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Abstract: Safflower (Carthamus tinctorius L.) is an ancient oilseed crop of interest due to its diversity
of end-use industrial and food products. Proteomic and metabolomic profiling of its organs during
seed development, which can provide further insights on seed quality attributes to assist in variety
and product development, has not yet been undertaken. In this study, an integrated proteome and
metabolic analysis have shown a high complexity of lipophilic proteins and metabolites differentially
expressed across organs and tissues during seed development and petal wilting. We demonstrated
that these approaches successfully discriminated safflower reproductive organs and developmental
stages with the identification of 2179 unique compounds and 3043 peptides matching 724 unique
proteins. A comparison between cotyledon and husk tissues revealed the complementarity of using
both technologies, with husks mostly featuring metabolites (99%), while cotyledons predominantly
yielded peptides (90%). This provided a more complete picture of mechanisms discriminating
the seed envelope from what it protected. Furthermore, we showed distinct molecular signatures
of petal wilting and colour transition, seed growth, and maturation. We revealed the molecular
makeup shift occurring during petal colour transition and wilting, as well as the importance of
benzenoids, phenylpropanoids, flavonoids, and pigments. Finally, our study emphasizes that the
biochemical mechanisms implicated in the growing and maturing of safflower seeds are complex and
far-reaching, as evidenced by AraCyc, PaintOmics, and MetaboAnalyst mapping capabilities. This
study provides a new resource for functional knowledge of safflower seed and potentially further
enables the precision development of novel products and safflower varieties with biotechnology and
molecular farming applications.
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1. Introduction

Safflower (Carthamus tinctorius L.) is an erect annual herbaceous plant of the Asteraceae
family that originated from the eastern Mediterranean coast and was domesticated more
than 4500 years ago [1]. Native to arid regions of the Middle East, it has a remarkable
adaptability to a wide range of climatic conditions, from semi-arid to temperate zones. It
is an ideal crop for arid to semi-arid agricultural land with limited water availability and
relatively high temperatures; its deep tap root system with abundant thin horizontal roots
allows the plant to extract water and nutrients from deeper layers of soil than many other
crop plants [2]. Safflower’s ability to withstand salinity, drought, strong winds, hailstorms,
and flooding has made its cultivation possible in diversified environments. Furthermore,
its relatively short growth cycle, typically ranging from 100 to 150 days, allows flexibility
in crop rotation strategies, thus enhancing soil fertility and reducing disease pressure.
Accordingly, C. tinctorius is currently widely grown in more than 60 countries and regions
on all continents but Antarctica [3]. The thistle-like plants range in height from 0.3 to 1.5 m
and harbour extensive branching ending with globular flowering heads of vibrant colour
shades from white, to yellow, orange, or red [2]. Each plant produces 3–50 capitula, each
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containing 20–180 florets, ultimately yielding 15–60 achenes [4]. A thick hull protects the
cotyledon inside the seed, which starts to mature 4–5 weeks after flowering.

Safflower is a multipurpose crop. It is mainly cultivated for its petals and oil con-
tent in seeds used as edible cooking oil, food colouring, fabric dyes, cosmetics, animal
and birdfeed, medicines, pharmaceuticals, biofuel, and lubricant [3,5]. Asian traditional
herbal medicine employs flowers and seeds to treat gynaecological, cardiovascular, and
cerebrovascular diseases as well as blood stasis and osteoporosis [6]. Also known as
fake saffron, C. tinctorius flowers have commonly been used as a cheaper substitute for
saffron, and methods have been devised to authenticate spices and detect known adulter-
ants [7–9]. Safflower capitula are a rich source of bioactive substances, with 200 substances
identified thus far [10]. With a moisture content of 4.7%, the composition of safflower
petals is 1.82% protein, 4.8% lipids, 11.6% crude fibre, and 10.8% ash. Abundant petal
compounds comprise alkaloids, flavonoids, lignanoids, organic acids and polyacetylenes,
alkanediols, riboflavin, steroids, and quinochalcone C-glycosides [10]. Flavonoids of the
C-glucosylquinochalcone group constitute the bulk of petal pigments, including carthamine
(safflower yellow, carthamus red) and carthamidin (carthamic acid). Safflower pigments
have become so important that syntheses of their analogues have been optimised [11],
and more recently, flavonoid extraction has been refined [12]. Most of the pharmacolog-
ical activities of C. tinctorius can be attributed to flavonoids and alkaloids, especially the
quinochalcone c-glycoside hydroxysafflor yellow A (HSYA), N-(p-Coumaroyl)serotonin,
and N-feruloylserotonin [6]. HSYA was reported to exhibit significant biological activity in
the treatment of coronary heart disease, myocardial infarction, ischaemic encephalopathy,
cerebral thrombosis, and stroke [1].

C. tinctorius is an oilseed crop whose oil content is in the range of 23–40%, which is on
par with that of sunflower, olive, and peanut [13]. The applications of safflower oil seeds in
industrial, pharmaceutical, and food products depend upon their fatty acid (FA) composi-
tion, which fluctuates among plant species, cultivars, and growing conditions [2]. Safflower
oil contains a high proportion of unsaturated FAs for medicinal as well as dietetic purposes.
The most abundant ones are linoleic and oleic acid comprising 77.9–79.5% and 9.5–11.3%
of total Fas, respectively. Saturated fatty acids are present in lower proportions (9.7–10.8%
of total FAs); the prominent ones are palmitic and stearic acids representing 7.2–8.6% and
2.0–2.4%, respectively. A resurgence in the demand for renewable plant-based oils has
rekindled interest in safflower due to its high-quality oil yields and genotypic variation in
FA composition, with a focus on linoleic, oleic, and stearic acids [5]. Interestingly, super
high oleic (~90%) genetically modified varieties have been developed and commercialised
and are highly suitable as industrial lubricants among other renewable products [14].

The safflower genome is diploid and contains 24 chromosomes [15]. It was recently
sequenced with 33,343 gene models predicted [16] and 82,916 gene products annotated [17].
C. tinctorius is the closest relative in the wild, and its single progenitor was C. palaestinus,
which was domesticated in the Levant region [15]. Its closest relative with a sequenced
genome is the globe artichoke (Cynara cardunculus) [18]. Safflower harbours uniquely
expanded gene families involved in lipid metabolism and transport, as well as abscisic
acid signaling [16]. The 47 genes responsible for lipid biosynthesis were identified from a
collection of 605 safflower germplasms [19]. Notably, the fatty acid desaturase 2 (FAD2)
and chalcone synthase (CHS) families, which function in the FA and flavonoid biosynthesis
pathways, respectively, were expanded via tandem duplications in safflower. The FAD2
family with 11 genes is exceptionally large in safflower, including the seed-specific FAD2
oleate ∆12 desaturase genes responsible for converting stearic acid to oleic acid [20].

The availability of annotated genes has spurred post-genomics research on safflower.
Temporal transcriptome profiling of developing seeds revealed that FAs were actively
synthesised from 10 to 14 days after flowering (DAF) and degraded after 18 DAF [21].
The main genes implicated were stearoyl-[acyl-carrier-protein] 9-desaturase gene (SAD)
from 10 to 14 DAF and oleate desaturase (FAD2–1) from 14 to 18 DAF, with the latter
being regulated by 13 candidate transcription factors. Proteomics studies have aimed at
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comparing the response to drought stress and re-watering between cultivated and wild
young plants [22], observing the impact of growth regulators on salt stress responses in
seedlings [23], and establishing the composition, functional, and antioxidant properties
of flour [24]. Metabolomics was applied to monitor the changes in pigment composition
during the blooming period [25] and to assess how betaine salvage seedling growth sup-
pression under salt stress [26]. The integration of several post-genomics workflows as a
multi-omics strategy has successfully advanced the understanding of safflower capitula
biology, in particular, white floret formation [27], as well as flavonoid profiling during
colour transition [28], colour variation [29], or methyl jasmonate treatment [30]. An in-
tegrated proteome and lipidome analysis of naturally aged safflower seeds varying in
vitality indicated that enzymes involved in glycerolipid metabolism and FA degradation
contributed to the degradation of oil bodies and membrane lipids and are thus responsible
for a decline in seed vigour during natural seed ageing [31].

Whilst post-genomics research has garnered interest in safflower, there is little to no
knowledge and investigation to elucidate the molecular mechanisms involved in achene
development. The present work provides a new fundamental resource that incorporates
a comprehensive proteomics and metabolomics approach to temporally profile seeds
collected at five key development stages covering filling and maturation. We have also dis-
sected fully mature seeds into husks and cotyledons to show unique molecular signatures.
Furthermore, in the early seed development stages, we sampled flowers as they wilted
and transitioned colours to better understand which lipophilic proteins and compounds
facilitated these biochemical processes.

2. Materials and Methods
2.1. Safflower Cultivation, Sampling, and Storage

Safflower plants (cv. S317) were grown from seed in 200 mm pots filled with com-
mercial potting media (Biogro, VIC, Australia). in greenhouse conditions maintained at
20–24 ◦C and a 14 h photoperiod supplemented by high-pressure sodium lamps. Plants
were maintained in a high health condition.

The sampling of seeds was done by harvesting whole capitula at various developmen-
tal stages estimated from the number of weeks from floret and anther emergence and floret
morphology, such as colour (yellow to red) and the level of senescence/wilting (Figure 1).

A minimum of 3 capitula were removed from plants at each developmental stage
and were carefully dissected using a scalpel blade to obtain seed/achene samples. Five
developmental stages were targeted and reported as weeks post anthesis (WPA): stage
1 corresponded to 1 WPA, stage 2 corresponded to 2–3 WPA, stage 3 corresponded to
3–4 WPA, stage 4 corresponded to 6 WPA, and the ultimate stage 5 at 12 WPA marker full
maturity of the oil seeds.

Up to 10 undamaged seeds/achenes with florets at stages 1–3 (1–4 WPA) were sampled
and placed into a 2 mL tube. At later stages 4 and 5 (6 and 12 WPA), individual seeds
were larger, and 5 were transferred to 2 mL collection tubes. All samples were collected in
triplicate, snap-frozen in liquid nitrogen, and stored at −80 ◦C. The subsequent processing
steps are summarised in Figure 2.

2.2. Sample Preparation

Frozen collected samples were transferred into a −80 ◦C prechilled 50 mL grinding
jar with two 8 mm and two 3 mm −80 ◦C prechilled metal grinding balls. The grinding
jars were immediately placed into −80 ◦C prechilled metal racks and adapted into an
automated tissue homogeniser and cell lyser (Geno/Grinder® 2010, SPEX SamplePrep,
Metuchen, NJ, USA). The samples were pulverised for 2 min at 1750 rpm.

An amount of 1 g (whole seeds and cotyledons) or 200 mg (husks and petals) of
frozen ground material was transferred into a 15 mL tube and 9 mL of 100% chloroform
was added. Tubes were incubated in a sonicator bath for 15 min, vortexed for 1 min, and
further resuspended using an MS 1.5 sonicator probe (Ultrasonic Homogeniser SONOPULS



Biomolecules 2024, 14, 414 4 of 20

mini 20, Bandelin, Berlin, Germany) for 30 s with 90% amplitude. This step was repeated
following the addition of 4 mL 100% chloroform.
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Tubes were centrifuged using a swing bucket rotor for 10 min at 5000 rpm (Sigma
centrifuge 4–16 KS, Osterode am Harz, Germany). Floating material was scooped out and
discarded. The chloroform phase was equally divided into two tubes for each proteomics
and metabolomics stream and completely evaporated using a vacuum centrifuge (SPD-2010
SpeedVac, ThermoFisher Scientific, Scoresby, VIC, Australia) without heat.

2.3. Bottom-up Proteomics
2.3.1. Protein Extraction and Digestion

To the 2 mL tubes containing evaporated chloroform phase, 0.5 mL Gnd-HCl buffer
(6 M Guanidine hydrochloride, 0.1 M Bis-Tris, 10 mM DTT, 5.37 mM sodium citrate tribasic
dihydrate) was added and probe-sonicated for 30 s with 90% amplitude. The strong
chaotropic and reducing conditions allowed for efficient denaturation of lipophilic proteins,
thereby amenable to solubilisation in our water-based buffer. The tubes were thoroughly
vortexed and incubated for 60 min at 60 ◦C. The tubes were left to cool to room temperature
for 5 min, and 10 µL of 1 M iodoacetamide was added. The tubes were vortexed for 30 s
and incubated in the dark for 30 min. The tubes were then centrifuged at 13,000 rpm for
15 min.

Protein trypsin/Lys-C digestion, peptide clean-up and digest reconstitution steps
were performed as described [32,33]. Briefly, 10 µL of protein extract was transferred into a
tube, diluted six times in 50 mM ammonium bicarbonate, and 1 µg enzyme was added for
overnight incubation at 37 ◦C. Digests were desalted using solid phase extraction, eluted
in 250 µL 80% ACN/0.1% FA/water, fully evaporated using a vacuum centrifuge, and
reconstituted in 100 µL of 0.1% FA/water which matched our LC starting conditions.

2.3.2. Liquid Chromatography (LC) and Mass Spectrometry (MS) of Peptides

The equipment and consumables used for LC-MS and LC-MS/MS analyses were
detailed [32,33]. The LC flow rate was 0.2 mL/min with an autosampler and oven tem-
peratures of, respectively, 10 ◦C and 60 ◦C. Mobile phase A consisted of 0.1% FA in water,
and mobile phase B contained 0.1% FA in ACN. A 5 µL of tryptic digest was injected and
LC-separated for 60 min along the following gradient: 3% B for 2.5 min, 3–40% B gradient
for 37.5 min, increased up to 98% B gradient for 3 min, 98% B for 8 min, drop down to 3% B
in 1 min, and 3% B for 8 min.

For LC-MS analyses, spectra were acquired using the full MS scan mode of the Fourier
transform (FT) orbitrap mass analyser (FTMS) in positive ion mode at a resolution of
15,000 along a 300–2000 m/z mass window in profile mode with 3 micro-scans.

For LC-MS/MS analyses based on the Nth order double play method in data depen-
dant mode, two scan events were created, one full FTMS scan as specified above followed
by a full ion trap scan (ITMS) in positive ion mode along a 300–2000 m/z mass window
in centroid mode with 4 micro-scans. Ignoring singly charged ions, the 10 most abundant
peaks and a minimum signal threshold of 5000 were fragmented using collision-induced
dissociation (CID) with a normalised collision energy of 35%, 0.25 activation Q, and ac-
tivation time of 10 ms. The precursor isolation width was 2 m/z. Dynamic exclusion
was activated, and peptides selected for fragmentation more than once within 10 s were
excluded from selection for 20 s.

2.3.3. Protein Database and Mascot Identification

Protein sequences from various sources were downloaded: safflower genome se-
quencing project [16] (71,896 entries, http://safflower.scuec.edu.cn/, downloaded on
5 December 2023), Uniprot C. tinctorius proteins (304 entries, https://www.uniprot.org/
taxonomy/4222, accessed on 12 November 2022), and Uniprot Cardueae tribe (35,708 entries,
https://www.uniprot.org/taxonomy/219103, accessed on 12 November 2022); a contami-
nant database was also retrieved (common Repository of Adventitious Proteins (cRAP);
https://ftp.thegpm.org/fasta/cRAP, downloaded in March 2022). A single fasta protein
database containing all aforementioned protein sequences with duplicated amino acid (AA)

http://safflower.scuec.edu.cn/
https://www.uniprot.org/taxonomy/4222
https://www.uniprot.org/taxonomy/4222
https://www.uniprot.org/taxonomy/219103
https://ftp.thegpm.org/fasta/cRAP
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sequences removed and their reversed decoys was created using the Galaxy workflow
consigned in [33]. This fasta file included 143,792 sequences; it was imported and parsed
into our Mascot server.

LC-MS/MS RAW files were exported as MGF using the MSconvertGUI free tool
(https://proteowizard.sourceforge.io/tools/msconvert.html, [34]). All MGF files were
combined into a single file by using the Galaxy tool to concatenate datasets tail-to-head (cat).

Using Mascot (version 2.6.2, Matrix Science Ltd., London, UK), the MGF file was
searched against the fasta DB described above with the following parameters: MS/MS ions
search, Mascot generic data format, ESI-TRAP instrument, monoisotopic masses, trypsin
enzyme, up to 9 missed cleavages, carbamidomethyl (C) as fixed modification, oxidation
(M) as variable modifications, quantitation none, monoisotopic mass, 2+, 3+ and 4+ peptide
charge, 20 ppm peptide tolerance, 0.5 Da MS/MS tolerance, and error-tolerant search,
which allows the matching of uninterpreted MS/MS data and identifying unexpected
modifications [35] (for more information on error tolerant searching, the reader is advised
to read https://www.matrixscience.com/help/error_tolerant_help.html). The search result
with a significance threshold of p < 0.1 was exported as a CSV file.

2.4. Metabolomics
2.4.1. Metabolite Extraction

Evaporated chloroform samples were reconstituted in 1 mL 80% ACN/water with
thorough vortexing for 5 min. Tubes were centrifuged and 0.1 mL supernatant was trans-
ferred into vials for LC-MS analysis.

2.4.2. LC-MS Analysis of Metabolites

For untargeted metabolite profiling, a Vanquish ultra-high performance liquid chro-
matography (UHPLC) system (Thermo Fisher Scientific, Bremen, Germany) with a binary
pump, autosampler, and temperature-controlled column compartment, coupled with a
QExactive (QE) Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) with
electrospray (ESI) probe operating in both positive and negative modes, was used. Prior to
data acquisition, the system was calibrated with Pierce LTQ Velos ESI positive and nega-
tive ion calibration solution (Thermo Fisher Scientific). Spectrometry data were acquired
using Thermo Xcalibur V. 2.1 (Thermo Fisher Scientific Inc., Waltham, MA, USA). Nitrogen
was used as the sheath, auxiliary, and sweep gases at flow rates of 28, 15, and 4 L/min,
respectively. Spray voltage was set at 4000 V (positive and negative). A Thermo Fisher
Scientific Hypersil Gold 1.9 µm, 100 mm × 2.1 mm column with a gradient mobile phase
consisting of 0.1% formic acid in H2O (A) and 0.1% formic acid in acetonitrile (B), at a
flow rate of 0.3 mL/min was used. The gradient began at 2% B, increasing to 100% B over
11 min, followed by 4 min at 100% B before a 5 min equilibration with 2% B.

MS cycles were composed of 1 full MS scan and up to 10 full-scan MS/data-dependent
MS2 (ddMS2) events. The top 10 cycles triggered an MS2 event at the peak apex with
an isolation window of 0.4 m/z. A 5.0 s delay was required for the same ion to trigger
a new MS2 event (dynamic exclusion). For MS data acquisition, positive and negative
ion data were captured over a mass range of 80–1200 m/z, with a mass resolution set at
35,000 (full width at half maximum, FWHM, at m/z 200). The automatic gain control (AGC)
target was 3 × 106 and the maximum injection time (IT) was 200 ms. For MS/MS data
acquisition, ddMS2 in both positive and negative ionisation modes were set over a mass
range of 80–1200 m/z, with a mass resolution of 17,500. The AGC target was 1 × 105 and
the maximum IT was 50 ms. Ions were fragmented with stepped collision energy (20, 40
and 60%).

2.4.3. Metabolite Identification

Safflower metabolite identification was carried out in Genedata Refiner using LC-MS
data searched against the Human Metabolome Database (HMDB Version 5.0, [36]), which

https://proteowizard.sourceforge.io/tools/msconvert.html
https://www.matrixscience.com/help/error_tolerant_help.html
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contains 220,945 metabolite entries including both water-soluble and lipid-soluble metabo-
lites.

2.5. Quantitation and Statistical Analyses

LC-MS and LC-MS/MS RAW files from peptide and metabolites experiments were
processed in the Genedata Expressionist Refiner module (version 16, Genedata AG, Basel,
Switzerland) as explained in [33,37]. The datasets obtained presented features in rows and
samples in columns; missing values were blanks.

The quantitative data generated by the Refiner module for both proteomics and
metabolomics was combined in Excel by adding unique identifiers. The combined data
was imported into the Genedata Expressionist Analyst module to perform the statistical
analyses. The quantities were normalised using sample weights and autoscaled per feature.
The distribution of feature quantities across samples was displayed using box plots.

Several unsupervised multivariate clustering methods were employed. A principal
component analysis (PCA) was performed using 50% valid values and a covariance matrix.
A k-means analysis was completed on the full dataset using 50% valid values, 16 clusters,
50 maximum iterations, and positive correlation distances. Using the k-means clusters
that displayed petal or seed specificity, two self-organising maps analyses were carried
out across developmental stages of whole seeds using 3 clusters as well as on wilting
petals using 2 clusters. The same parameters were applied throughout: 50% valid values,
50 maximum iterations, and positive correlations.

Three univariate analyses were completed. A linear model (LM) was performed on
petals using time series as a covariate factor and applied to the k-means clusters that
displayed petal specificity. Another LM was performed on seeds also with time series as a
covariate factor and applied to the k-means clusters which displayed seed specificity. A
comparison of cotyledons and husks was achieved using a t-test on k-means clusters specific
to each tissue using 50% valid values, 10 repeat bootstraps, and balanced permutations.
p-values were charted against fold change as a volcano plot.

2.6. Data Visualisation, Data Mining, and Bioinformatics

The metabolites’ MHDB identifiers were uploaded into the ID conversion tool of
MetaboAnalyst (https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.
xhtml) [38] to retrieve metabolites descriptions including KEGG compound identifiers
(COs), as well as InChlKeys. The latter were uploaded into the ClassyFire online tool
(https://cfb.fiehnlab.ucdavis.edu/; [39]) to categorise known metabolites. Outputs were
exported to Power BI and plotted as histograms, pies, and stacked column charts.

A total of 136,350 protein FASTA sequences from Arabidopsis thaliana were downloaded
from Uniprot using Taxonomy 3202 (https://www.uniprot.org/taxonomy/3702) [40]. The
file was uploaded to Galaxy Australia (Galaxy version 2.14.1, https://usegalaxy.org.au/)
and converted into a database using the “NCBI BLAST+ makeblastdb” tool [41]. The
FASTA sequences of safflower proteins identified in this study were searched in Galaxy
Australia against the A. thaliana database using the “NCBI BLAST+ blastp” tool [41] with
the following parameters: blastp type, evalue of 0.0001, BLOSUM45 scoring matrix, default
gap costs, 1 maximum hit, and 30% minimum query coverage.

UniprotKB ID mapping (https://www.uniprot.org/id-mapping) [40] was used to
upload and retrieve the full description of all identified protein accessions including A.
thaliana blastp hits. Thus, geneIDs used in MetaboAnalysts, PaintOmics, and AraCyc,
FASTA sequence used in KEGG, as well as gene ontology (GO) terms and IDs, were
recovered. GO IDs and counts were uploaded in Revigo (http://revigo.irb.hr/; [42]) with
the following parameters: large list, higher value is better, A. thaliana as a species, and
SimRel semantic similarity measure. Outputs were exported to Power BI and plotted as
scatterplots, treemaps, stacked column charts, and treemap bar charts.

The A. thaliana protein FASTA sequences were uploaded online in the KEGG BlastKOALA
tool (https://www.kegg.jp/kegg/mapper/assign_ko.html) [43] against the Brassicaceae

https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.xhtml
https://cfb.fiehnlab.ucdavis.edu/
https://www.uniprot.org/taxonomy/3702
https://usegalaxy.org.au/
https://www.uniprot.org/id-mapping
http://revigo.irb.hr/
https://www.kegg.jp/kegg/mapper/assign_ko.html
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family (taxonomy 3700) to retrieve KEGG orthologs (KOs). Metabolite COs and protein
KOs were uploaded into the KEGG search tool (https://www.kegg.jp/kegg/mapper/
search.html) by specifying the A. thaliana organism code (ath) [44].

The joint-pathway analysis module of MetaboAnalyst 5.0 was used online (https://
www.metaboanalyst.ca/) to map both A. thaliana geneIDs and metabolite HMDB codes [38].
The parameters were as follows: integrated metabolic pathways as the pathway database,
enrichment analysis using Fisher’s exact test, degree centrality for topology measure, and
combined p-values at the pathway level as an integration method.

Proteomics and metabolomics quantitative datasets with A. thaliana geneIDs and
metabolite names were up-loaded into PaintOmics (version 4, https://www.paintomics.
org/) [45] by choosing A. thaliana as an organism and selecting KEGG, Reactome, and
MapMan as databases. Raw quantities were used, and missing values were replaced with
0.01 values.

The same quantitative datasets employed in PaintOmics were combined into one file
to be analysed into AraCyc from Plant Metabolics Network [46] (https://pmn.plantcyc.org/
organism-summary?object=ARA). The file was uploaded into the cellular overview/OMICS
viewer by specifying the use of any of the known identifiers and absolute values and select-
ing both the cellular overview diagram and the omics dashboard. The cellular overview
dynamic animation was recorded using the Chrome extension Veed.io.

All Excel spreadsheets describing samples identified peptides and metabolites, quanti-
tative data, and statistical results were uploaded to the PowerBI desktop for data merging,
filtering, and visualisation (treemaps, scatterplots, violin plots, donut charts, histograms,
and word clouds).

3. Results and Discussion
3.1. Proteomics and Metabolomics Successfully Discriminated Safflower Organs and
Developmental Stages

Our multifactorial experimental design explored both tissue development and speci-
ficity by sampling petals and seeds over time (Figure 1) and comparing cotyledons and
husks. The seed developmental timeline was split into five stages, from very immature at
1 WPA to full maturity at 12 WPA. The petals were sampled in stages 1–3, thus marked by a
colour change from yellow to orange-red and wilting. As petals were fully dry past 5 WPA,
we did not collect them on stages 4–5 to maintain protein integrity. In all, 10 tissues were
collected in triplicates (Supplementary Table S1 and Figure 3A); the resulting 30 samples
were processed to recover lipophilic proteins and metabolites (Figure 2). Tryptic peptides
and organic compounds were separated by LC-MS along 20 and 40 min gradients, span-
ning m/z 300–1500 and 80–1200, respectively (Figure 3B). Metabolites were singly charged
with masses ranging from 82 to 1197; peptides hosted 2–5 positive charges with masses
distributed from 599 to 5585 (Figure 3C,D).

All metabolomics identification results were captured in Supplementary Table S2. The
number of metabolites identified using negative and positive MS modes were 1500 and
2385, respectively (Figure 3E), and corresponded to 2179 unique compounds, including
396 that were identified in both modes. Charting the compound names as a word cloud
highlighted prominent group labels, such as acid (358 occurrences) (Figure 3F), denoting
the prevalence of fatty acids in safflower oily seeds. Other frequent terms included hydroxy,
di-, tri-hydroxy (228, 119, and 103 occurrences, respectively), or carboxylic (102 instances).
ClassyFire classification highlighted that most compounds (47%) belonged to the lipids
and lipid-like molecules superclass, with 481 fatty acyls, 458 prenol lipids, 299 glycerophos-
pholipids, 249 steroids, and 80 glycerolipids (Supplementary Figure S1A). The second most
abundant superclass comprised 18% phenylpropanoids and polyketides; they included
281 flavonoids, 99 coumarins, 80 cinnamic acids, and 80 linear 1,3-diarylpropanoids. The
third largest superclass contained benzenoids (9%), with 231 benzenes and derivatives,
80 phenols, and 51 naphtalenes.

https://www.kegg.jp/kegg/mapper/search.html
https://www.kegg.jp/kegg/mapper/search.html
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://www.paintomics.org/
https://www.paintomics.org/
https://pmn.plantcyc.org/organism-summary?object=ARA
https://pmn.plantcyc.org/organism-summary?object=ARA
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All proteomics identification results including decoy hits are captured in Supple-
mentary Table S3A,B. A total of 3043 peptides were identified (Figure 3E) and matched
724 unique proteins. Up to five missed cleavages were found by the Mascot algorithm
(Figure 3G). Most identified peptides (2358, 77%) did not feature any missed cleavage;
542 (18%) peptides contained two missed cleavages, and 94 (3%) had three missed cleav-
ages. At the protein level, the Mascot score ranged from 13 to 2937 with up to 79% of the
AA sequence covered (Figure 3H). A word cloud of protein names illustrated the high
frequency of common terms featured in identity descriptions such as “protein” (151 occur-
rences), “containing” (49 instances), “domain” (41 occurrences), “fragment” (26 instances),
“family” (22 items), or “binding” (14) (Figure 3I). Putting those aside revealed 17 ribosomal
proteins, 9 histones, 13 dehydrogenases, 13 kinases, and 7 oxidases, along with many other
enzymes. Revigo classification of proteins revealed that most peptides originated from
proteins involved in seed maturation (42%) and exhibited a nutrient reservoir activity (28%)
(Supplementary Figure S1B). Other prominent biological processes (BP) were proteolysis
(9%), glycolytic processes (7%), and translation (5%). These large GOBP categories bore no
semantic similarities as can be seen on the scatterplot (Supplementary Figure S1B). Cellular
component proportions were more balanced: nucleus 11%, cytoplasm 7%, extracellular
region 7%, and membrane 7%. A total of 2002 (66%) peptides presented post-translational
modifications (PTMs, Supplementary Table S3A). The most frequent modifications were
Gln->Lys (Q) (478/2002, 24%), followed by oxidation (265/2002, 13%) and methylation
(131/2002, 7%). An error-tolerant parameter was allowed during the Mascot algorithm
search to identify PTMs other than carbamidomethylation and oxidation. However, caution
must be exercised when interpreting the identification results so that only proteins that
already have at least one significant peptide match should incorporate new matches [35].
Indeed, even though our sample preparation method did not include a labelling step,
label modifications were also attributed to 6% of our identified peptides because of the
error-tolerant search. Those label modifications should be disregarded, yet we left them to
make the community aware of the limitations of such a method. This warrants follow-up
experiments to validate the PTMs identified in this work such as the two-pronged strategy
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suggested by [47], namely, the verification of identified modifications in the initial dataset
and targeted experiments using synthetic peptides.

Quantitative data generated from both metabolomics and proteomics streams were
combined into a single dataset containing 6917 features across 30 samples, which was
normalised prior to statistical analyses. A box plot chart highlighted the dynamic range
variation across tissues, with stage 1 seeds and hulls displaying the shortest interquartile
ranges, while petals at stages 2–3 and seed and cotyledons at stage 5 showed the largest
interquartile range (Figure 4A). The high reproducibility of the workflow was demonstrated
by the very similar box plots across triplicates. It was confirmed by PCA that triplicates
either overlaid one another or grouped together (Figure 4B). PC1 explained 33.3% of the
variance (2303 features) and separated petals on the right-hand side from seeds/cotyledons
on the left. Husk and stage 1 seeds are located in the middle of PC1, thus they do not
contribute. PC2 explained 19.5% of the variance (1348 features) and aligned with develop-
mental stages. Stages 2–5 of whole seeds covered the whole PC2 axis from top to bottom,
whilst stages 1 to 3 of petals were sequentially distributed along the bottom half. This
PCA biplot illustrates that quantifying peptides and metabolites from chloroform fraction
faithfully captured the experimental design by discriminating tissues over time.
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Figure 4. Statistical analyses. (A) Box plot of quantitative data per sample. The legend in panel
A applies to all panels; (B) PCA plot of all samples; (C) 16 K-mean clusters across all samples;
(D) volcano plot displaying t-test output of cotyledons vs. husks; significant features with both a
fold change > 2 and a p-value < 0.05 are highlighted in red. Below are box plot charts of significant
features either up-regulated in cotyledons (left chart) or down-regulated in cotyledons (right chart);
(E) SOM and heat map of petal wilting; (F) SOM and heat map of developing seeds. The colours
in the heat maps in panels (E,F) correspond to low abundance in dark blue and high abundance in
dark red.

The whole dataset was subjected to k-means clustering and grouped into 16 clus-
ters, explaining 94% of the variance overall. Cluster size ranged from 190 (cluster 13)
to 740 (cluster 6). Many clusters gathered features that accumulated in a single sample
type such as clusters 1, 7, or 15, respectively, displaying a pick of expression in seeds at
stages 2, 3, and 4 (Figure 4C). Likewise, k-mean cluster 16 depicted 212 features unique



Biomolecules 2024, 14, 414 11 of 20

to cotyledons. Other clusters were less specific with up-regulation across several samples;
this was exemplified in cluster 5 highlighting the gradual upregulation of 177 features over
developmental stages in petals, seeds, and cotyledons. There was no cluster unique to
hull samples; cluster 9 grouped 206 features accumulating in both husks and yellow petals.
K-means clusters 3, 4, and 8 were unique to petals and were combined into 1332 features
for further analyses to characterise petal colour change and wilting. Likewise, features
specific to seeds/cotyledons and found in k-means clusters 6, 7, 10, 13, 14, and 15 were
combined (1926 features) for subsequent analyses of seed maturation.

3.2. Comparison of Cotyledon and Husk Reveals the Complementarity of Metabolomics
and Proteomics

A safflower plant typically yields 1000–2500 seeds, with mature seeds reaching
6–10 mm in length and protected by a thick hull representing about 45% of the total seed
content in recent varieties [48]. One of our aims in this study was to compare cotyledons
and husks by identifying their molecular signatures. We performed a t-test on the 418 fea-
tures listed in k-means clusters 9 and 16 (Figure 4C), which were the most specific to those
tissues; then we plotted the fold changes against p-values as a volcano chart (Figure 4D).
Choosing an arbitrary p-value significance of 0.05 and fold change of 2 listed 92 and 94 fea-
tures up-regulated in cotyledons and hulls, respectively (Supplementary Tables S2 and S3).
Bar plots of those significant peptides and metabolites confirmed the opposite expression
patterns displayed by each set.

Husk-induced analytes were predominantly metabolites (92/94), with only two pep-
tides listed. One of the peptides (BUP_Peak_053987) belonged to unannotated C. tinctorius
proteins (CtAH06T0128300.2_AMAGQIR) that blasted an A. thaliana mitochondrial ATP
synthase subunit O involved in oxidative phosphorylation (K02137). The other peptide
(BUP_Peak_083816) was also from an unannotated safflower protein (CtAH07T0252400.1_E
INSLAK) whose AA sequence aligned against A. thaliana dihydrolipoyllysine-residue
succinyltransferase (EC 2.3.1.61). This enzyme acts in the TCA cycle and the lipoic acid
metabolism (K00658). Many of the 92 metabolites accumulating in hulls were lipids and
lipid-like molecules (35%), phenylpropanoids and polyketides (21%), or organohetero-
cyclic compounds (20%). The most significantly up-regulated compounds were lisuride
(MET-neg_Group_0839), which is an indoloquinoline alkaloid also present in Ginko biloba
(Itil et al. 1998), followed by octadecanedioic acid (MET-neg_Group_0709), also named
stearic acid, the most common fatty acid. Two glycerophospholipids PA(15:0/22:2(13Z,16Z))
(MET-neg_Group_2614) and PA(20:1(11Z)/15:0) (MET-neg_Group_2503) also accumulated
in hull. Several serotonin derivatives were over-expressed in husks, including N-(p-
coumaroyl) serotonin, which was also isolated from safflower seed meal [49].

Cotyledon-induced analytes were predominantly peptides (84/92), with only eight
metabolites listed. Three of those were lipids including oleamide (MET-pos_Group_1940),
which was three times up-regulated in cotyledons; this FA amide was identified from
purslane seed extract [50]. One flavonoid, 3,4,trihydroxy-{[hydroxy-(hydroxy-methoxyphen
yl)-oxo-4H-chromen-yl]oxy}oxane-carboxylic acid (MET-neg_Group_1523), accumulated
2.74 times more in cotyledons than in hulls. This was confirmed with a similar expression
profile by peptide BUP_Peak_270832 from chalcone-flavonone isomerase, an important
enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chal-
cones into (S)-flavanones. Other accumulating compounds were an AA derivative (N-
lactoyGlycine, MET-neg_Group_0003) and a dipeptide (prolyproline, MET-pos_Group_0164).
One-third of husk-induced peptides (26/84) originated from 12S seed storage proteins
CRA1 involved in seed maturation (GO:0010431)/nutrient reservoir activity (GO:0045735).
In A. thaliana, 12S seed storage proteins accumulated once cell elongation processes had
finalised in developing seeds [51]. Other cotyledon-abundant peptides came from riboso-
mal proteins acting in translation, peptidases involved in proteolysis, or kinase driving
phosphorylation, as well as structural proteins located in the cytoskeleton or cell walls.
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Our multi-omics results show that hulls mostly featured metabolites (99%), while
cotyledons mostly featured peptides (90%). This demonstrated the complementarity of
metabolomics and proteomics providing a more complete picture of mechanisms discrimi-
nating the seed envelope from what it protected.

3.3. Petal Molecular Signature Shifts during Colour Transition and Wilting

The second objective of our study was to identify the molecular signatures of petal
wilting and colour transition. We combined the 1322 petal-specific features (747 metabolites
and 575 peptides) listed in k-means clusters 3, 4, and 8 (Figure 4C). The largest propor-
tion (360/747, 48%) of metabolites induced in petals belonged to the lipids and lipid-like
molecule superclass, including 161 fatty acyls, 114 prenol lipids, 38 steroids, and 34 glyc-
erophospholipids (Supplementary Figure S2D). This was substantiated by 20 peptides
matching proteins involved in lipid metabolism and transport. Two non-specific lipid-
transfer proteins were identified in this work (nsLTP1 and nsLTP10). NsLTPs are small
extracellular proteins that only exist in land plants, bind hydrophobic molecules, and are
associated with multiple processes [52]. Elevated nsLTP gene expression was reported in
the petal and sepal abscission zone, where lipophilic substances are deposited to form the
protective layer [53]. Another LTP, chorein -N motif protein (CtAH11T0254500.1), employs
its extended hydrophobic channel to simultaneously bind dozens of lipids and facilitate
their passage through the cell membrane to the cytosol [54].

The second most prominent superclass of petal compounds was benzenoids (106/747,
14%), which constitute the most widespread plant fragrances and substantially contribute to
total floral scent [55]. Their roles include pollinator attraction, plant–plant communication,
and herbivore repellent [56]. Among the 62 benzenes and derivatives, we identified benzoic
acid (MET-pos_Group_0968), hydroxybenzoic acid (MET-neg_Group_0236), benzaldehyde
(MET-pos_Group_0891), and many benzene derivatives that are the hallmark of scent
constituents. Those benzenoid compounds originating from the trans-cinnamic acid branch
of the general phenylpropanoid pathway and lacking the three-carbon chain are volatile
and thereby not particularly amenable to LC-MS analysis. This warrants further studies
using suitable analytical technology such as GC-MS to validate those metabolites. Moreover,
we did not identify enzymes participating in benzenoid metabolism.

The third most frequent superclass of petal compounds was phenylpropanoids and
polyketides (87/747, 12%), including 29 flavonoids like heterophyllin (MET-neg_Group_1641)
and cycloartocarpin (MET-neg_Group_1351), 17 cinnamic acids such as sinapine (MET-
neg_Group_0685), as well as 9 coumarins. Synthesized from phenylpropanoid derivatives,
flavonoids are a major class of plant secondary metabolites that serve a multitude of
functions including tissue pigmentation and antioxidant activity. Over 60 flavonoids have
been isolated from safflower [1].

We performed a self-organising map (SOM) to identify two expression patterns across
the 1322 petal-specific features and generated heat maps of the profiles underlining each
trend. Moreover, we carried out a linear model (LM) to establish the significance of the
feature expression pattern over time (Supplementary Tables S2 and S3). The first SOM
cluster (1,1) displayed an increase in abundance of 712 features (457 metabolites and
255 peptides) from stage 1 (1 WPA) to stage 3 (3–4 WPA) (Figure 4E), when the petals
turned red and wilted but were not completely dry (Figure 1). The SOM group (1,1) listed
numerous flavonoids specifically accumulating throughout wilting, including chromen-one
derivatives (MET-neg_Group_0813, MET-neg_Group_2139, and MET-neg_Group_2424)
(MET-neg_Group_2530) and 3,3’-Dihydroxy-4’,5,trimethoxyflavan (MET-neg_Group_2531).
Although no enzymes involved in flavonoid metabolism were found in this SOM cluster,
we detected peptides from phenylpropanoid-related gene products. The unannotated
safflower protein CtAH06T0045000.1 (BUP_Peak_298915 and BUP_Peak_029589) matched
A. thaliana Dirigent protein 21 (DIR21), which during lignan biosynthesis mediates regio-
and stereoselectivity of bimolecular phenoxy radical coupling [57]. The acyl carrier protein-
like protein (A0A118JU17_CYNCS, BUP_Peak_220692) exhibited a 4-coumarate--CoA ligase
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activity (4CL EC 6.2.1.12), and its abundance gradually increased during the petal colour
transition from yellow and orange to red. Furthermore, 4CL is a key phenylpropanoid
pathway enzyme by biosynthesising monolignol through the production of flavonoid
precursor p-coumaroyl-CoA. In addition, 4CL safflower transcripts were down-regulated
in white flowers relative to red flowers [27].

The second SOM cluster (1,2) marked a peak of expression in wilting orange petals
(2–3 WPA) for 610 features (290 metabolites and 320 peptides). In our study, analytes were
much less abundant in yellow petals than during the later stages. Treemap bar charts
showed that proteins accumulating in petals were mostly involved in glycolytic processes
(GO:0006096), phosphorylation (GO:0016310), and pectin catabolitic processes (GO:0045490)
(Supplementary Figure S2A). They were predominantly extracellular (GO:0005576), cy-
toskeletal (GO:0005856), or nuclear (GO:0005634) proteins whose activities involved ATP
binding (GO:0005524) and ATP synthase (GO:0046933 and GO:0046961).

Focusing on significant features (p-values < 0.05) with the shortest distances in each
SOM group highlighted the change in molecular signatures occurring during the petal
wilting process. Indeed, proteins accumulating in orange petals acted in proteolysis
(GO:0006508), located in the mitochondrion (GO:0005739), and bore a cysteine-type pep-
tidase activity (GO:0008234) (Supplementary Figure S2B). The most significant peptide
of SOM cluster (1,2) (BUP_Peak_082043) matched A. thaliana mitochondrial aldehyde
dehydrogenase family 2 member B4 (ALDH2a, EC 1.2.1.3, Q9SU63), which is an ATP
binding enzyme. Conversely, proteins accumulating in red petals acted in glycolysis
(GO:0006096), located in the cytoplasm (GO:0005737), and featured an ATP-binding activity
(GO:0005524) (Supplementary Figure S2C). The most significant peptide of SOM cluster (1,1)
(BUP_Peak_157663) matched A. thaliana dihydrolipoyllysine-residue succinyltransferase
(EC 2.3.1.61, A0A178V2M2_ARATH), which participates in many pathways. The metabolite
signature also shifted with more flavonoids, coumarins, carboxylic acids, and benzopy-
rans in wilting orange petals (Supplementary Figure S2E) and more fatty acyls, prenol
lipids, steroids, benzenes, and phenols in wilted red petals (Supplementary Figure S2F).
All safflower-specific pigments identified in this study were found in the SOM cluster
(1,2) and accumulated in wilting orange petals (Supplementary Figure S2G). They were
safflor yellow B (MET-neg_Group_3373), anhydrosafflor yellow B (MET-pos_Group_4993),
carthamin (MET-neg_Group_3153), and safflomin C (MET-neg_Group_2188 and MET-
pos_Group_0699). Similar abundance profiles were reported by Pu and colleagues [25] in
their study on safflower blooming. Pigments missing in our dataset were HSYA, safflor
yellow A, and isosafflomin C; their water-solubility might have prohibited their extraction
under our organic conditions [1]. Safflower pigments were reported to be more abundant
in red inflorescences than white inflorescences [27]. Safflower flowers are known adul-
terants of saffron and detection methods have been devised [8,9]. Our list of identified
metabolites and proteins specific to petals could be further used as safflower biomarkers to
test commercial saffron samples.

3.4. Safflower Seed Growth and Maturation Are Driven by a Complex Tapestry of
Biochemical Mechanisms

The final aim of our study was to study safflower development, which could be sum-
marily divided into seed filling/growth (stages 1–3) and seed maturation (stages 4–5).
Achene size rapidly expanded during the first collection time points, from 5 mm at
1 WPA, to 9 mm at 2–3 WPA and reaching their final length of 11 mm after 3–4 WPA
(Figure 1). Hulls acquired their last shiny grey colouring at 6 WPA. We combined the 1889
seed-specific features listed in k-means clusters 6, 7, 10, 13, 14, and 15 (Figure 4C); they
comprised 1239 peptides and 650 metabolites. With 364 (29%) entries, seed maturation
(GO:0010431) represented the largest Gene Ontology Biological Process (GOBP) category
of the seed proteome, followed by translation (GO:0006412, 63 occurrences), proteolysis
(GO:0005608, 61 entries), and glycolytic processes (GO:0003096, 35 entries) (Supplementary
Figure S3A). The most frequent Gene Ontology Cellular Component (GOCC) terms were nu-
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cleus (GO:0005634, 54 occurrences), ribonucleoprotein complex (GO:19990904, 53 entries),
ribosome (GO:0005840, 51 entries), and membrane (GO:0016020, 44 occurrences). The
largest Gene Ontology Molecular Function (GOMF) class in seeds was nutrient reser-
voir activity (GO:0045735) with 388 (31%) occurrences, followed by ATP binding activity
(GO:0005524, 92 entries), and structural constituent of ribosome (GO:0003735, 37 entries).
Multiple occurrences of 12S seed storage protein CRD, 12S seed storage protein CRA1,
and late embryogenesis abundant (LEA) proteins (LEA31, BUP_Peak_073034 Supplemen-
tary Figure S3I) constituted the bulk of safflower seed proteome. Lipids and lipid-like
molecules predominated the seed metabolome with 237 (36%) (Supplementary Figure S3E)
and consisted of 11% fatty acyls, 8% prenol lipids, 7% glycerophospholipids, and 3%
glycerolipids. Confirming the large lipid component of oily safflower seeds, numerous
proteins involved in FA and lipid pathways were identified in this study, such as a lipoxy-
genase 2 (CtAH11T0245300.1), a bifunctional inhibitor/plant lipid transfer protein/seed
storage helical domain-containing protein (A0A103YGV1_CYNCS), a putative vacuolar
protein sorting-associated protein (DUF1162) (CtAH11T0254500.1), a lipid transfer protein 4
(CtAH10T0004400.1), and an oleosin 3 (A0A7R6LUT3_CARTI) (Supplementary Table S3A).
The second largest superclass was represented by 160 (25%) phenylpropanoids and polyke-
tides, including 7% flavonoids, 2% isoflavonoids, 1% 2-arylbenzofuran flavonoids, 3%
linear 1,3-diarylpropanoids, 3% coumarins, 2% cinnamic acids, and 1% diarylheptanoids.
This was substantiated at the protein level with the accumulation during seed maturation
of 4CL and DIR21, as well as a beta-xylosidase 1 (CtAH11T0219400.1, BUP_Peak_191007
and BUP_Peak_119513, Supplementary Figure S3I), which belonged to the seed coat de-
velopment category (GO:0010214). The third superclass listed 80 (12%) benzenoids, with
6% benzenes, 3% phenols, 1% phenol esthers, and 1% napthalenes. Other superclasses
consisted of 62 (10%) organoheterocyclic compounds, 39 (6%) organic acids, 28 (4%) organic
oxygen compounds, and 19 (3%) lignans.

We performed a SOM across the 1,889 seed-specific features to produce three patterns,
along with heat maps of the profiles underlining each trend. An LM isolated features whose
abundance significantly changed over time (Supplementary Tables S2 and S3). The first
SOM cluster (1,1) grouped 637 features (253 metabolites and 384 peptides) displaying a
gradual increase in abundance up to stage 4, followed by a slight dip at full maturity, stage 5
(Figure 4F). The second SOM cluster (1,2) was the smallest and comprised 513 features
(255 metabolites and 258 peptides) presenting a bell-shaped expression profile, peaking
at stage 3. The third SOM cluster (1,3) was the largest with 739 features (142 metabolites
and 597 peptides) and showed almost no accumulation from stages 1 to 3, followed by a
sharp increase in abundance during stages 4–5, when the seeds reached their full size and
maturity (Figure 1). Focusing on significant features (p-values < 0.05) with the shortest
distances in each SOM group highlighted the change in the proteome and metabolome
of maturing seeds. Most proteins yielding peptides listed in SOM clusters (1,1) and (1,3)
and significantly accumulating in fully grown seeds (stages 4–5) belonged to the seed
maturation category (GO:0010431) and displayed nutrient reservoir activity (GO:0045735)
(Supplementary Figure S3B,D). In the same SOM clusters, phenylpropanoids and lipids
dominated (Supplementary Figure S3F,H). Peptides from oleosin 3 (BUP_Peak_195471,
BUP_Peak_195474, and BUP_Peak_100441) accumulated during the maturation phase
(Supplementary Figure S3I). Oleosins are structural proteins found in vascular plant or-
gans characterised with high oil content that undergo extreme desiccation as part of
their maturation process, such as seeds; they help stabilize oil bodies [58]. The abun-
dance of lipoxygenase 2 (LOX2; BUP_Peak_012862, BUP_Peak_121717, BUP_Peak_177481,
BUP_Peak_181300) increased considerably during stage 4 and achieved a very high level of
expression during stage 5 (Supplementary Figure S3I). Plant LOXs display an oxygenase
activity towards either linoleic acid or linolenic acid and may be involved in a number of di-
verse aspects of plant physiology, including growth and development. During the first step
in the biosynthesis of oxylipins, LOXs catalyze the oxygenation of polyunsaturated fatty
acids [59]. In our study, alpha-linolenic acid (MET-pos_Group_1916), and linoleic acid (MET-
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pos_Group_1934) steadily accumulated throughout seed filling stages, reaching their apex
and very high abundance particularly for alpha-linolenic acid at stage 4 and becoming less
abundant at full maturity (Supplementary Figure S3I). Linoleic acid (MET-pos_Group_1934)
and oleic acid (MET-neg_Group_0573, MET-pos_Group_0296, MET-pos_Group_0297, and
MET-pos_Group_0298) exhibited the same expression pattern, while the content of their
precursors, palmitic acid (MET-neg_Group_0498) and stearic acid (MET-neg_Group_0585),
accumulated during seed filling (Supplementary Table S2). Translation (GO:0006412)
and structural constituent of ribosome (GO:0003735) classified the proteins significantly
peaking during stage 3 in the SOM cluster (1,2) (Supplementary Figure S3C). Only a few
compounds significantly marked stage 3 in seeds, particularly phenylpropanoids (Supple-
mentary Figure S3G), such as the prenylated flavone albanin H (MET-neg_Group_3002)
(Supplementary Table S2). Our results suggested that safflower seed growth was sus-
tained by active translational and lignification mechanisms until the full size was achieved,
following which seed storage and oil body production processes predominated.

To integrate quantitative results of identified peptides and metabolites, we employed
three free online multiomics-compatible resources, namely, MetaboAnalyst, AraCyc, and
PaintOmics. Whilst AraCyc [60] had been used to map identified biomarkers from multi-
omics plant experiments [61,62], to our knowledge, MetaboAnalyst joint-pathway anal-
ysis and PaintOmics [63] have never been applied to plant datasets. The joint path-
way analysis module of MetaboAnalyst [64] simultaneously analyzed gene products
and metabolites (KEGG or HMDB) of interest within the context of metabolic pathways.
We used HMDB identifiers and A. thaliana official gene symbols for safflower metabo-
lites and proteins, respectively, along with p-values. Overall, 66 pathways were flagged,
incorporating 6 to 141 identifiers mapped in the network explorer view (Supplemen-
tary Figure S4). The best-covered pathways were purine metabolism, FA biosynthe-
sis, phenylpropanoid biosynthesis, amino sugar, and nucleotide sugar metabolism, as
well as flavonoid biosynthesis (Supplementary Table S4). AraCyc Omics viewer (PMN
https://pmn.plantcyc.org/organism-summary?object=ARA 15 November 2023) accepted
metabolite names and A. thaliana gene names, along with quantitative data for each 15 seed
samples in a single file. A total of 306 analytes were recognised (113 compounds and
193 proteins); 148 of those could not be assigned to a pathway (Supplementary Table S5). A
total of 34 pathways were highlighted; the best represented were the secondary metabolite
biosynthesis, followed by nucleoside and nucleotide biosynthesis and AA biosynthe-
sis/degradation. The expression profiles of the 158 mapped analytes could be viewed
dynamically in the cellular overview at the highest level (Supplementary Video S1 and
Supplementary Figure S5A) or at a much finer level by zooming in, as exemplified on
the pyrimidine salvage pathway (Supplementary Figure S5B). The AraCyc Omics dash-
board was complementary to the cellular overview as it displayed expression profiles
averaged per pathway at either the highest level possible (Supplementary Figure S5C) or,
as illustrated on the TCA cycle, zoomed in at the next level down (Supplementary Figure S5D)
all the way to the biochemical reaction level (Supplementary Figure S5E). The web tool
PaintOmics integrates multiple omic datasets onto KEGG, Reactome, and MapMan bio-
logical pathway maps. Our metabolomics and proteomics datasets were uploaded inde-
pendently using compound names and A. thaliana gene names along with quantitative
data for each 15 seed samples. Recognising up to 169 identifiers, 122 (104 KEGG and
18 MapMan) pathways were flagged representing 78% cellular processes and 11% genetic
information processes (Supplementary Figure S6A). The best-covered pathways were the
biosynthesis of secondary metabolites, AA metabolism, and raffinose metabolism (Sup-
plementary Table S6). PaintOmics depicted a complex enrichment map (Supplementary
Figure S6B). Unlike the MetaboAnalyst joint pathway analysis module, both AraCyc and
PaintOmics could interpret quantitative data and incorporate expression profiles in visuali-
sations. Both MetaboAnalyst and PaintOmics interpretations of safflower seed proteome
and metabolome were faithful to the GO and ClassyFire categorisations detailed above.
The MetaboAnalyst scatterplot of pathway impact against p-values afforded a summarised
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view of the biological processes enriched in safflower seeds (Figure 5A). The most impact-
ful pathways were glycolysis/glucogenesis (Figure 5F) followed by pyruvate metabolism
(Figure 5B) and carbon fixation in plants (Figure 5G), both of which were reviewed to
be essential to seed processes [65] and quality [66]. Raffinose metabolism was also well
covered with the identification of numerous enzymes involved in the production of soluble
sugars (Figure 5H). No water-soluble sugars were identified in this study as an organic
solvent was employed during extraction. Raffinose was reported to be the most con-
centrated soluble sugar in safflower seeds, thereby contributing to seed desiccation and
storability [13]. Other impactful pathways were arachidonic acid, alpha-linoleic acid, and
sphingolipid metabolisms (Figure 5C–E). For instance, dehydrophytosphingosine (MET-
pos_Group_0356) and sphinganine (MET-pos_Group_2072) showed a gradual increase as
safflower seeds filled and matured.
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4. Conclusions

In this study, we have explored the lipophilic proteome and metabolome of various saf-
flower reproductive tissues to determine the distinct molecular signatures of petal wilting
and colour transition, seed growth, and maturation, as well as a comparison between the
developing cotyledon and the husk. We demonstrated that proteomics and metabolomics
successfully discriminated safflower reproductive organs and developmental stages with
the identification of 2179 unique compounds and 3043 peptides matching 724 unique
proteins. The comparison between the developing cotyledon and husk revealed the com-
plementarity of both technologies, as some tissues yielded mostly proteins (cotyledons)
whilst others yielded compounds (hull). We revealed the molecular makeup shift occurring
during petal colour transition and wilting, as well as the importance of benzenoids, phenyl-
propanoids, flavonoids, and pigments. Finally, our study emphasizes that the biochemical
mechanisms implicated in the growing and maturing of safflower seeds are complex and
far-reaching, as evidenced by AraCyc, PaintOmics, and MetaboAnalyst mapping capa-
bilities. Future studies might include studying the hydrophilic protein and metabolite
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fractions of safflower seeds, cotyledons, hulls, and petals and comparing them to the results
reported in the present work.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biom14040414/s1, Supplementary Figure S1: Classification of
metabolites using ClassyFire and of peptides using gene ontology and REVIGO. Supplementary
Figure S2: Data mining reveals molecular shifts in safflower wilting petals. Supplementary Figure S3:
Data mining reveals molecular shifts in developing seeds up to full maturity. Supplementary Fig-
ure S4: MetaboAnalyst joint-pathway analysis; network explorer view highlighting the pathways
enriched during safflower seed development. Supplementary Figure S5: AraCyc omics data anal-
ysis mapping the pathways involved in safflower seed development. Supplementary Figure S6:
PaintOmics analysis. KEGG pathway classification displays the pathways involved in safflower seed
development. Supplementary Video S1: Dynamic expression profiling of the 158 analytes mapped in
AraCyc cellular overview. Supplementary Table S1: Safflower sample description. Supplementary
Table S2: Safflower metabolite description, statistical, and quantitation results. Supplementary Ta-
ble S3A: Safflower peptide description, statistical, and quantitation results. Supplementary Table S3B:
Decoy hits from proteomics. Supplementary Table S4: MetaboAnalyst joint-pathway analysis re-
sults in safflower seeds. Supplementary Table S5: AraCyc Omics viewer results in safflower seeds.
Supplementary Table S6: PaintOmics results in safflower seeds.
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