, 5, 8,

Alnus sp._F4
√

59.24 79.15 1, 3, 10, 11
Balanophora sp._F2

√
68.27 133.39 2

Anredera sp._F1
√

65.82 68.76 10
Aaptos sp._F6

√
72.83 84.52 -

Dendrilla sp._F3
√

74.82 83.90 8, 10
Rhaphoxya sp._F3

√
75.44 60.78 -

Table 4. Identified compounds from UHPLC-Orbitrap Ms.

Name RT (min) MF MW
Ternstroemia sp._F4

1 NP-019811 0.56 C6H7NO2 125.04765

2 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-bis [3,4,5-trihydroxy-6-
(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-4H-chromen-4-one 0.97 C27H30O15 594.15819

3 (2S,3R,4S,5S,6R)-2-[4-(2-hydroxyethyl)phenoxy]-6-
(hydroxymethyl)oxane-3,4,5-triol 1.06 C14H20O7 300.12041
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Table 4. Cont.

Name RT (min) MF MW
4 Esculin 1.07 C15H16O9 340.07921
5 7-hydroxy-6-methoxy-2H-chromen-2-one 1.15 C10H8O4 192.04201
6 Taxifolin 1.37 C15H12O7 304.05798
7 Fraxetin 1.38 C10H8O5 208.03696
8 3,4-Dihydroxybenzaldehyde 1.42 C7H6O3 138.03163
9 5-(6-hydroxy-6-methyloctyl)-2,5-dihydrofuran-2-one 2.26 C13H22O3 226.15672
10 Vanillin 2.45 C8H8O3 152.04727

11 (2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-
3,4,5-triol 2.96 C14H20O6 284.12577

12 Scopoletin 2.96 C10H8O4 192.04216
13 4-Coumaric acid 3.00 C9H8O3 164.04738
14 Isoliquiritigenin 3.30 C15H12O4 256.07338
15 Quercetin 3.88 C15H10O7 302.04265

16
5-hydroxy-3-(4-methoxyphenyl)-7-[(3,4,5-trihydroxy-6-{[(3,4,5-

trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-6-methyloxan-2-
yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

4.03 C28H32O14 592.17931

17 3-amino-2-phenyl-2H-pyrazolo [4,3-c]pyridine-4,6-diol 5.48 C12H10N4O2 242.08023

18
(3aR,7aS,8S,9aR)-5,8-dimethyl-3-methylidene-

2H,3H,3aH,4H,6H,7H,7aH,8H,9H,9aH-azuleno
[6,5-b]furan-2,6-dione

7.16 C15H18O3 246.12546

19 12-Aminododecanoic acid 8.90 C12H25NO2 215.18846
Cestrum sp._F1

1 Agmatine 0.45 C5H14N4 130.12168
2 Nicotinic acid 0.83 C6H5NO2 123.03203
3 N,N′-Diphenylguanidine 0.92 C13H13N3 211.11072
4 Vanillin 2.44 C8H8O3 152.04753
5 NP-007065 4.04 C8H10O3 154.06290
6 4-Phenylbutyric acid 4.27 C10H12O2 164.08365
7 Cantharidin 9.05 C10H12O4 196.07384
8 NP-000925 9.87 C17H16O5 300.09947
9 Pinocembrin 10.06 C15H12O4 256.07314

Alnus sp._F4
1 NP-019811 0.55 C6H7NO2 125.04747
2 Nicotinic acid 0.87 C6H5NO2 123.03188
3 2,3,4,9-Tetrahydro-1H-β-carboline-3-carboxylic acid 1.35 C12H12N2O2 216.08965
4 Fraxetin 2.15 C10H8O5 208.03697
5 Syringic acid 3.13 C9H10O5 198.05271
6 Isovanillic acid 3.33 C8H8O4 168.04217
7 Isoferulic acid 3.33 C10H10O4 194.05776
8 Naringenin 7.06 C15H12O5 272.06819
9 Vanillin 8.01 C8H8O3 152.04720

Balanophora sp._F2
1 Nicotinamide 0.78 C6H6N2O 122.04791
2 3′-Adenosine monophosphate (3′-AMP) 0.98 C10H14N5O7P 347.06261
3 3-(2-methylpropyl)-octahydropyrrolo [1,2-a]pyrazine-1,4-dione 3.03 C11H18N2O2 210.13658
4 NP-007065 4.00 C8H10O3 154.06297
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Table 4. Cont.

Name RT (min) MF MW
Anredera sp._F1

1 L-Aspartic acid 0.66 C4H7NO4 133.03739
2 Nicotinic acid 0.86 C6H5NO2 123.03193
3 L-Phenylalanine 0.88 C9H11NO2 165.07886
4 Vanillin 2.43 C8H8O3 152.04729
5 4-Phenylbutyric acid 3.13 C10H12O2 164.08362

Aaptos sp._F6
1 Pulegone 7.95 C10H16O 152.12012
2 NP-022512 8.67 C13H19NO 205.14656
3 NP-019636 15.25 C9H8O4 180.04219
4 Palmitoleic acid 16.69 C16H30O2 254.22444
5 4-Methoxycinnamic acid 17.15 C10H10O3 178.06291
6 8Z,11Z,14Z-Eicosatrienoic acid 17.66 C20H34O2 306.25477

Dendrilla sp._F3
1 Agmatine 0.49 C5H14N4 130.12166
2 Trigonelline 0.82 C7H7NO2 137.04752
3 Nicotinic acid 0.82 C6H5NO2 123.03189
4 Vanillin 2.41 C8H8O3 152.04744
5 NP-011220 2.77 C11H18N2O2 210.13654
6 4-Phenylbutyric acid 4.24 C10H12O2 164.08368
7 Cantharidin 9.04 C10H12O4 196.07358
8 (-)-Caryophyllene oxide 11.31 C15H24O 220.18263
9 4-Phenylbutyric acid 11.76 C10H12O2 164.08377

Rhaphoxya sp._F3
1 Nicotinic acid 0.82 C6H5NO2 123.03196

2 3-[(4-hydroxyphenyl)methyl]-octahydropyrrolo
[1,2-a]pyrazine-1,4-dione 1.24 C14H16N2O3 260.11604

3 NP-016455 2.39 C11H18N2O4 242.12662
4 NP-011220 2.77 C11H18N2O2 210.13680
5 Cyclo(leucylprolyl) 3.01 C11H18N2O2 210.13684
6 DL-2-(acetylamino)-3-phenylpropanoic acid 3.37 C11H13NO3 207.08954
7 4-Phenylbutyric acid 3.38 C10H12O2 164.08382
8 Cyclo(phenylalanyl-prolyl) 3.70 C14H16N2O2 244.12128
9 4-Methylumbelliferone hydrate 4.48 C10H8O3 176.04732
10 2-Hydroxybenzothiazole 5.03 C7H5NOS 151.00932
11 4-Methoxycinnamaldehyde 7.03 C10H10O2 162.06818
12 Bis(2-ethylhexyl) amine 8.66 C16H35N 241.27669

13 (1R,4aS)-7-(2-Hydroxypropan-2-yl)-1,4a-dimethyl-9-oxo-3,4,10,10a-
carboxylic acid 10.63 C20H26O4 330.18295

14 (-)-Caryophyllene oxide 12.54 C15H24O 220.18265

It is noteworthy that 12 compounds identified by LC-MS have been reported to protect
against mitochondrial dysfunction, underscoring the robustness of our screening method-
ology (Figure 8). Research has shown that the majority of these compounds protect the
mitochondria by reducing oxidative stress and modulating antioxidant defense systems,
oxidative stress, and apoptotic markers [45,68,69]. In the SH-SY5Y model, fraxetin (1) pro-
tected against rotenone-induced apoptosis via the induction of the chaperone HSP70, crucial
for maintaining mitochondrial functions [70]. Fraxetin also protects mitochondria by reduc-
ing ROS and apoptotic proteins, such as cytochrome c, Bax, and caspase-3 and -9, while
upregulating the expression of antioxidant defense enzymes, such as SOD, GPX, and cata-
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lase [69,70]. Nicotinamide (2), a precursor to nicotinamide adenine dinucleotide (NAD), has
been reported to prevent neurodegeneration in glaucoma by defending against mitochon-
drial dysfunction, boosting OXPHOS, and increasing mitochondrial size [68]. In addition to
reducing ROS, regulating oxidative enzymes, and increasing the expression of complexes I
and V, naringenin (3) upregulates ATP production, activates the PI3K/Akt/GSK-3β path-
way, improves nuclear E2-related factor 2 (Nrf2) expression, and stabilizes MMP [45,71–73].
Isoliquiritigenin (4) inhibits apoptosis by promoting increased phosphorylation of glycogen
synthase kinase-3β (GSK3β) and also enhances mitochondrial biogenesis by activation of
AMP-activated protein kinase (AMPK) [74,75]. Reports have shown that pinocembrin (5)
protects brain mitochondria structure and function by decreasing ROS, restoring MMP, and
improving mitochondrial morphology [76]. This compound also exhibits antiapoptotic
effects, restores the electron transport chain, and upregulates ATP and Nrf2 [77,78]. Other
compounds like quercetin (6) [30,31,79], taxifolin (7) [80–82], agmatine (8) [83], esculin
(9) [84], vanillin (10) [85], syringic acid (11) [86–88], and 4-coumaric acid (12) [43,89] have
also been documented for their protective effects against mitochondrial dysfunction.
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We also identified 45 new mitoprotective compounds spanning diverse structural
classes, such as alkaloids, coumarins, carboxylic acids, cinnamic acids, lipopeptides, ter-
penes, benzothiazoles, amines, amino acids, and fatty acids. While there are no reports
in the literature on the mitoprotective activity of these metabolites, some of them have
been reported to show activity in mitochondrial dysfunction-linked diseases. For exam-
ple, trigonelline, an alkaloid previously isolated from plants such as fenugreek, Japanese
radish, and coffee beans stands out for its potential to attenuate oxidative stress and show
activity in mitochondrial dysfunction-linked conditions, such as diabetes, PD, AD, stroke,
dementia, and depression [90]. Trigonelline improved memory function in AD and showed
neuroprotective and antiapoptotic effects in a 6-OHDA-induced model of PD in rats [91–93].
Our work demonstrated that these beneficial effects may at least partially be attributed to
its mitoprotective functions. Isoferulic acid and scopoletin exert their neuroprotective prop-
erties by decreasing ROS, activating the Nrf2 pathway, and suppressing apoptosis [94–97].
In this study, they were found to be promising candidates for the mitoprotective effects of
Alnus sp. and Ternstroemia sp., respectively (Table 4).
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4. Conclusions, Limitations, and Future Directions

In this study, we screened 4224 fractions derived from 384 biotas belonging to Aus-
tralia’s diverse flora and fauna for their protective effects against mitochondrial dysfunction.
We were able to identify 20 hit fractions from 11 biota in the initial round of screening using
assays based on rotenone-induced mitochondrial dysfunction in PD patient-derived hONS
cell models. These initial findings were successfully validated by MTT and MMP assays in
a 6-OHDA/SH-SY5Y model. Additionally, we identified 57 metabolites that are potentially
responsible for the activity of the eight most active hits using HRMS. Twelve metabolites
(1–12) have been previously reported to show protective effects against mitochondrial
dysfunction.

These findings strongly indicate that the described methodologies provide a robust,
effective, and rather quick approach to the screening of mitochondrial modulators, espe-
cially on a large scale. With the use of robotics, the screening approach described in this
work can be easily scaled to screen tens of thousands of compounds. Also, this method can
be readily adapted to screen for toxic mitochondrial modulators as a strategy for cancer
therapy, rather than for mitoprotective compounds, which was the focus of this work.

However, a significant limitation of this work is the reliance on databases for identify-
ing compounds, the results being inherently dependent on the contents of these databases.
Consequently, there is a considerable risk that both known and new natural products have
been overlooked. This challenge underscores the importance of further isolation and char-
acterization of active compounds from these biotas to precisely determine the metabolites
responsible for their mitoprotective properties and further testing of these metabolites to
understand their mechanisms of actions.
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Figure S19: Base peak ion chromatogram and full mass spectra of Aaptos sp., fraction 6, Figure S20:
Base peak ion chromatogram and full mass spectra of Rhaphoxya sp., fraction 3.
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