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Abstract: Amyotrophic Lateral Sclerosis (ALS) is a progressive disease with prevalent mitochondrial
dysfunctions affecting both upper and lower motor neurons in the motor cortex, brainstem, and spinal
cord. Despite mitochondria having their own genome (mtDNA), in humans, most mitochondrial
genes are encoded by the nuclear genome (nDNA). Our study aimed to simultaneously screen for
nDNA and mtDNA genomes to assess for specific variant enrichment in ALS compared to control
tissues. Here, we analysed whole exome (WES) and whole genome (WGS) sequencing data from
spinal cord tissues, respectively, of 6 and 12 human donors. A total of 31,257 and 301,241 variants
in nuclear-encoded mitochondrial genes were identified from WES and WGS, respectively, while
mtDNA reads accounted for 73 and 332 variants. Despite technical differences, both datasets con-
sistently revealed a specific enrichment of variants in the mitochondrial Control Region (CR) and
in several of these genes directly associated with mitochondrial dynamics or with Sirtuin pathway
genes within ALS tissues. Overall, our data support the hypothesis of a variant burden in specific
genes, highlighting potential actionable targets for therapeutic interventions in ALS.

Keywords: Amyotrophic Lateral Sclerosis; bioinformatic pipeline; mtDNA; nDNA; WES; WGS;
variants; heteroplasmy

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterised
by upper motor neuron death in the cerebral cortex and lower motor neurons in the
brainstem and spinal cord. ALS leads to progressive paralysis, disability, and eventually
death [1]. Despite the fact that there are five FDA approved treatments for the disease
(tofersen, AMX0035, edaravone, riluzole and Dextromethorphan/quinidine) [2–4], they
mainly address the management of the symptoms with limited improvement in survival.
In this perspective, finding safe and effective drugs for ALS remains an unmet clinical need.
ALS can be categorised into two main forms based on patterns of inheritance: sporadic
ALS (sALS) and familial ALS (fALS). In fALS, which occurs in 10% of patients, there is
a familial mode of inheritance that can be identified by the occurrence of ALS in other
first-degree relatives. Genome sequencing of fALS subjects has led to the discovery of
several genomic variants implicated in the pathogenesis of the disease [5]. Studies on twins
have also uncovered genetic risk factors for sALS, with an estimated heritability rate of
61%. However, at present, only a fraction of these determinants have been identified [6].
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Prior to 2014, only 22 genes were known to be associated with ALS, and mutations in these
genes explain around two-thirds of all fALS and approximately 10% of sALS cases [7].
More recently, the application of Next Generation Sequencing technologies in the genetic
profiling of ALS patients has enabled the rapid identification of several new ALS-related
genes, significantly enhancing our understanding of the disease [8].

Mitochondrial dysfunction is a prevalent feature of many neurodegenerative diseases,
including ALS [9,10]. Different mitochondrial impairments have been identified in both
the central nervous system and the muscle tissue of in vitro and in vivo models, playing
a crucial role in ALS. A plethora of studies have been conducted on ALS-derived tissues.
Including post-mortem brain tissue [11,12] and body fluid specimens such as cerebrospinal
fluid [13], plasma [14], and urine [15], they have indeed shown increased oxidative damage
to proteins, lipids, and DNA and a decrease in antioxidant defences, including glutathione
reductase, glutathione, and catalase. Impairment in mitochondrial respiration has been
extensively demonstrated in SOD-mutated mouse models, as well as in ALS patients
carrying SOD1 mutations [16,17]. Moreover, metabolic dysregulation has been observed
in the spinal cord of SOD1G93A mice across all disease stages [18]. Alterations in mito-
chondrial trafficking and morphology have also been demonstrated in ALS SOD1 mutant
mice, as well as in the early stages of ALS patients [19]. In this perspective, preclinical
and clinical studies [20] targeting mitochondria pave the way for a new and promising
therapeutic intervention in ALS. Motor neurons depend on mitochondrial function to
fulfil their energetic requirements. Mitochondrial damage and the specific accumulation
of mutated proteins (i.e., TDP-43) cause motor neuron intraneuronal damage and death
via calcium-mediated excitotoxicity, an increase in ROS generation, and intrinsic apop-
totic pathway activation [10,21,22]. Mitochondrial function relies on both mitochondrial
DNA (mtDNA) and nuclear DNA (nDNA), and mutations in either of these genomes
can damage the mitochondrial respiratory chain and lead to mitochondrial dysfunction.
mtDNA encodes 13 essential catalytic peptides of the oxidative phosphorylation complexes
(I, III–V), 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs (rRNAs). These molecules
are necessary for translating the protein-coding genes encoded in mitochondria, as they
adhere to the specificity of the mitochondrial genetic code. The human mtDNA possesses
a single non-coding control region (CR) spanning 1.1 kb, a portion (∼650 bp) of which
contains a unique three-stranded DNA loop structure, referred to as the D-loop [23,24].
Regulatory elements for mtDNA transcription and replication, such as the light-strand
promoter (LSP) and the heavy-strand promoters (HSP), Conserved Sequence Blocks (CSB),
and termination-associated sequences (TAS), are located within the CR [25,26]. The mam-
malian mitochondrial proteome contains proteins responsible for cell apoptosis, mitophagy,
nucleotide biosynthesis, metabolism, iron and calcium regulation, and those ensuring
mitochondrial homeostasis and function. Nearly 99% of these proteins originate from genes
encoded by the nDNA. These proteins are synthesised by cytoplasmic ribosomes before
being transported into the mitochondria [26]. For instance, proteins involved in apoptosis
regulation, such as cytochrome c and members of the Bcl-2 family, are encoded by nDNA,
are predominantly located within the mitochondria, and play a pivotal role in the activation
or inhibition of programmed cell death pathways [27]. Additionally, proteins engaged in
mitophagy are also encoded by nDNA genes (i.e., PARK7, PINK1, TOMM) and function
in a highly coordinated manner to selectively remove damaged mitochondria, preserving
cellular health [28]. Other genes involved in mitochondrial dynamics, such as MFN1, MFN2
(Mitofusins), OPA1 (Optic Atrophy 1), DRP1 (Dynamin-related protein 1), FIS1 (Mitochondrial
fission 1 protein), and components of the MICOS Complex, are encoded by nDNA. These
genes regulate critical aspects of mitochondrial function, including fusion, fission, and
cristae formation, collectively contributing to the dynamic nature and structural integrity
of mitochondria [29].

The SLC25 family of mitochondrial carriers, encoded by 53 distinct genes within the
nuclear DNA (nDNA), facilitates the transport of a wide array of compounds—such as
amino acids, carboxylic acids, fatty acids, cofactors, inorganic ions, and nucleotides—across
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the inner mitochondrial membrane. This transport is crucial as it provides essential building
blocks necessary for numerous cellular processes [30]. Additionally, proteins responsible
for managing ions, including iron (e.g., MFRN1, MFRN2) and calcium (e.g., VDAC1,
VDAC2, VDAC3), play pivotal roles in various cellular processes and are part of the
mitochondrial proteome [31,32]. These proteins oversee the levels and distribution of these
ions, ensuring their optimal concentrations for proper cellular functioning. Collectively,
a total of 1136 nDNA-encoded genes have been assigned to specific locations within
distinct sub-compartments of the mitochondria. Additionally, these genes were assigned
to 149 hierarchical ‘MitoPathways’, which were organised into seven main functional
categories [33].

mtDNA inheritance is matrilinear, as the mitochondria from the sperm cell are elim-
inated by the egg shortly after fertilisation [34]. Mutations in mtDNA can be inherited
maternally or can occur randomly during DNA replication or repair. Since every cell
has a specific but large copy number (CN) of mtDNAs (mtDNA-CN), mutations can be
observed in all (homoplasmy) or only in some copies (heteroplasmy). The ratio between
mtDNA copies carrying mutations and mtDNA copies not carrying mutations is called the
heteroplasmic fraction (HF). When HF exceeds a certain threshold, heteroplasmy may affect
the expression and activity of the oxidative phosphorylation complexes and modulate the
susceptibility to mitochondrial-based diseases. The number of mtDNA variants and HF
are tissue- or cell-specific and tends to increase with age [35], and somatic heteroplasmic
variants that arise during life could play a role in the development of diseases. Furthermore,
mtDNA-CN, together with HF, may affect the cell’s overall function [36], but differently
from HF, mtDNA-CN has been shown to negatively correlate with age [37]. Targeting
mitochondrial dysfunction represents a promising clinical avenue for ALS since it has
the potential to extend survival in preclinical models. However, the correct timing of
the therapy appears to affect the improvement in survival, with the highest benefit for
interventions given before disease onset [38]. Therefore, further insights are needed to
elucidate early molecular mechanisms, genes, and variants involved in disease initiation
and progression to guide and advise future therapeutic protocols. In this study, we applied
a bioinformatics workflow for analysing whole exome/genome sequencing data across
two distinct datasets to pinpoint variants potentially associated with ALS both in mtDNA-
and nDNA-encoded mitochondrial genes. Since mtDNA heteroplasmy levels vary among
cells and across tissues, we specifically focused on the spinal cord, which is known to
exhibit dense clusters of abnormal mitochondria in ALS patients [39] accompanied by
alterations in mitochondrial oxidative phosphorylation and represents the key location for
disease activity [40,41]. We performed an unprecedented screening of this tissue to identify
homoplasmic and somatic heteroplasmic variants acquired during life in the spinal cord of
ALS patients, with the aim of determining whether this tissue hosts a specific pattern of
variants compared to healthy tissues. Our analyses highlighted an increased accumulation
of variants in the mitochondrial CR and in genes of the Sirtuin Signalling Pathway, in ALS
patients, irrespective of the assay used (WES or WGS). These results not only support, at a
molecular level, the beneficial effects of specific natural antioxidants, such as resveratrol,
which act on this pathway in ALS preclinical models, but can also be exploited to identify
other new potential therapeutic targets in ALS.

2. Materials and Methods

WES dataset. Frozen spinal cord samples from 3 male donors affected by sALS
and 3 sex and ethnicity matched controls were collected. These samples were obtained
from the NICHD Brain and Tissue Bank for Developmental Disorders at the University
of Maryland and the Human Brain and Spinal Fluid Resource Center in Los Angeles,
CA (Table 1, http://medschool.umaryland.edu/btbank/). DNA was purified using the
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions, quantified, and qualitatively checked on NanoDrop 2000c (ThermoFisher
Scientific, Waltham, MA, USA). Exome capture was performed using the TruSeq Exome En-
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richment Kit (Illumina, San Diego, CA, USA), according to the manufacturer’s instructions.
Briefly, for each tissue, a DNA library, including inserts ranging in size from 200 to 400 bp
approximately, was prepared using the TruSeq DNA Sample Prep kit (Illumina). Then,
each library was hybridised with biotinylated probes targeting the exonic regions (about
200,000 exons, covering about 62 Mb of the human genome). After two steps of enrichment,
sequencing was performed on an Illumina HiSeq 2000 machine. An average of 68 million
100 bp paired-end reads were obtained for every sample.

Table 1. Amyotrophic lateral sclerosis (ALS) and Control (CNTR) samples.

Origin SAMPLE ID Age Sex Tissue Diagnosis

WES dataset

NICHD SAMN02768876 61 Male Spinal Cord Lumbar ALS_1
NICHD SAMN02768878 54 Male Spinal Cord Lumbar ALS_2
NICHD SAMN02768879 59 Male Spinal Cord Lumbar ALS_3
NICHD SAMN02768883 56 Male Spinal Cord Lumbar CNTR_1
NICHD SAMN02768872 / Male Spinal Cord Lumbar CNTR_2
NICHD SAMN02768875 / Male Spinal Cord Lumbar CNTR_3

WGS dataset

NYGS CGND-HDA-00497 60 Female Spinal Cord Cervical ALS1_497
NYGS CGND-HDA-00503 76 Male Spinal Cord Cervical ALS2_503
NYGS CGND-HDA-00536 58 Female Spinal Cord Cervical ALS3_536
NYGS CGND-HDA-00539 80 Male Spinal Cord Cervical ALS4_539
NYGS CGND-HDA-05608 / Male Spinal Cord Lumbar ALS5_5608
NYGS CGND-HDA-05609 / Male Spinal Cord Lumbar ALS6_5609
NYGS CGND-HDA-05610 / Female Spinal Cord Lumbar ALS7_5610
NYGS CGND-HDA-05611 75 Female Spinal Cord Lumbar ALS8_5611
NYGS CGND-HDA-00596 65 Female Spinal Cord Cervical CNTR1_596
NYGS CGND-HDA-00597 50 Female Spinal Cord Cervical CNTR2_597
NYGS CGND-HDA-00598 16 Female Spinal Cord Cervical CNTR3_598
NYGS CGND-HDA-00599 61 Male Spinal Cord Cervical CNTR4_599

WGS dataset. We acquired WGS fastq files of spinal cord tissue samples from 8 human
ALS donors and 4 control subjects (Table 1). This data was provided by the New York
Genome Center (NYGC). WGS data can be requested through Target ALS’s website (https:
//www.targetals.org/resource/genomic-datasets/).

2.1. nDNA Alignment and nDNA Variant Calling

Quality control (QC) and variant calling were performed according to GATK best
practices (available at https://software.broadinstitute.org/gatk/best-practices/; accessed
1 February 2021; software version: v4.2.0.0) for both WES and WGS [42]. Alignment of
the paired-end reads to GRCh38 human reference build was performed by the Burrows
Wheeler Aligner (BWA, version: 0.7.17), using the bwa-mem command [43]. Alignment
files were converted from SAM to BAM format using the samtools view (Version: 1.12) [44].
BAM files were sorted and indexed. PCR duplicates were removed by sambamba (Version:
0.6.8) [45]. A recalibration of the quality scores was performed using the GATKs BaseRecal-
ibrator ApplyBQSR. SNPs and indels were called by HaplotypeCaller in a joint genotyping
mode (GenotypeGVCFs). Variant Quality Score Recalibration (VQSR) of genotypes was
conducted separately on SNPs and Indels, using a truth sensitivity threshold of 99.0 for
SNPs and 90.0 for indels, respectively.

The complete list of the 1136 nDNA nuclear-encoded mitochondrial genes according
to the MitoCarta3.0 human inventory was retrieved (https://www.broadinstitute.org/
mitocarta/mitocarta) [33]. The liftover tool [46] was used to convert the .bed files containing
the genomic coordinates of the genes from the hg19 to the hg38 reference assembly of the
human genome. Variants within 10 kbp upstream and downstream of nuclear-encoded
mitochondrial genes were included in our analyses.

https://www.targetals.org/resource/genomic-datasets/
https://www.targetals.org/resource/genomic-datasets/
https://software.broadinstitute.org/gatk/best-practices/
https://www.broadinstitute.org/mitocarta/mitocarta
https://www.broadinstitute.org/mitocarta/mitocarta


Biomolecules 2024, 14, 411 5 of 33

2.2. mtDNA Assembly and Variant Calling

Exome reads were initially aligned to the revised Cambridge Reference Sequence
(rCRS with GenBank accession number NC_012920.1) of human mtDNA [47] using GSNAP
(version 2021-02-22) [48] and, subsequently, against the GRCh38 reference assembly of the
genome. Read mapping with equal quality to both the nDNA and mtDNA was excluded
from further analysis to discard nuclear mitochondrial DNA sequences (NUMTs) [49].
The complete mapping procedure was automated by using an updated, previously pub-
lished custom Python script, mapExome.py [50,51]. Conversion from SAM to BAM format
was performed by samtools (Version: 1.12) [44]. Sambamba (Version: 0.6.8) was used
to sort, index BAM files, and remove PCR duplicates [45]. BSQR was performed by the
GATKs “base recalibrator” tool. Alignment metrics (Coverage Metrics, Mapping Met-
rics, Alignment Statistics) were obtained using Qualimap (v.2.2.2) [52]. The MToolBox
was used to reconstruct mtDNA sequences from alignments in BAM format [51]; specifi-
cally, assembleMTgenome.py and mtVariantCaller.py were used for variant calling and
heteroplasmy quantification, then bases with a mapping quality score less than 25 were
removed. Only positions covered by at least 5 independent reads were considered; the
consensus base was calculated using a minimum confidence level of 0.75. The VCF out-
put.py utility was used to produce the VCF containing mtDNA variants, related hetero-
plasmy fraction and confidence interval. Variants with a heteroplasmic fraction (HF) of
0.95–1 were considered homoplasmic, while variants with an HF < 0.95 were considered
heteroplasmic. Variants associated with homopolymeric tracts, as defined by Andrews
et al. and others [47,53] (np 66–71, 300–316, 513–525, 5892, 3106–3107, 12,418–12,425, and
16,182–16,194), were disregarded from subsequent analyses. Additionally, we excluded
variants from subsequent analysis if they lacked support from both forward and reverse
DNA stands, as this could suggest sequencing artefacts or bias. Low-confidence vari-
ants with HF < 0.01 were also excluded, as these can often be hard to distinguish from
technical errors [54]. A custom Python script was created to automate the data process-
ing tasks (https://github.com/BioinfoUNIBA/MitoVarFilter; accessed on 1 September
2023). The VCFs were merged and normalised by bcftools (v.1.12) [55], and duplicated
variants were dropped with vt [56]. Mitomap was used to assign mtDNA function loca-
tions (https://www.mitomap.org/foswiki/bin/view/MITOMAP/GenomeLoci; accessed
on 1 September 2022) and functional units crucial for regulating mtDNA replication and
transcription within the CR, such as LSP, HSP1, HSP2, CSB1, CSB2, CSB3, TAS1, TAS2, and
the central domain, which were obtained from Sbisà et al. [25]

2.3. nDNA and mtDNA Variant Annotation and Filtering

VCF files were annotated by SnpEff (http://snpeff.sourceforge.net/download.htm;
version 5.0) [57]. Variants were subsequently categorised into 4 distinct classes according
to SnpEff severity grades: HIGH (disruptive impact), including frameshift variants, stop-
gain or -loss variants, splice donor or acceptor variants, and initiator codon variants;
MODERATE, including missense variants and in-frame insertions and deletions; LOW
(assumed to be mostly harmless or unlikely to change protein behaviour), stop retained
variants, including synonymous variants, incomplete terminal codon variants, and splice-
region variants; and 4) MODIFIER (usually non-coding variants or variants affecting non-
coding genes, where predictions are difficult or there is no evidence of impact), including
intronic and intergenic variants, 5′ and 3′ UTR variants, regulatory region and transcription
factor binding site variants, miRNA variants, and non-coding exon variants. SnpSift was
used to handle Variant Call Format (vcf) files and provide additional annotations from
a selection of databases [58]. Both nDNA and mtDNA variants were further annotated
with (i) the latest version of dbSNP153 and (ii) frequency data in the general population as
reported in the largest genomic database, gnomAD (https://gnomad.broadinstitute.org/
version v3.1.2) (iii) variant-disease associations from the ClinVar database (ftp://ftp.ncbi.
nih.gov/pub/clinvar/vcf_GRCh38/clinvar_20220205.vcf.gz; downloaded 01/05/2022).
The effects of variants in mitochondrial tRNA genes were annotated by PON-mt-tRNA

https://github.com/BioinfoUNIBA/MitoVarFilter
https://www.mitomap.org/foswiki/bin/view/MITOMAP/GenomeLoci
http://snpeff.sourceforge.net/download.htm
https://gnomad.broadinstitute.org/
ftp://ftp.ncbi.nih.gov/pub/clinvar/vcf_GRCh38/clinvar_20220205.vcf.gz
ftp://ftp.ncbi.nih.gov/pub/clinvar/vcf_GRCh38/clinvar_20220205.vcf.gz
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and MitoTIP [59,60]. Coding mtDNA variants were assessed by MitImpact 3D [61], which
incorporates PolyPhen [62], SIFT [63], and APOGEE 2 [64]); mtoolnote (https://github.
com/mitoNGS/mtoolnote; accessed on 1 September 2023), which contains scores from
MutPred [65], Panther [66], PhDSNP [67], SNPsGO [68], Polyphen2 HDIV, and Polyphen2
HVAR [69]; and HmtDB_Pathogenicity (score retrieved from https://mseqdr.org/mvtool.
php accessed on 1 September 2023). The deleteriousness of nDNA variants were scored
using CADD [70], FAVOR [71] (containing SIFT, PolyPhen, Polyphen2 HDIV, Polyphen2
HVAR, MutationAssessor, MetaSVM Score), and FATHMM_X [72].

2.4. Disease Association Analysis

The most recent version of DIsGeNET (http://www.disgenet.org, v.7.0, accessed
on 1 September 2023), a database that consolidates human gene-disease associations
(GDAs) from expert-curated databases and text-mining-derived associations, encompass-
ing Mendelian, complex, and environmental diseases [73,74], was used to perform disease
association analysis. The analysis involved evaluating gene-disease correlations and as-
signing a final score based on evidence levels ranging from 0 to 1. This score integrates
information from multiple types of evidence, including genetic association studies, gene
expression studies, protein-protein interactions, text mining of biomedical literature, animal
model data, and pathway analysis. A cutoff of 0.1 was selected. This score considers factors
such as the number and quality of sources (including curation levels and model organisms)
and the quantity of publications supporting each association.

2.5. Structural Predictions

Secondary structures were predicted by the RNAfold web server (http://rna.tbi.univie.
ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi; accessed on 1 September 2023) using default
parameters to assess the impact of variants on mtDNA CR single strands. The minimum
free energy prediction and base pair probabilities were utilised to assess their structural
and possibly functional impact.

2.6. Network Analysis of Genes Containing Candidate Variants

A network analysis of genes containing candidate nDNA and mtDNA variants
was performed to provide valuable insights into the interactions and functional relation-
ships among these genes. nDNA variants were first scored using the above-mentioned
pathogenicity scoring systems. Notably, as these pathogenicity scoring systems can give
discordant classifications [75,76], we simplified the scores by assigning a categorical value
to each score for each variant. For every variant, we condensed the scores that indicated
harmful effects (such as possibly damaging, probably damaging, deleterious, pathogenic,
medium deleterious, and high deleterious) into a single categorical value of deleterious (D).
In the same way, we simplified the scores that indicated a harmless effect (such as tolerated,
benign, neutral, and likely benign) into a single categorical value of benign (B). We counted
the occurrences of ‘B’ and ‘D’ classifications for each variant. If a variant was predicted
as ‘D’ by at least 4 pathogenicity predictors, we assigned it a concordance score of +2. We
assigned a concordance score of +1 when the prediction “D” was consistent across up to
3 pathogenicity predictors. We assigned a concordance score of 0 if it was not predicted
by any pathogenicity predictors or if there were conflicting interpretations of pathogenic-
ity. A concordance score of −1 was assigned if classified as “B” in up to 3 pathogenicity
predictors and −2 when at least 4 pathogenicity predictors classified the variants as “B”
in. For mtDNA variant scoring, we simplified 12 pathogenic scoring systems (Hmtdb,
ClinVar, MutPred, Panther, PhDSNP, SNPsGO, Polyphen2 HDIV, Polyphen2 HVAR, PON-
mt-tRNA, MitoTIP, SIFT, and APOGEE2) in the same way. This method was used to
visually represent genes within the network. Various colours were used to distinguish
genes containing concordant harmful variants (displayed in red), non-harmful variants
(shown in green), and variants with conflicting or no assigned pathogenicity predictions
(denoted in grey). STRING (https://string-db.org; version 11.576) was used to evaluate

https://github.com/mitoNGS/mtoolnote
https://github.com/mitoNGS/mtoolnote
https://mseqdr.org/mvtool.php
https://mseqdr.org/mvtool.php
http://www.disgenet.org
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
https://string-db.org
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protein-protein interaction (PPI) between genes containing variants. Interaction Networks
were constructed using a cut-off confidence score of 0.6 with the STRINGApp Cytoscape
extension (Version: 3.10.1) [77,78]. The Cytoscape plug-in Molecular Complex Detection
(MCODE, http://apps.cytoscape.org/apps/mcode, version 2.0.0) was used to identify the
most important sub-modules of the network map [79]. The following criteria were applied:
cut-off = 2, MCODE score > 6, max depth = 100, node score cut-off = 0.2, and k-score = 2. The
Biological Networks Gene Ontology tool (BiNGO, http://apps.cytoscape.org/apps/bingo;
version 3.0.3) was used to analyse and visualise the biological processes of identified
sub-modules, and a Benjamini-Hochberg FDR-corrected p-value < 0.001 was considered
statistically significant. We used the Ingenuity Pathway Analysis software (IPA, Ingenuity
System, Redwood City, CA, USA, version 107193442) to identify the most significant path-
ways from the IPA library of canonical pathways for our input data set. IPA calculates the
significance of the pathways using the right-tailed Fisher’s Exact Test, and to account for
multiple canonical pathways tested by IPA, the Benjamini-Hochberg FDR option was used
(FDR < 0.05).

2.7. mtDNA-CN Estimation

mtDNA copy number (mtDNA-CN) was determined for both datasets. mtDNA-CN
was estimated by applying the fastMitoCalc software (v1.0) [80]. The estimated mitochon-
drial copy number is twice the ratio of the average mitochondrial sequencing depth to the
average autosomal sequencing depth. The average coverage of mtDNA and autosomal is
obtained using sequence alignment with SAMtools [44].

2.8. Statistical Analyses

All data were tested for normality using the Shapiro–Wilk test. Normally distributed
variables were expressed as mean ± standard deviation (SD) unless otherwise stated. For
normally distributed variables, the two-tailed Student’s t-test was used to assess differences
between two groups. Qualitative variables were summarised as counts and percentages,
and comparisons between independent groups were performed by χ2 or Fisher’s exact tests.
A p value < 0.05 was considered statistically significant. Statistical analyses and graphs
were generated with GraphPad Prism 8.0.2 (GraphPad Software, San Diego, CA, USA).

3. Results

We applied the same pipeline for analysing whole WES and WGS sequencing data in
two different datasets (Figure 1). The datasets were examined independently since they
were obtained at different times and by different analytical protocols.

3.1. WES Dataset
3.1.1. nDNA Alignment, Variant Calling Filtration, and Prioritisation

WES was performed on spinal cord samples from three sALS patients and three sex
and ethnicity matched controls (Table 1). A total of 400 million 100 bp strand-specific paired-
end reads were obtained; detailed statistics per sample are reported in Table S1; 99.72%
of the reads were aligned to the reference human genome (GRCh38 assembly), with an
average of 48 million pairs per sample. The target exome region showed an average depth
of coverage at 53× and an average mapping quality of 58. On average, 86% were covered
by at least 10 reads (Table S1). GATK Haplotypecaller identified a total of 664,642 variant
sites in the subject’s nDNA, with an average of 241,416 variants per individual.

http://apps.cytoscape.org/apps/mcode
http://apps.cytoscape.org/apps/bingo
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Of these, a total of 31,257 variants (average 11,976 variants per subject) were associ-
ated with nuclear-encoded mitochondrial genes, according to the MitoCarta3.0 human
inventory [33] (Table S1). To focus on the variants that may affect the susceptibility to
the disease, we excluded those with a LOW impact (N = 28,904) and those that were
present in control samples. A total of N = 7675 variants were retained by these filters. We
selected rare variants that had a MAF of less than 0.01, a CADD score of 10 or higher, and
a GATK PASS filter. This selection process yielded a total of 171 variants specific to ALS
patients. These potentially deleterious variants were identified at 141 distinct variant sites
(Figure 1, Table S2), of which 32 were private variants and have never been reported in
GnomAD or dbSNP. These variants were located within 128 genes or within 10 kb of them
(Table S2). Of these, seven were in genes previously linked with ALS, according to the
DisGeNET database (DNM1L, SIRT3, ATP5F1A, OPA1, PARK7, HTRA2, IDI1, Table S3). Our
list includes DNM1L, also known as Drp1, which plays a significant role in cellular pro-
cesses, particularly in mitochondrial dynamics [81]. Another gene found to be associated
with ALS was Sirtuin 3 (SIRT3). This gene functions as a mitochondrial deacetylase and
maintains mitochondrial function and integrity. We found that two out of three patients
carried the same rare missense variant c.785C>A (p.Pro262His; Table S2). This variant has
a global MAF of 0.00981 according to GnomAD and was predicted to be deleterious by
different pathogenicity predictors (SIFT, PolyPhen, Polyphen2-HDIV, Polyphen2-HVAR,
MutationTaster) and a CADD score of 22 (a score that exceeds 20 indicates that the variant
was predicted to be among the 1% most deleterious variants in the genome). Additionally,
we investigated whether any of the genes identified by our analyses were listed in the ALS
Online Genetic Database (ALSoD, http://alsod.iop.kcl.ac.uk/; accessed on 1 September
2023) [82]. Our findings indicated that only Parkinsonism Associated Deglycase (PARK7)
and the 8-oxoguanine DNA glycosylase gene (OGG1) were previously identified as as-
sociated with ALS (Tables 2 and S4). The PARK7 (also known as DJ-1) gene is primarily
expressed in the brain and spinal cord, responds to oxidative stress, and plays an impor-
tant role in cellular defense mechanisms [83]. We observed a very rare g.1:7985265A>C
transversion in the 3′ UTR region of the gene in two ALS patients. This mutation occurs
within the experimentally validated target of miR-4639-5p, a miRNA known to regulate
human PARK7 gene expression [84]. Interestingly, in double transgenic DJ-1 KO SOD1 mice,
lack of PARK7/DJ-1 genes led to accelerated damage within the CNS, accelerated disease
progression, and reduced survival time, suggesting a protective role in the ALS disease
model [83]. We found this mutation did not affect the perfect complementarity in the seed
region (nucleotides 217–224 within the human DJ-1 3′UTR), but introduced an additional
C-G pairing downstream using the RNAhybrid tool (Figure S1) [85]. This observation
suggests an alteration of the miR-4639-5p regulatory pathway, potentially leading to an
increased degradation of the target mRNA [86]. OGG1, another gene previously linked to
ALS and listed in ALSoD (Tables 2 and S4), carried a missense c.461G>A (p.Arg154His)
variant in two out of the three ALS patients. This variant was predicted to be deleterious
by all the methods for the evaluation of non-synonymous variants herein considered and
had a very high CADD score of 31 (Table S2). OGG1 encodes for a DNA glycosylase that
specifically removes oxidised guanine (8-OHdG) from the DNA. Observations in the spinal
motor neurons of sALS support a potential role for OGG1 in ALS, since higher levels of
8-OHdG and lower mitochondrial OGG1 activity have been previously reported in sALS
patients compared to healthy controls. This suggests that mtDNA may undergo oxidative
damage and that the DNA repair mechanisms of OGG1 may be compromised in ALS [87].
Finally, two ALS patients had a highly rare frameshift variant (c.313_314insA, p.Phe105fs;
MAF: 1.315 × 10−5) caused by a single base insertion in exon 3 of the Sideroflexin-2 (SFXN2)
gene (Table S2). While SFXN2 has not been previously linked to ALS and is not reported in
DisGeNET or ALSoD (Tables 2 and S4), its paralog, SFXN3 gene, another member of the
SFXN protein family, has been associated with neurodegenerative diseases [88].

http://alsod.iop.kcl.ac.uk/
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Table 2. Genes containing at least three variants that have passed variant prioritisation filters in
Amyotrophic Lateral Sclerosis (ALS) patients in the Whole Exome Sequencing (WES) and Whole
Genome Sequencing (WGS) datasets. The alphabetically ordered table can be found in Table S4. The
full list of genes with prioritised variants can be found in Tables S2 and S7.

Official Gene
Symbol Gene Name N◦ Variants

WGS (WES) WGS WES DisGeNET ALSoD

FHIT fragile histidine triad diadenosine
triphosphatase 26 (0) X

MSRA methionine sulfoxide reductase A 20 (0) X
SLC25A21 solute carrier family 25 member 21 15 (3) X X

CLYBL citramalyl-CoA lyase 11 (0) X

IMMP2L inner mitochondrial membrane peptidase
subunit 2 11 (0) X

SND1 staphylococcal nuclease and tudor domain
containing 1 11 (0) X

CHCHD3 coiled-coil-helix-coiled-coil-helix domain
containing 3 10 (0) X

CHCHD6 coiled-coil-helix-coiled-coil-helix domain
containing 6 7 (0) X

GPD2 glycerol-3-phosphate dehydrogenase 2 7 (0) X
OXR1 oxidation resistance 1 7 (0) X X

SUGCT succinyl-CoA:glutarate-CoA transferase 7 (0) X
AFG1L AFG1 like ATPase 6 (0) X

BCKDHB branched chain keto acid dehydrogenase E1
subunit beta 6 (0) X

DNAJC11 DnaJ heat shock protein family 4 (2) X X
MRRF mitochondrial ribosome recycling factor 5 (1) X X
PCCA propionyl-CoA carboxylase subunit alpha 6 (0) X
PDSS2 decaprenyl diphosphate synthase subunit 2 6 (0) X

VPS13D vacuolar protein sorting 13 homolog D 1 (5) X X
ETFA electron transfer flavoprotein subunit alpha 5 (1) X X
IDE insulin degrading enzyme 5 (0) X

METAP1D methionyl aminopeptidase type 1D,
mitochondrial 5 (0) X

MRPS6 mitochondrial ribosomal protein S6 5 (0) X
MTX2 metaxin 2 5 (0) X

PC pyruvate carboxylase 2 (3) X X
PRELID2 PRELI domain containing 2 1 (4) X X
SFXN5 sideroflexin 5 5 (0) X

SLC25A26 solute carrier family 25 member 26 5 (0) X
STX17 syntaxin 17 3 (2) X X
VWA8 von Willebrand factor A domain containing 8 4 (1) X X

ACACA acetyl-CoA carboxylase alpha 4 (0) X

ACSM3 acyl-CoA synthetase medium chain family
member 3 2 (2) X X

BCL2 BCL2 apoptosis regulator 4 (0) X
GFER growth factor, augmenter of liver regeneration 2 (2) X X

HIBADH 3-hydroxyisobutyrate dehydrogenase 4 (0) X
METTL8 methyltransferase 8, tRNA N3-cytidine 4 (0) X
NARS2 asparaginyl-tRNA synthetase 2, mitochondrial 4 (0) X

NUBPL NUBP iron-sulfur cluster assembly factor,
mitochondrial 4 (0) X

OGG1 8-oxoguanine DNA glycosylase 2 (2) X X X
OPA1 OPA1 mitochondrial dynamin like GTPase 2 (2) X X X

PDE2A phosphodiesterase 2A 4 (0) X
SFXN2 sideroflexin 2 0 (4) X

SPHKAP SPHK1 interactor, AKAP domain containing 4 (0) X

NDUFV2 NADH:ubiquinone oxidoreductase core
subunit V2 4 (0) X
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Table 2. Cont.

Official Gene
Symbol Gene Name N◦ Variants

WGS (WES) WGS WES DisGeNET ALSoD

SLC25A35 solute carrier family 25 member 35 4 (0) X
TSFM Ts translation elongation factor, mitochondrial 2 (1) X X

ALDH1L1 aldehyde dehydrogenase 1 family member L1 3 (0) X
ARG2 arginase 2 3 (0) X

ATP5F1D ATP synthase F1 subunit delta 3 (0) X
BCL2L1 BCL2 like 1 3 (0) X
CCDC51 coiled-coil domain containing 51 3 (0) X

CLPB ClpB family mitochondrial disaggregase 1 (2) X X
COMT catechol-O-methyltransferase 3 (0) X
CRLS1 cardiolipin synthase 1 2 (1) X X

CYB5R3 cytochrome b5 reductase 3 3 (0) X
DBT dihydrolipoamide branched chain transacylase E2 3 (0) X

DELE1 DAP3 binding cell death enhancer 1 2 (1) X X
DMGDH dimethylglycine dehydrogenase 3 (0) X

DMPK DM1 protein kinase 1 (2) X X
GADD45GIP1 GADD45G interacting protein 1 1 (2) X X

GATM glycine amidinotransferase 3 (0) X
GLDC glycine decarboxylase 3 (0) X
GLS glutaminase 3 (0) X X

LARS2 leucyl-tRNA synthetase 2, mitochondrial 2 (1) X X
LYRM2 LYR motif containing 2 1 (2) X X
MCU mitochondrial calcium uniporter 3 (0) X X

MICU2 mitochondrial calcium uptake 2 3 (0) X
MRPL1 mitochondrial ribosomal protein L1 3 (0) X

MRPS27 mitochondrial ribosomal protein S27 3 (0) X
MTHFD1L methylenetetrahydrofolate dehydrogenase 3 (0) X

NBR1 NBR1 autophagy cargo receptor 2 (1) X X
SHMT2 serine hydroxymethyltransferase 2 4 (0) X

NDUFS2 NADH:ubiquinone oxidoreductase core subunit S2 3 (0) X
NRDC nardilysin convertase 2 (1) X X

OCIAD1 OCIA domain containing 1 2 (1) X X
OSBPL1A oxysterol binding protein like 1A 3 (0) X

OXCT1 3-oxoacid CoA-transferase 1 3 (0) X
PARK7 Parkinsonism associated deglycase 1 (2) X X X X
PDHX pyruvate dehydrogenase complex component X 2 (1) X X
PDSS1 decaprenyl diphosphate synthase subunit 1 3 (0) X X
PNKD PNKD metallo-beta-lactamase domain containing 3 (0) X

PNPLA8 patatin like phospholipase domain containing 8 3 (0) X
POLQ DNA polymerase theta 2 (1) X X
PREPL prolyl endopeptidase like 1 (2) X X
RARS2 arginyl-tRNA synthetase 2, mitochondrial 2 (1) X X

RTN4IP1 reticulon 4 interacting protein 1 1 (2) X X
MTHFD2L methylenetetrahydrofolate dehydrogenase 5 (0) X X
SLC25A3 solute carrier family 25 member 3 0 (3) X
SPIRE1 spire type actin nucleation factor 1 3 (0) X
SUOX sulfite oxidase 1 (2) X X

TMEM65 transmembrane protein 65 2 (1) X X

3.1.2. mtDNA Alignment, Variant Calling Filtration, and Proritisation

We used a previously published computational strategy to assemble the complete
mitochondrial genome from off-target WES reads. First, we assessed the quality and
coverage of the reconstructed mitochondrial genomes. After the removal of probable
contaminating NUMTs, we uniquely identified a mean of 17,814 bona fide mitochondrial
reads per sample (Table S1). A mean of 17% of the reads per sample were removed due
to duplicates. On average, 107× of the mtDNA coverage was attained with an average
mapping quality of 40 (Table S1). A high coverage level of 30× or higher of the complete
mtDNA sequence was recovered for all the samples. Each sample exhibited 100% coverage
of mtDNA with a minimum of 30 reads, except for CNTR_1, which displayed a lower
coverage (100% mtDNA sequence covered by 5 or more reads). Cumulatively, a total of
121 variants at 73 distinct sites in the mtDNA were identified in the six samples (Figure 2a),
including 72 Single Nucleotide Polymorphisms (SNPs) and one indel; with a mean of
17 homoplasmic and 3 heteroplasmic variants per sample (Table S1).
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Of the 121 variations identified, 84% (N = 102) were homoplasmic and 16% (N = 19)
were heteroplasmic (Figure 2b) and the overall variant burden did not differ significantly be-
tween cases (17.0 ± 5.92) and controls (20.0 ± 7.55, p = 0.603 t-test, Figure 2c). However, ALS
samples demonstrated a statistically significant increase in the number of heteroplasmic
variants compared to controls (p < 0.0001; Fisher’s exact test, Figure S2a, Table 3).

The proportion of variants in the coding and CR of the mitochondrial genome were
similar in cases and controls. However, the variant load in the CR was higher in ALS cases
(35% vs. 24%, Table 3), but the difference did not reach statistical significance (p = 0.225;
Fisher’s exact test, Figure S2b, Table 3). The CR includes ‘hypervariable’ segments exhibit-
ing a significant rate of variation among different ethnicities [89]. A specific analysis of the
CR shows an increased number of variants within the Hyper-Variable regions (HV) 1 and 2
(Figure S2c, Table 3) and a significantly higher proportion of heteroplasmic mutations in
cases (p = 0.0001; Fisher’s exact test, Figure S2d). Examining the control elements within
the CR, such as CSB, ETAS, and LSP, we identified four variants across three ETAS sites
in all three patients (m.16298T>C; m.16304T>C; m.16311T>C). Notably, these variants
were exclusively observed in ALS cases (Table S5). Secondary structure predictions were
performed to assess the potential impact on the stability of mitochondrial single-stranded
(ss) mtDNA secondary structures. By considering the first 42 nt of the ETAS2 region as
identified by Sbisà et al. [25], this region includes structure C, one of the 13 CR secondary
structures (A-M) described by Pereira et al. [24]. In ALS_1, we detected a m.16298T>C
variant, which however had limited structural or thermodynamic impact on secondary
structure stability (Figure S3a,b); in ALS_2, we detected two variants in close proximity,
m.16304T>C andm.16311T>C (Figure S3c); and ALS_3 only carried the m.16311T>C variant,
which has already been reported as a potential risk factor for stroke [90]. These variants
were predicted to induce a marked conformational change of the secondary structure C
(Figure S3d), thereby reducing the stability of the ETAS2 region.

The examination of protein-coding genes shows a marginal and not statistically sig-
nificant (p = 0.48; chi-square test, Table 3) over-representation in the number of variants
in the Mitochondrially Encoded Cytochrome C Oxidase I (MT-CO1) and the Mitochondrially
Encoded ATP Synthase Membrane Subunit 6 (MT-ATP6) genes in ALS patients (Figure S2e).
The proportion of heteroplasmy/homoplasmy in protein-coding genes did not differ signif-
icantly (p = 0.5059; Fisher’s exact test, Figure S2f) between ALS and controls, suggesting
that the differences in heteroplasmy between cases and controls are limited exclusively
to the D-loop region. Next, we assessed the number of mutations in tRNA and rRNA
genes. Again, no statistically significant difference in the total number of variants was
observed (p = 0.1052; chi-square test, Table 3; Figure S2g), However, ALS samples showed
a statistically significant increase in the proportion of heteroplasmic variants compared to
controls (p < 0.0001; Fisher’s exact test, Figure S2h).

All nucleotide substitutions were transitions, concordant with the extensively known
high transition-biased nucleotide substitution patterns in mammalian mtDNA [91]. The
difference in the distribution of the four types of transitions (A>G; C>T; G>A; T>C) between
cases and controls did not reach statistical significance (p = 0.0527, chi-square test, Table 3).

We categorised variants according to their functional annotation (HIGH, MODER-
ATE, LOW, and MODIFIER), but we did not observe any difference in the proportion
between cases and controls (p = 0.2370; chi-square test, Figure S2i) or in the proportion of
homoplasmic variants. However, the functional annotation distributions of heteroplasmic
variants differed significantly between ALS compared to controls (p = 0.0001; chi-square test,
Figure S2j), with a particular enrichment of low and modifier impact variants in patients.
Comparing the identified variants with the dbSNP153 and gnomAD v3.1.2, we found that
72 out of 73 (98.63%) variants were previously reported.
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Figure 2. Descriptive statistics of mtDNA variants and mitochondrial DNA copy number (mtDNA-
CN) in the WES dataset. (a). Circos plot showing the frequency of 121 mtDNA variants (HF ≥ 0.01)
at 73 variable sites in the mtDNA. ALS subjects are represented in red (N = 3), and controls (N = 3) in
green. Dots represent variants; relative height within each circle indicates the levels of heteroplasmy
(≤95%) or homoplasmy (>95%). Coloured boxes represent functional regulatory elements and genes:
control region (dark grey), transfer RNAs (light gray), ribosomal RNAs (orange), Complex I NADH
dehydrogenase genes (purple), Complex III cytochrome c reductase gene (yellow), Complex IV
cytochrome c oxidase genes (blue), and Complex V adenosine triphosphate synthase genes (green).
(b) Percentage of homoplasmic (84%) and heteroplasmic variants (16%). (c) Overall mtDNA variant
burden between cases (17.0 ± 5.92) and control tissues (20.0 ± 7.55). (d) mtDNA-CN in three ALS
tissues (18.1 ± 4.5) and three control tissues (26.6 ± 15.51). n.s. = not statistically significant.
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Table 3. Descriptive statistics of mtDNA variants found in the WES datasets.

ALS CNTR p Value

Type of variant 0.0001 *
Het 17/51 (33%) 2/70 (3%)

Hom 34/51 (67%) 68/70 (97%)

Distribution of variants 0.2250 *
Control Region 18/51 (35%) 17/70 (24%)
Coding Region 33/51 (65%) 53/70 (76%)

CR sites 0.8061
CR HV1 6/18 (52%) 5/17 (29%)
CR HV2 9/18 (48%) 7/17 (41%)
CR HV3 1/18 (6%) 1/17 (6%)

CR no-HV 2/18 (11%) 4/17 (24%)

CR Functional Domains
CENTRAL DOMAIN 3/7 (43%) 6/6 (100%)

CSB 0/7 (0%) 0/6 (0%)
ETAS 4/7 (57%) 0/6 (0%)
LSP 0/7 (0%) 0/6 (0%)

Coding regions 0.4854
MT-ND1 2/20 (10%) 2/36 (6%)
MT-ND2 3/20 (15%) 7/36 (19%)
MT-CO1 4/20 (20%) 3/36 (8%)
MT-CO2 2/20 (10%) 2/36 (6%)
MT-ATP6 4/20 (20%) 3/36 (8%)
MT-CO3 0/20 (0%) 2/36 (6%)
MT-ND4 0/20 (0%) 4/36 (11%)
MT-ND5 1/20 (5%) 5/36 (14%)
MT-ND6 0/20 (0%) 1/36 (3%)
MT-CYB 4/20 (20%) 7/36 (19%)

rRNA& tRNA genes 0.1052
12s rRNA 9/13 (69%) 8/17 (47%)
16s rRNA 1/13 (8%) 7/17 (41%)

tRNA 3/13 (23%) 1/17 (6%)
Non-coding nt 0/13 (0%) 1/17 (6%)

Type of substitution 0.0527
A>G 21/51 (41%) 34/69 (49%)
C>T 6/51 (12%) 13/69 (19%)
G>A 4/51 (8%) 10/69 (15%)
T>C 20/51 (39%) 12/69 (17%)

Data are expressed as n/N (%). p values were calculated using χ2 or Fisher’s exact test *; Het = heteroplasmic;
Hom = homoplasmic.

Variant prioritisation was performed by excluding low-impact variants and those
that were also called in control tissues, as well as variants with a MAF ≥ 0.01. A total
of 16 rare variants at 12 variant sites passed these filters, none of these have been pre-
viously associated with ALS (Figure 1, Table S5). The prioritised variants were mostly
heteroplasmic (75%, N = 12), except for m.1007G>A, m.4336T>C, m.7410C>T/H503Y,
m8027G>A/A148T, 12235T>C, and 16240A>G, which were homoplasmic in some individ-
uals and heteroplasmic in other individuals (Table S5). Of note, despite their rarity, four of
these variants (m.1007G>A, m.8027G>A, m.12235T>C, and m.16240A>G) were detected
in two out of the three ALS patients. Moreover, we detected a rare private heteroplasmic
variant, m.7410C>T, in the MT-CO1 gene with a predicted damaging impact. Prioritised
variants were preferentially localised in the CR (44%, N = 7) even though this region only
accounts for 6.7% of total mtDNA length. Only one prioritised variant fell within the
annotated CR functional elements. Specifically, m.16304T>C within ETAS2 Region [25].
The potential impact of prioritised variants on mtDNA secondary structures in the CR
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was investigated [24]. In ALS_1, m.195T>C and m198C>T (Table S5) appeared to induce a
conformational rearrangement in the secondary structure element K (positions m.181–226),
resulting in increased instability as compared to the wild-type (Figure S4a,b). Secondary
structure K encompasses CSB1 and the H-strand replication site (OH). Furthermore, in
ALS_2 m.152T>C, a rare variant is located close to (three nucleotides apart) the J secondary
structure element (nt. 116–149) in the central domain. This variant was predicted to induce
a major conformational rearrangement of the J secondary structure, resulting in increased
instability as compared to the WT sequence (Figure S4c,d). The filtered variant m.16304T>C
in ALS_2 has been previously documented in the ETAS2 region (Figure S3c).

3.2. WGS Dataset
3.2.1. nDNA Alignment, Variant Calling Filtration, and Prioritisation

The same bioinformatics workflow used for WES was applied to the analysis of the
WGS dataset. This dataset included a total of 11 billion 150 bp paired-end reads, with an
average of 954M. A total of 301,241 variants were associated with MitoCarta3.0 genes, with
an average of 107,510 variants per individual (Table S6). Variants with LOW impact and
those shared by cases and controls were discarded (Figure 1). This reduced the number
of variants to N = 75,578. We then selected rare variants with a MAF < 0.01, a CADD
score > 10, and a GATK PASS filter. This selection yielded 880 rare, potentially deleterious
variants at 842 sites in/or in the proximity of 506 nuclear-encoded mitochondrial genes
(Table S7, Figure 1). The SLC25A21 gene had the highest burden of mutations, with
seven out of eight ALS subjects carrying at least one prioritised variant. None of these
variants were associated with protein-coding exons (Table S7). SLC25A21 has not been
previously associated with ALS (Table 2 and Table S4). This gene encodes a mitochondrial
inner membrane protein that plays a role in transporting dicarboxylates across the inner
membranes of mitochondria by a counter-exchange mechanism [92]. Notably, two out of
three ALS subjects in the WES dataset harboured rare, intronic variants with a CADD score
> 15 in the same gene. Similarly, DNAJC11 gene was enriched in prioritised variants in both
the WES and WGS datasets (Table 2, Tables S2, S4 and S7). Also, this gene has never been
linked to ALS. DNAJC11 protein plays an essential role in organising the mitochondrial
inner membrane by associating with the MICOS complex and the mitochondrial outer
membrane sorting assembly machinery (SAM). Mutations in this gene lead to motor neuron
pathologies linked to cristae disorganisation [93]. Further, our variant prioritisation strategy
identified some genes containing variants in both WES and WGS datasets i.e., DNM1L.
Specifically, this gene harbours an intronic g.12:32705995T>C variant, which has been
predicted to be pathogenic by FATHMM_XF. Additionally, this gene is associated with
ALS, according to the DisGeNET database (Table S3). A total of 30 genes identified by our
variant prioritisation analyses were associated with ALS, according to DisGeNET. Among
these, OPA1 gene is remarkable, since it carries at least two prioritised variants in both
datasets (Tables 2, S2, S4 and S7). OPA1 encodes a protein crucial in mitochondrial fusion
and has been demonstrated to undergo deacetylation by SIRT3, which affects mitochondrial
dynamics and maintenance [94].

An extremely rare (MAF = 6.58 × 10−6 according to gnomAD) variant with a high
CADD score was also observed in the first intron of the PARK7 gene (g.1:7962280G>A)
(Table S7). Evidence of an involvement of PARK7 and PINK1 in mitochondrial dysfunction
and muscle degeneration has been thoroughly investigated both in sALS patients and in the
SOD1G93A ALS mouse model [95]. Both genes contained variants in this dataset (Table S7).

3.2.2. mtDNA Assembly, Variant Calling Filtration, and Prioritisation

WGS data provided ultra-deep coverage of the mitogenome (mean 4,312,655 reads
per sample, mean coverage depth = 25,725×, mean mapping quality = 39, Table S6). All
samples had 100% mtDNA covered by at least 50 reads. When high-confidence variants
were considered, we identified 645 variants within 332 variant sites (26 homoplasmic and
28 heteroplasmic variants per sample) in 12 spinal cord tissue samples (Figure 3a). Of
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the 645 variations identified, 48% (N = 313) were homoplasmic and 52% (N = 332) were
heteroplasmic (Figure 3b). As expected, considering the higher levels of coverage that
provided an increased resolution [53,96], a higher proportion of heteroplasmic variants
was observed in the WGS compared to the WES dataset. Consistent with our observations
on WES data, there was no significant difference in the overall variant burden between
cases (40.13 ± 28.75) and controls (81.0 ± 70.16; p = 0.17; Figure 3c), nor in the number of
homoplasmic or heteroplasmic variants between the two groups (p = 0.08, Fisher’s exact
test, Figure S5a, Table 4). Variants in the coding and CR of the mtDNA showed a different
proportion between cases and controls. Specifically, we observed a statistically significant
increase (p = 0.0482, Fisher’s exact test, Figure S5b, Table 4) of variants within the CR among
ALS cases compared to controls (23% vs. 17%). A closer examination of the CR revealed
that ALS patients carried a slightly higher number of variants than controls in HV2, HV3
(Table 4), but differences were not statistically significant (p = 0.71, chi-square test, Figure
S5c, Table 4). No statistically significant differences were observed in the proportion of
heteroplasmy/homoplasmy (p = 0.3855, Fisher’s exact test, Figure S5d). Upon detailed
analysis of the functional domains within the CR, we identified a higher proportion of
variants in ALS cases compared to control tissues in the central domain (55% vs. 38%) and
LSP (24% vs. 19%); however, this difference was not statistically significant (p = 0.3574,
chi-square test, Table 4). An analysis of the protein coding region shows a slightly higher
number of variants in Mitochondrially Encoded Cytochrome C Oxidase II (MT-CO2), Mitochon-
drially Encoded ATP Synthase Membrane Subunit 8 (MT-ATP8), and Mitochondrially Encoded
Cytochrome B (MT-CYB) in ALS subjects compared to controls, but differences in the number
of variants (p = 0.6290, chi-square test, Figure S5e, Table 4) and proportions of hetero-
plasmic/homoplasmic variants were not significantly different between the two groups
(p = 0.5684, Fisher’s exact test, Figure S5e,f). Mutation frequencies in the tRNA and rRNA
genes were consistent with those observed in the WES dataset, with more variants in the
12S rRNA and tRNA genes (Figure S5g). However, no statistically significant difference
in the number of variants was observed between ALS subjects and controls (p = 0.3456,
chi-square test, Table 4) or in the proportion of homoplasmic/heteroplasmic mutations
(p = 0.1193, Fisher’s exact test, Figure S5h). Most of the identified nucleotide substitutions
were transitions in both ALS and control subjects [97]. A statistically significant increase
of A>G substitutions was observed in ALS (30% vs. 17%, Fisher’s exact test; p = 0.002,
Table 4).

This difference reflected in a higher proportion of homoplasmic A>G substitutions
(51% vs. 32%; Fisher’s exact test; p = 0.002, Table 4) in all the regions of the mitogenome in
ALS, while the percentage of heteroplasmic A>G substitutions remained similar (5% vs.
5%; Fisher’s exact test; p = 0.675, Table 4).

We categorised variants into four groups based on the predicted effect (HIGH, MOD-
ERATE, LOW, and MODIFIER) and compared their distribution between cases and controls.
We found no significant differences in the overall proportion (p = 0.2331, chi-square test,
Figure S5i), nor in the proportion of heteroplasmic variants (p = 0.8048, chi-square test)
or homoplasmic variants (p = 0.1455, chi-square test, Figure S5j). However, we observed
a higher number of homoplasmic moderate (N = 40 vs. N = 30) and modifier (N = 80
vs. N = 59) variants in ALS cases. Comparing the identified variants with the dbSNP153
and gnomAD v3.1.2, we found that 93.67% (N = 311) of variants were already included in
databases of human genetic variation. We then proceeded with variant prioritisation, and
excluded low impact variants, those that were also called in control tissues, and those with
a MAF < 0.01 gnomAD v3.1.2, obtaining a list of 58 rare mtDNA variants in 52 variant sites
in cases and not in controls (Figure 1, Table S8). As observed in the WES dataset, prioritised
variants were prevalently heteroplasmic (79%, N = 46) and have never been associated
with ALS. Of note, 16% (N = 9) of the variants prioritised in the mtDNA were in the CR,
within or a few nucleotides away from the CR DNA secondary structures J (m.143G>A), K
(m.183A>G, m.204T>C), L (m.247G>T), A (m.16084G>A), and F (m.16496G>A) predicted
by Pereira et al. [24]. In silico conformational/structural stability analyses suggested that
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m.143G>A, m.183A>G and m.204T>C resulted in a considerably lower predicted minimum
free energy and a consequent reduction in stability of the J and K elements, respectively
(Figure S6a–k).
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Figure 3. Descriptive statistics of mtDNA variants and mitochondrial DNA copy number (mtDNA-
CN) in the WGS dataset. (a) Circos plot showing the frequency of 645 mtDNA variants (HF ≥ 0.01)
within 332 variation sites across the entire mitochondrial genome. The red and green shaded
circos plots represent cases (N = 8) and controls (N = 4), respectively. Dots represent variants;
relative height within each circle indicates the levels of heteroplasmy (≤95%) or homoplasmy (>95%).
Coloured boxes represent functional regulatory elements and genes: Control region (dark grey),
transfer RNAs (light gray), ribosomal RNAs (orange), Complex I NADH dehydrogenase genes
(purple), Complex III cytochrome c reductase gene (yellow), Complex IV cytochrome c oxidase genes
(blue), and Complex V adenosine triphosphate synthase genes (green). (b) Pie chart displaying the
percentage of homoplasmic (48%) and heteroplasmic variants (52%). (c) Overall mtDNA variant
burden between cases (40.13 ± 28.75) and control tissues (81.0 ± 70.16). (d) mtDNA-CN in eight
ALS tissues (450.3 ± 71.85) compared to four control tissues (362.0 ± 7.20). n.s. = not statistically
significant; * statistically significant p < 0.05.
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Table 4. Descriptive statistics of mtDNA variants found in the WGS datasets.

ALS CNTR p Value

Type of variant 0.0833 *
Het 154/321 (48%) 178/324 (55%)

Hom 167/321 (52%) 146/324 (45%)

Distribution of variants 0.0482 *
Control Region 74/321 (23%) 54/324 (17%)
Coding Region 247/321 (77%) 270/324 (83%)

CR sites 0.7145
CR HV1 18/74 (24%) 17/54 (29%)
CR HV2 32/74 (43%) 23/54 (41%)
CR HV3 8/74 (11%) 6/54 (6%)

CR no-HV 16/74 (22%) 8/54 (24%)

CR Functional Domains 0.3574
CENTRAL DOMAIN 16/29 (55%) 10/26 (38%)

CSB 1/29 (3%) 1/26 (4%)
ETAS 5/29 (17%) 10/26 (38%)
LSP 7/29 (24%) 5/26 (19%)

Coding regions 0.6290
MT-ND1 15/190 (8%) 14/211 (7%)
MT-ND2 19/190 (10%) 27/211 (13%)
MT-CO1 12/190 (6%) 21/211 (10%)
MT-CO2 9/190 (5%) 6/211 (3%)
MT-ATP8 2/190 (1%) 1/211 (0%)
MT-ATP6 16/190 (8%) 19/211 (9%)
MT-CO3 8/190 (4%) 11/211 (5%)
MT-ND3 4/190 (2%) 7/211 (3%)

MT-ND4L 6/190 (3%) 8/211 (4%)
MT-ND4 25/190 (13%) 29/211 (14%)
MT-ND5 28/190 (15%) 33/211 (16%)
MT-ND6 6/190 (3%) 9/211 (4%)
MT-CYB 40/190 (21%) 26/211 (12%)

rRNA & tRNA genes 0.3456
12s rRNA 24/57 (42%) 21/59 (36%)
16s rRNA 22/57 (39%) 28/59 (47%)

tRNA 9/57 (16%) 5/59 (8%)
Non-coding nt 2/57 (3%) 5/59 (8%)

Type of substitution 0.002
A>G 92/303 (30%) 54/308 (17%)
C>T 46/303 (15%) 64/308 (21%)
G>A 129/303 (43%) 144/308 (46%)
T>C 36/303 (12%) 46/308 (15%)

Type of substitution (Het) 0.675
A>G 8/139 (5%) 8/166 (5%)
C>T 21/139 (15%) 33/166 (20%)
G>A 105/139 (76%) 121/166 (73%)
T>C 5/139 (4%) 4/166 (2%)

Type of substitution (Hom) 0.007
A>G 84/164 (51%) 46/142 (32%)
C>T 25/164 (15%) 31/142 (22%)
G>A 24/164 (15%) 23/142 (16%)
T>C 31/164 (19%) 42/142 (30%)

Data are expressed as n/N (%). p-values were calculated using χ2 or Fisher’s exact test *; Het = heteroplasmic;
Hom = homoplasmic.
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3.2.3. mtDNA Copy Number

Conflicting results have been previously reported regarding mtDNA copy number in
ALS patients [98–100] We estimated the mtDNA copy number (mtDNA-CN) in ALS and
control tissues in our datasets. In the WES dataset, there was no significant difference in
mtDNA-CN between three ALS tissues (18.1 ± 4.5) and three control tissues (26.6 ± 15.51,
p = 0.413, Figure 2d). However, in the WGS dataset, mtDNA-CN was significantly higher in
eight ALS tissues (450.3 ± 71.85) compared to four control tissues (362.0 ± 7.20, p = 0.0377,
Figure 3d).

3.3. Functional Analysis of Genes Containing Variants
3.3.1. Protein-Protein Interaction (PPI) Network Analysis

A network analysis was performed to detect functional interactions between genes
containing prioritised variants. Protein-protein interaction (PPI) network analysis was
constructed with STRING, which integrates both known and predicted PPIs and can be
applied to predict functional interactions of proteins [78,101]. First, we considered nDNA
and mtDNA coding genes containing variants that were prioritised in the WES dataset,
and various colours were used to distinguish genes that were concordantly predicted to
be harmful by pathogenicity scoring systems (displayed in red), concordantly predicted
to be non-harmful variants (shown in green), and variants with conflicting or no assigned
pathogenicity predictions (denoted in grey). The network was composed of 130 nodes and
167 interactions, with a minimum required interaction score > 0.6. Only query proteins were
displayed (Figure 4a). The genes displaying strong interconnections within the network,
suggesting functionally related clusters, were identified using MCODE [79].

The two most significant sub-modules of the network (MCODE score > 6) are high-
lighted in pink in Figure 4a. Functional enrichment analysis of Gene Ontology (GO)
terms was performed with the BiNGO cystoscope plugin. The first sub-module defined
by MCODE (subM1) contained nine highly interconnected genes and was significantly
enriched in the following GO Biological Processes: translation, cellular macromolecule biosyn-
thetic process, macromolecule biosynthetic process, gene expression, cellular biosynthetic process,
biosynthetic process, translational elongation, cellular protein metabolic process, and protein
metabolic process (FDR corrected p-value < 0.001; Table S9). While the second MCODE
submodule (subM2), which included also two predicted deleterious variants in MT-CO1
and CYC1 (red shaded nodes), was significantly enriched in the electron transport chain,
ATP synthesis coupled electron transport, mitochondrial ATP synthesis coupled electron transport,
respiratory electron transport chain, cellular respiration, oxidative phosphorylation, generation
of precursor metabolites and energy, energy derivation by oxidation of organic compounds, and
oxidation reduction (FDR corrected p-value < 0.001; Table S9).

Subsequently, a protein interaction network was derived by considering genes that
were prioritised in the WGS dataset. This network was composed of 508 nodes and 2444 in-
teractions (Figure 4b) and contained four main submodules according to MCODE. The
most interconnected submodule consisted of 32 genes and showed a coherent enrichment
in GO Biological Processes with subM1 (translation, cellular macromolecule biosynthetic process,
gene expression, macromolecule biosynthetic process, cellular biosynthetic process, biosynthetic
process, cellular protein metabolic process, and protein metabolic process, Table S10). Interestingly,
the second most significant submodule identified by MCODE in the PPI network based on
WGS prioritised genes had GO terms functional enrichment patterns that closely mimicked
those observed in subM2 (electron transport chain, ATP synthesis coupled electron transport,
mitochondrial ATP synthesis coupled electron transport, respiratory electron transport chain, cellu-
lar respiration, oxidative phosphorylation, generation of precursor metabolites and energy, energy
derivation by oxidation of organic compounds, and oxidation reduction).
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Figure 4. Protein-protein interaction (PPI) networks in genes containing prioritised variants. Red
and green nodes represent the concordance score and show predicted deleterious and benign vari-
ants, respectively. We assigned a concordance score of +2 if predicted pathogenic by at least four
pathogenicity predictors (red nodes); we assigned a concordance score of +1 if predicted pathogenic
by up to three pathogenicity predictors (light red nodes). We assigned a concordance score of 0 if
it was not predicted by any pathogenicity predictors or if there were conflicting interpretations of
pathogenicity (grey nodes). A concordance score of -1 was assigned if classified as benign in up
to three pathogenicity predictors (light green nodes) and -2 when all the predictors classified the
variants as benign in at least four pathogenicity predictors (dark green nodes); edges are shown as
grey. The most significant gene clusters within the network (MCODE score > 6) are marked in pink
and numbered. (a) STRING Network constructed using 130 nDNA and mtDNA genes containing
prioritised variants in the WES dataset. (b) STRING Network constructed using 508 nDNA and
mtDNA protein-coding genes containing prioritised variants in the WGS dataset.
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3.3.2. Canonical Pathway Analysis with Ingenuity

We performed a canonical pathway analysis with IPA by uploading genes containing
variants along with their concordance score. As expected, strong and significant enrich-
ments in mitochondrial-associated/related pathways were observed for both the WGS and
WES gene sets. These included mitochondrial dysfunction (p = 1.01 × 10−7, p = 2.85 × 10−32,
respectively, Table 5), Oxidative Phosphorilation (p = 9.72 × 10−5 and p = 1.98 × 10−22,
respectively). We found that the Sirtuin Signalling Pathway was among the five most signifi-
cant canonical pathways in both the WES (p = 5.83 × 10−3, Table 5, Figure 5a) and WGS
(p = 1.98 × 10−14, Table 5, Figure 5b) datasets, meaning that genes containing variants were
significantly enriched in this biological pathway. Within the Sirtuin pathway, deleterious
mutations were identified in SIRT3 and OPA1 genes (Figure 5a red-shaded nodes). These
genes play fundamental roles in mitochondrial function and regulation.

Table 5. Most representative pathways identified by IPA with genes containing variants in the ALS
WES and WGS datasets.

Dataset IPA Category Pathway
p-Value a Ratio b Gene Symbol

WES
dataset

Mitochondrial Dysfunction 1.01 × 10−7 15/345
ATP5F1A, CYC1, MT-CO1, MT-CO2, DNM1L, GPX4, HTRA2,
NDUFV1, NDUFB6, OPA1, PARK7, PDHX, PDHB,
SIRT3, UQCR10

Tryptophan Degradation III 9.83 × 10−6 5/23 GCDH, HADH, HSD17B4, KMO, PARK7
Glutaryl-CoA Degradation 6.9 × 10−5 4/16 GCDH, HADH, HSD17B4, PARK7

Oxidative Phosphorylation 9.72 × 10−5 7/112 ATP5F1A, CYC1, MT-CO1, MT-CO2, NDUFV1, NDUFB6,
UQCR10,

Sirtuin signaling Pathway 5.83 × 10−3 8/292 ATP5F1A, BCL2L11, CYC1, NDUFB6, NDUFV1, OGG1,
SIRT3, SIRT4

WGS
dataset

Mitochondrial Dysfunction 2.85 × 10−32 58/345

ACADL, ACO2, ADCY10, ARG2, ATP5F1A, ATP5F1D,
ATP5PD, ATP5PO, ATPAF1, BBC3, BCL2, CACNA1G, CASP3,
COX10, COX15, COX4I1, COX8C, CYB5B, CYB5R3, DLD,
DNM1L, GPD2, GSR, ITPR3, MCU, MT-ATP6, MT-CO1,
MT-CO2, MT-CYB, MT-ND1, MT-ND2, MT-ND4, MT-ND5,
MT-ND6, MT-ND4L, NDUFA6, NDUFA7, NDUFA10,
NDUFA4L2, NDUFB3, NDUFB5, NDUFS2, NDUFS5, NDUFV2,
OPA1, PARK7, PDHX, PINK1, PRKACA, PRKN, RHOT1,
SDHC, SOD1, SURF1, TFAM, UCP2, UQCRB, VDAC1

Oxidative Phosphorylation 1.98 × 10−22 30/112

ATP5F1A, ATP5F1D, ATP5PD, ATP5PO, ATPAF1, COX10,
COX15, COX4I1, COX8C, CYB5B, MT-ATP6, MT-CO1, MT-CO2,
MT-CYB, MT-ND1, MT-ND2, MT-ND4, MT-ND5, MT-ND4L,
NDUFA6, NDUFA7, NDUFA10, NDUFB3, NDUFB5, NDUFS2,
NDUFS5, NDUFV2, SDHC, SURF1, UQCRB,

Sirtuin signaling Pathway 1.98 × 10−14 35/292

ACADL, ARG2, ATP5F1A, ATP5F1D, CPS1, CPT1A, CPT1B,
GLS, MT-ATP6, MT-CYB, MT-ND1, MT-ND2, MT-ND4,
MT-ND5, MT-ND6, MT-ND4L, NDUFA6, NDUFA7, NDUFA10,
NDUFA4L2, NDUFB3, NDUFB5, NDUFS2, NDUFS5, NDUFV2,
OGG1, PCK2, SDHC, SIRT5, SLC25A5, SLC25A6, SOD1,
TIMM23, UCP2, VDAC1

Granzyme A signalling 4.22 × 10−10 7/112
LMNB2, MT-ND1, MT-ND2, MT-ND4, MT-ND5, MT-ND6,
MT-ND4L, NDUFA6, NDUFA7, NDUFA10, NDUFA4L2,
NDUFB3, NDUFB5, NDUFS2, NDUFS5, NDUFV2

Valine Degradation I 1.04 × 10−8 9/20 ABAT, ACADSB, ALDH6A1, BCKDHA, BCKDHB, DBT, DLD,
HADHA, HIBADH

a Statistically significantly enriched pathway after Benjamini Hochberg correction for the False Discovery Rate
(FDR < 0.05). b The ratio indicates the number of genes in the gene sets compared with the total number of genes
in the pathway.



Biomolecules 2024, 14, 411 22 of 33Biomolecules 2024, 14, x FOR PEER REVIEW 22 of 33 
 

 
Figure 5. IPA canonical pathway analysis in genes containing prioritised variants. Red and green 
nodes represent the concordance score and show predicted deleterious and benign variants, respec-
tively. We assigned a concordance score of +2 if predicted pathogenic by at least four pathogenicity 
predictors (red nodes); we assigned a concordance score of +1 if predicted pathogenic by up to three 
pathogenicity predictors (light red nodes). We assigned a concordance score of 0 if it was not pre-
dicted by any pathogenicity predictors or if there were conflicting interpretations of pathogenicity 
(grey nodes). A concordance score of -1 was assigned if classified as benign in up to three patho-
genicity predictors (light green nodes) and -2 when all the predictors classified the variants as be-
nign in at least four pathogenicity predictors (dark green nodes); edges are shown as grey. Sirtuin 
Signalling Pathway in the (a) WES dataset and in the (b) WGS dataset. Some genes containing vari-
ants were computed by IPA to be part of the Sirtuin Signalling Pathway other genes containing 
variants were not part of the pathway but were linked to it by direct interactions with the three 
mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5). We used IPA�s “grow” functionality to add these 
genes to the pathway analysis. Some genes have been filled with more than one colour because they 
have different variants with different scores of pathogenicity concordance. * Genes containing more 
than one variant. 

Figure 5. IPA canonical pathway analysis in genes containing prioritised variants. Red and green
nodes represent the concordance score and show predicted deleterious and benign variants, respec-
tively. We assigned a concordance score of +2 if predicted pathogenic by at least four pathogenicity
predictors (red nodes); we assigned a concordance score of +1 if predicted pathogenic by up to three
pathogenicity predictors (light red nodes). We assigned a concordance score of 0 if it was not predicted
by any pathogenicity predictors or if there were conflicting interpretations of pathogenicity (grey
nodes). A concordance score of -1 was assigned if classified as benign in up to three pathogenicity
predictors (light green nodes) and -2 when all the predictors classified the variants as benign in at least
four pathogenicity predictors (dark green nodes); edges are shown as grey. Sirtuin Signalling Pathway
in the (a) WES dataset and in the (b) WGS dataset. Some genes containing variants were computed
by IPA to be part of the Sirtuin Signalling Pathway other genes containing variants were not part of
the pathway but were linked to it by direct interactions with the three mitochondrial sirtuins (SIRT3,
SIRT4, and SIRT5). We used IPA’s “grow” functionality to add these genes to the pathway analysis.
Some genes have been filled with more than one colour because they have different variants with
different scores of pathogenicity concordance. * Genes containing more than one variant.
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Mutations affecting these critical components could potentially disrupt mitochondrial
dynamics and function, contributing to the pathology observed in ALS. In the Sirtuin
pathway, the WGS dataset revealed mutations in genes that are associated with ALS
pathology: SOD1, the gene most frequently presenting variants in ALS patients, and SIRT5,
which modulates SOD1 activity. The interaction between Sirtuin (SIRT5) and SOD1 proteins
occurs in the mitochondria. In usual physiological conditions, SIRT5 activates SOD1,
initiating the process of detoxifying reactive oxygen species [102]. Other variants have been
found in PDSS1 gene, also known as CoQ10, a component of the electron transport chain
in mitochondria. Some studies have suggested a potential link between CoQ10 deficiency
and mitochondrial dysfunction, supporting some clinical trials with CoQ10 supplements
in ALS patients [103]. Interestingly, thirteen genes contain prioritised variants in both the
WES and WGS datasets (ATP5F1A, CLPX, DNM1L, LARS2, NIT1, OGG1, OPA1, OXPHOS,
PC, PCCB, PDHX, PDK2, and PREPL, Figure 5a,b) encoded proteins directly interact with
the three mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5), highlighting gene variants that
were enriched in specific genes in ALS patients’ tissues. Resveratrol plays a central role in
regulating the Sirtuin Signalling Pathway (Figure 5a,b) and may explain how this natural
antioxidant exerts its beneficial effects in ALS preclinical models and patients [104,105].

4. Discussion

In this study, we simultaneously analysed mtDNA and nDNA variants affecting
mitochondrial proteins. By harnessing whole exome/genome sequencing, we report, for
the first time, an in-depth characterisation of somatic mtDNA and germline variants in
spinal cord tissue samples obtained from ALS patients. Abnormal mitochondrial clusters
and altered mitochondrial oxidative phosphorylation gene expression have been previously
reported in ALS patients [40,106]. Therefore, we undertook a ground-breaking assessment
of somatic heteroplasmic variants within this tissue, well-known for their implication in
ALS activity. However, obtaining frozen spinal cord samples presents challenges and
poses limitations for our study. Firstly, the lack of additional spinal cord samples impedes
molecular analysis. Secondly, it explains the restricted sample size in this study: 6 samples
for the WES dataset and 12 samples for the WGS dataset. They were acquired at distinct
times, underwent different library preparation methods, and most importantly, derive
from distinct spinal cord districts (lumbar for WES, and mixed lumbar/cervical for WGS).
Furthermore, the WES dataset consisted of well-phenotyped sALS patients. In contrast,
sequencing data from the WGS, obtained from ALS spinal cord tissues, were not classified
as sporadic or familial due to the unavailability of family history, even if the lack of known
ALS variants in SOD1 gene would support a sporadic ALS.

An excess of heteroplasmic variants was identified in the WGS dataset (Figure 3b)
compared to the WES dataset (Figure 2b). However, this discrepancy was mostly due to
technical factors, specifically a higher coverage and sequencing depth, which enhanced
the detection of heteroplasmic variants with lower frequencies [52,95]. Indeed, it must
be emphasised that variant identification from WGS data is more reliable, unbiased, and
exhibits higher sensitivity [107], whereas the efficiency of variant identification from WES
data can vary significantly depending on the specific WES kit used. Interestingly, we
observed a statistically significant increase in heteroplasmy levels in ALS cases compared
to controls, but this difference was observed only in the WES dataset and not in the WGS
dataset. We note that the difference in heteroplasmy in the WES dataset was primarily
driven by ALS_2, which exhibited a higher number of heteroplasmic variants compared to
all subjects in this dataset (Table S1). The high mtDNA-CN and the potential existence of
multiple alternative alleles at a single DNA nucleotide position significantly complicate the
task of detecting allelic variations in mtDNA. Moreover, additional challenges in variant
calling with short-read sequencing data can be attributed to the presence of regulatory
homopolymeric regions, such as CSB2 (nt.299–315), which plays a role in the formation
of a hybrid G-quadruplex leading to premature termination [23]. Despite their functional
importance, information on these areas is not available here or in most articles based on
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short read sequencing, as these regions are defined as “artifact_ prone_sites” [97]. However,
these limitations could be overcome through the application of long-read sequencing
techniques [108].

Moreover, we observed a consistent accumulation of variants in the mitochondrial
CR in ALS patients across both datasets. This enrichment was statistically significant in
the WGS dataset (23% vs. 17%, Table 4). In the WES dataset, although the variant load
was higher in ALS cases in the CR (35% vs. 24%, Table 3), statistical significance was not
achieved, possibly due to the limited number of cases. However, after variant prioritisation,
we found that prioritised variants were also preferentially localised in the CR (44%, N = 7),
in the WES dataset, and in the WGS dataset (16%, N = 9), despite this region comprising
only 6.7% of the total mtDNA length. In addition to presenting a comprehensive list of
mtDNA variants from both datasets, we have also explored the crucial aspect of how some
rare prioritised variants characterising ALS patients might induce conformational changes
in known secondary structure elements within the CR [24]. This region is particularly
prone to the formation of these structures since extensive single-stranded DNA stretches
are formed during mtDNA replication and transcription or during the formation of the
three-stranded D-loop structure. CR variants may influence mtDNA molecular processes
as this region contains the primary regulatory sequences for replication initiation and
transcription [109]. Replication from the OH is primed by transcription from the LSP by
mitochondrial RNA polymerase (POLRMT), creating an intimate relationship between
transcription and replication of mtDNA [110]. These molecular processes can be partially
regulated by the formation of DNA secondary structures. Pereira et al. have identified
13 potential structures (A-M), most of which coincide with functional regulatory and
conserved regions of the CR [24]. According to the classic strand displacement model,
replication events initiated at the OH are terminated in 95% of the cases, precisely after about
650 nt at the TAS regions, creating 7S DNA [111]. The secondary structures that are formed
either at the 5′ end or the nascent 3′ end of the D-loop may serve as a recognition site for
molecules that respectively prime or prematurely arrest H strand elongation [23,112]. Many
speculate that the triple-stranded D-Loop serves as a switch between abortive and genome-
wide mtDNA replication. The regulation of mtDNA replication is suggested to occur at the
pre-termination level rather than initiation, acting as a molecular switch to control mtDNA-
CN in response to cellular needs [24]. In both our datasets, we observed a higher proportion
of variants within the CR in ALS cases compared to controls; statistically significant
differences were observed in the WGS dataset. We further prioritised mtDNA variants
based on their putative impact, frequency, and exclusive presence in ALS tissues. We
observed that these prioritised variants in both datasets were predominantly heteroplasmic:
75% in the WES dataset and 79% in the WGS dataset. Since CR showed an enrichment of
variants in ALS tissues, we focused our attention on prioritised variants within this region.
Conformational analysis of mutated sequences indicated that secondary structures J and
K showed an evident increase in predicted minimum free energy, suggesting increased
instability as compared to the WT sequences. This trend was observed in both the WES
dataset (Figure S4b,d) and the WGS dataset (Figure S6b,d,e), indicating lower stability
of the mutated secondary structure. The importance of these foldable regions is dictated
by the fact that K secondary structures contain OH and CSB1, which are fundamental
for both replication and transcriptional processes. Therefore, mutations occurring in
proximity to these conserved motifs could potentially lead to changes in mtDNA replication
and transcription. All three ALS tissues within the WES dataset carried variants in the
conserved region of ETAS2, as identified by Sbisà et al. (nt 16294–16357). Specifically, the
variants m.16298T>C, m.16304T>C, and m.16311T>C were detected. Notably, the latter two
variants were predicted to induce a conformational change of the secondary structure C
(Figure S3), thereby reducing its stability. These variants may impact both replication and
transcriptional regulation, as the heavy-strand transcription termination was identified
between positions nt. 16076–195 [26,113].
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The analysis of nDNA variants affecting mitochondrial proteins revealed several genes
previously linked to ALS, with the most involved in mitochondrial dynamics. Specifically,
in both datasets, we identified DNM1L/Drp1, a gene playing a significant role in this
cellular process. Previous studies have reported that inhibiting Drp1 function attenuates
mitochondrial dysfunction and neurotoxicity in Parkinson’s Disease (PD) cell culture,
providing preliminary evidence for future studies assessing the effect of blocking Drp1 in
ALS [114]. Another gene associated with ALS and detected in both datasets is OGG1, which
encodes a DNA glycosylase that removes 8-OHdG from the DNA. A role for OGG1 in ALS
pathogenesis is supported by observations in spinal motor neurons of sALS, which exhibit
higher levels of 8-OHdG and lower mitochondrial OGG1 activity compared to healthy
controls [86]. A restoration of OGG1 has been proposed in high-oxidative stress conditions,
including neurological diseases such as Alzheimer’s disease [115,116]. Interestingly, small
molecule activators of OGG1 such as TH10785 have been demonstrated to increase repair
of oxidative DNA lesions [117]. OPA1 is another gene carrying at least two prioritised
variants in both datasets. This gene encodes a protein crucial for mitochondrial fusion
and affects mitochondrial dynamics and maintenance [94]. OPA1 levels are reduced in
ALS animal models, leading to a fragmented mitochondrial network even before clinical
symptoms manifest [118–120]. Some authors suggest that targeting OPA1 could be a
potential therapeutic approach in ALS [121]. The different therapeutic options proposed
to treat OPA1-associated neurodegenerative disorders include gene therapy and drugs
potentially able to complement OPA1 defective function. Among them are antioxidants
such as vitamins C, E, B2, B3, B12, lipoic acid, and folic acid, as well as drugs modifying
mitochondrial biogenesis and mitophagy (i.e., bezafibrate, rosiglitazone, resveratrol) [122].
Various clinical trials assessing the effect of antioxidant compounds in ALS have been
conducted or are still ongoing (i.e., NCT04244630, NCT02588807, and NCT04140136).
Another important ALS-related gene identified by our analyses, as reported by DisGeNET
or ALSoD, is the Parkinson disease-related PARK7 gene. The co-occurrence of motor neuron
disease and PD [123] implies the close link behind the aetiology of these two diseases. A
case of parkinsonism-ALS-dementia complex has been found in an Italian family, in which
three patients carried homozygous E163K mutations in PARK7 exon 7 and a homozygous
g.168_185dup mutation in the PARK7 promoter [124]. Here, we detected a very rare
g.1:7985265A>C transversion in the 3′ UTR region of the gene in two ALS patients. This
mutation occurs within the target region of the human PARK7 gene, which has been
experimentally validated as a binding site for hsa-miR-4639-5p, a miRNA known to regulate
human PARK7 expression. Another very rare variant was detected in the first intron of the
PARK7 gene (g.1:7962280G>A). Notably, one of the recently FDA-approved compounds,
such as sodium phenylbutyrate (AMX0035), has demonstrated a neuroprotective effect
in ALS and in both cellular and animal models of PD by up-regulating the PARK7/DJ-1
protein [125,126]. Furthermore, the effects of additional neuroprotective DJ-1 promoting
compounds have been investigated in preclinical and clinical studies of PD [127].

Our analysis of nDNA variants also identified other genes containing variants that
have never been associated with ALS (Table 2 and Table S4), and these were detected in
both datasets. The SLC25A21 gene showed the highest mutation burden, with variants
in seven out of eight ALS subjects in the WGS dataset and in two out of three ALS sub-
jects in the WES dataset. Despite no previous association with ALS, the SLC25A21 gene
encodes a mitochondrial inner membrane protein involved in transporting dicarboxylates
within mitochondria [92]. Highlighting its significance in the context of ALS, a homozy-
gous pathogenic c.695A>G; p.(Lys232Arg) variant within this gene led to mitochondrial
dysfunction in a patient with a phenotype closely associated with ALS. This phenotype
included toxicity in spinal motor neurons, ultimately leading to a disease resembling spinal
muscular atrophy [128]. Future studies will need to assess the potential role of this gene in
ALS. Additionally, DNAJC11 emerged as a gene enriched with prioritised variants in both
datasets. Importantly, this gene was not previously linked with ALS. DNAJC11’s organises
the mitochondrial inner membrane through association with the MICOS complex and the
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mitochondrial outer membrane sorting assembly machinery (SAM). Mutations in DNAJC11
are associated with motor neuron pathologies linked to cristae disorganisation [93].

We then performed a PPI network analysis to explore potential protein-protein interac-
tions between genes carrying prioritised variants. We considered both nDNA and mtDNA
coding genes from both datasets independently. This analysis identified two significantly
interconnected submodules. The first submodule, subM1, was enriched with Gene Ontol-
ogy (GO) associated with translation, cellular macromolecule biosynthetic processes, gene
expression, and other biosynthetic activities. Meanwhile, the second submodule, subM2,
was enriched in genes related to the electron transport chain, ATP synthesis, and other
mitochondrial processes. Notably, both datasets yielded very similar submodules in the
analysis, providing consistent results. Canonical pathway analysis conducted with IPA
identified the Sirtuin Signalling Pathway as one of the top five most significant canonical
pathways associated with the sets of genes identified in both datasets, thereby suggesting
a potential role of this pathway in ALS. This result, although potentially biased by the
Mitocarta gene filtering, is in line with the reports that link Sirtuin alterations with ALS.
Notably, ALS motor neurons exhibit hallmark metabolic defects that are rescued by SIRT3
activation, and a loss of SIRT3 or aberrant protein has been demonstrated to mimic ALS
phenotypes [129]. Therefore, potential therapeutic strategies targeting this pathway, such
as resveratrol, may exert beneficial effects, especially in the early stages of the disease, as
demonstrated in mouse models of ALS [130,131]. Additionally, a Phase II study aims to
assess the combination of liposome-delivered polyphenols resveratrol and curcumin with
the drug G04CB02 in ALS patients (NCT04654689).

Growing evidence suggests that changes in epigenetic processes may contribute to
ALS pathogenesis and its progression [132]. We also investigated mtDNA-CN, for which
conflicting results have been reported so far in ALS patients [98–100]. We observed a
slightly significant CN-mtDNA enrichment in ALS in the WGS dataset, for which the
mtDNA-CN estimation is more reliable [133].

5. Conclusions

This study represents the first comprehensive report detailing a systematic screen-
ing revealing a consistent accumulation of somatic variant-specific genes and regions of
mtDNA and mitochondrial genes encoded by nDNA in ALS spinal cord tissue. Several of
these genes are directly associated with oxidative stress, mitochondrial dynamics, or the
Sirtuin pathway genes. These results align with numerous studies on ALS animal models,
indicating potential disruptions in these pathways [134–137]. Anomalous mitochondrial
structure and cristae formation have been detected in both SOD1 gene mutated mice and
samples from ALS patients, particularly prevalent in the spinal cord [138]. Additionally, the
Sirtuin pathway genes were significantly enriched in both datasets, supporting the benefi-
cial effects of antioxidants such as resveratrol, which target this pathway, in ALS preclinical
models and patients [104,105]. Others suggest OPA1 as a therapeutic target, which is
known to cause mitochondrial ultrastructure alterations prior to the onset of clinical symp-
toms [121]. The findings here significantly show their translational relevance, emphasising
their potential as targets for therapeutic interventions in ALS. Indeed, based on findings
that some of the genes/pathways significantly dysregulated in ALS datasets are shared
and already targeted in other neurodegenerative diseases such as Alzheimer’s and PD, this
study provides useful evidence to guide drug repurposing strategies in ALS patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom14040411/s1, Table S1: Statistics related to the Whole Exome
Sequencing Dataset; Table S2: List of 141 prioritised nDNA variants in the WES cohort; Table S3:
nDNA genes containing variants in the WES/WGS datasets associated with Amyotrophic Lateral
Sclerosis as identified by DisGeNet; Table S4: Genes alphabetically ordered containing at least three
variants that have passed variant prioritisation filters in Amyotrophic Lateral Sclerosis (ALS) patients
in the Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS) datasets; Table S5:
List of 12 prioritised mtDNA variant sites in the WES cohort; Table S6: Statistics related to the Whole
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Genome Sequencing Dataset; Table S7: List of 842 nDNA variants ranked by priority in the WGS
dataset; Table S8: Fifty-two prioritised mtDNA variant sites in the WGS cohort; Table S9: Clusters of
highly interconnected genes as identified by MCODE in the network generated with genes containing
variants in the WES cohort; Table S10: Clusters of highly interconnected genes as identified by
MCODE in the network generated with genes containing variants in the WGS cohort; Figure S1: RNA
duplex formation predicted by the RNA hybrid of hsa-miR-4639-5p; Figure S2: mtDNA variant counts
and proportions in WES dataset; Figure S3: Structural or thermodynamic differences between wild-
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Figure S4: Structural or thermodynamic differences of variant sites in mtDNA that passed the filtering
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passed the filtering and prioritisation steps in the WGS dataset.

Author Contributions: Conceptualisation, G.P., S.N.C. and E.P.; methodology, E.P., M.C., S.N.C.,
C.L.G. and M.L.P.; software, E.P., C.L.G. and S.N.C.; formal analysis, S.N.C., C.L.G., A.L. and M.L.P.;
investigation, G.P., E.P., M.C. and S.N.C.; data curation, S.N.C., A.L. and M.L.P.; writing: original
draft preparation, G.P. and S.N.C.; writing: review and editing, G.P., S.N.C., E.P., M.C., A.L., M.L.P.
and C.L.G.; supervision, G.P. and M.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the National Research Centers: “High Performance
Computing, Big Data and Quantum Computing” (Project no. CN_00000013) and “Gene Therapy and
Drugs based on RNA Technology” (Project no. CN_00000041); and Extended Partnerships: MNESYS
(Project no. PE_0000006) and Age-It (Project no. PE_00000015). This work was also supported
by ELIXIR-IT through the empowering project ELIXIRNextGenIT (Grant Code IR0000010). This
research was also funded by Research for Innovation (REFIN)—POR PUGLIA FESR-FSE 2014/2020–
UNIBA148—project code C1A93B75-CUP H94I20000410008.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: WES and WGS data were provided in a de-identified manner, with
consent obtained respectively by their participating consortia.

Data Availability Statement: WES data presented in this study are available in the publicly ac-
cessible repository dbGaP with Study Accession n◦ phs000747.v2.p1. WGS data can be requested
through Target ALS’s website (https://www.targetals.org/resource/genomic-datasets/, accessed on
1 September 2022).

Acknowledgments: We would like to thank “The Target ALS Human Postmortem Tissue Core, New
York Genome Center for Genomics of Neurodegenerative Disease, the Amyotrophic Lateral Sclerosis
Association and the Tow Foundation for the WES dataset”.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Swinnen, B.; Robberecht, W. The Phenotypic Variability of Amyotrophic Lateral Sclerosis. Nat. Rev. Neurol. 2014, 10, 661–670.

[CrossRef]
2. Saini, A.; Chawla, P.A. Breaking Barriers with Tofersen: Enhancing Therapeutic Opportunities in Amyotrophic Lateral Sclerosis.

Eur. J. Neurol. 2024, 31, e16140. [CrossRef]
3. Alqallaf, A.; Cates, D.W.; Render, K.P.; Patel, K.A. Sodium Phenylbutyrate and Taurursodiol: A New Therapeutic Option for the

Treatment of Amyotrophic Lateral Sclerosis. Ann. Pharmacother. 2023, 58, 165–173. [CrossRef]
4. Fralick, M.; Sacks, C.A.; Kesselheim, A.S. Assessment of Use of Combined Dextromethorphan and Quinidine in Patients with

Dementia or Parkinson Disease After US Food and Drug Administration Approval for Pseudobulbar Affect. JAMA Intern. Med.
2019, 179, 224–230. [CrossRef]

5. Calió, M.L.; Henriques, E.; Siena, A.; Bertoncini, C.R.A.; Gil-Mohapel, J.; Rosenstock, T.R. Mitochondrial Dysfunction, Neurogene-
sis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Front. Neurosci.
2020, 14, 679. [CrossRef]

6. Al-Chalabi, A.; Fang, F.; Hanby, M.F.; Leigh, P.N.; Shaw, C.E.; Ye, W.; Rijsdijk, F. An Estimate of Amyotrophic Lateral Sclerosis
Heritability Using Twin Data. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1324. [CrossRef]

7. Renton, A.E.; Chiò, A.; Traynor, B.J. State of Play in Amyotrophic Lateral Sclerosis Genetics. Nat. Neurosci. 2014, 17, 17–23.
[CrossRef]

https://www.targetals.org/resource/genomic-datasets/
https://doi.org/10.1038/nrneurol.2014.184
https://doi.org/10.1111/ene.16140
https://doi.org/10.1177/10600280231172802
https://doi.org/10.1001/jamainternmed.2018.6112
https://doi.org/10.3389/fnins.2020.00679
https://doi.org/10.1136/jnnp.2010.207464
https://doi.org/10.1038/nn.3584


Biomolecules 2024, 14, 411 28 of 33

8. Chia, R.; Chiò, A.; Traynor, B.J. Novel Genes Associated with Amyotrophic Lateral Sclerosis: Diagnostic and Clinical Implications.
Lancet. Neurol. 2018, 17, 94–102. [CrossRef]

9. Smith, E.F.; Shaw, P.J.; De Vos, K.J. The Role of Mitochondria in Amyotrophic Lateral Sclerosis. Neurosci. Lett. 2019, 710, 132933.
[CrossRef]

10. Zhao, J.; Wang, X.; Huo, Z.; Chen, Y.; Liu, J.; Zhao, Z.; Meng, F.; Su, Q.; Bao, W.; Zhang, L.; et al. The Impact of Mitochondrial
Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2022, 11, 2049. [CrossRef]

11. Calingasan, N.Y.; Chen, J.; Kiaei, M.; Beal, M.F. β-Amyloid 42 Accumulation in the Lumbar Spinal Cord Motor Neurons of
Amyotrophic Lateral Sclerosis Patients. Neurobiol. Dis. 2005, 19, 340–347. [CrossRef]

12. Shaw, P.J.; Ince, P.G.; Falkous, G.; Mantle, D. Oxidative Damage to Protein in Sporadic Motor Neuron Disease Spinal Cord. Ann.
Neurol. 1995, 38, 691–695. [CrossRef]

13. Ihara, Y.; Nobukuni, K.; Takata, H.; Hayabara, T. Oxidative Stress and Metal Content in Blood and Cerebrospinal Fluid of
Amyotrophic Lateral Sclerosis Patients with and without a Cu, Zn-Superoxide Dismutase Mutation. Neurol. Res. 2005, 27, 105–108.
[CrossRef]

14. Weishaupt, J.H.; Bartels, C.; Pölking, E.; Dietrich, J.; Rohde, G.; Poeggeler, B.; Mertens, N.; Sperling, S.; Bohn, M.; Hüther, G.; et al.
Reduced Oxidative Damage in ALS by High-Dose Enteral Melatonin Treatment. J. Pineal Res. 2006, 41, 313–323. [CrossRef]

15. Mitsumoto, H.; Santella, R.; Liu, X.; Bogdanov, M.; Zipprich, J.; Wu, H.C.; Mahata, J.; Kilty, M.; Bednarz, K.; Bell, D.; et al.
Oxidative Stress Biomarkers in Sporadic ALS. Amyotroph. Lateral Scler. 2008, 9, 177–183. [CrossRef]

16. Bowling, A.C.; Schulz, J.B.; Brown, R.H.; Beal, M.F. Superoxide Dismutase Activity, Oxidative Damage, and Mitochondrial Energy
Metabolism in Familial and Sporadic Amyotrophic Lateral Sclerosis. J. Neurochem. 1993, 61, 2322–2325. [CrossRef]

17. Kirkinezos, I.G.; Bacman, S.R.; Hernandez, D.; Oca-Cossio, J.; Arias, L.J.; Perez-Pinzon, M.A.; Bradley, W.G.; Moraes, C.T.
Cytochrome c Association with the Inner Mitochondrial Membrane Is Impaired in the CNS of G93A-SOD1 Mice. J. Neurosci. 2005,
25, 164–172. [CrossRef]

18. Pharaoh, G.; Sataranatarajan, K.; Street, K.; Hill, S.; Gregston, J.; Ahn, B.; Kinter, C.; Kinter, M.; Van Remmen, H. Metabolic and
Stress Response Changes Precede Disease Onset in the Spinal Cord of Mutant SOD1 ALS Mice. Front. Neurosci. 2019, 13, 487.
[CrossRef]

19. De Vos, K.J.; Hafezparast, M. Neurobiology of Axonal Transport Defects in Motor Neuron Diseases: Opportunities for Transla-
tional Research? Neurobiol. Dis. 2017, 105, 283–299. [CrossRef]

20. Cunha-Oliveira, T.; Montezinho, L.; Simões, R.F.; Carvalho, M.; Ferreiro, E.; Silva, F.S.G. Mitochondria: A Promising Convergent
Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024, 13, 248. [CrossRef]

21. Wang, W.; Li, L.; Lin, W.L.; Dickson, D.W.; Petrucelli, L.; Zhang, T.; Wang, X. The ALS Disease-Associated Mutant TDP-43 Impairs
Mitochondrial Dynamics and Function in Motor Neurons. Hum. Mol. Genet. 2013, 22, 4706–4719. [CrossRef]

22. Wang, W.; Wang, L.; Lu, J.; Siedlak, S.L.; Fujioka, H.; Liang, J.; Jiang, S.; Ma, X.; Jiang, Z.; Da Rocha, E.L.; et al. The Inhibition of
TDP-43 Mitochondrial Localization Blocks Its Neuronal Toxicity. Nat. Med. 2016, 22, 869–878. [CrossRef]

23. Nicholls, T.J.; Minczuk, M. In D-Loop: 40 Years of Mitochondrial 7S DNA. Exp. Gerontol. 2014, 56, 175–181. [CrossRef]
24. Pereira, F.; Soares, P.; Carneiro, J.; Pereira, L.; Richards, M.B.; Samuels, D.C.; Amorim, A. Evidence for Variable Selective Pressures

at a Large Secondary Structure of the Human Mitochondrial DNA Control Region. Mol. Biol. Evol. 2008, 25, 2759–2770. [CrossRef]
25. Sbisà, E.; Tanzariello, F.; Reyes, A.; Pesole, G.; Saccone, C. Mammalian Mitochondrial D-Loop Region Structural Analysis:

Identification of New Conserved Sequences and Their Functional and Evolutionary Implications. Gene 1997, 205, 125–140.
[CrossRef]

26. Basu, U.; Bostwick, A.M.; Das, K.; Dittenhafer-Reed, K.E.; Patel, S.S. Structure, Mechanism, and Regulation of Mitochondrial
DNA Transcription Initiation. J. Biol. Chem. 2020, 295, 18406–18425. [CrossRef]

27. Wang, C.; Youle, R.J. The Role of Mitochondria in Apoptosis*. Annu. Rev. Genet. 2009, 43, 95–118. [CrossRef]
28. Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular Mechanisms and Physiological Functions of Mitophagy.

EMBO J. 2021, 40, e104705. [CrossRef]
29. Di Nottia, M.; Verrigni, D.; Torraco, A.; Rizza, T.; Bertini, E.; Carrozzo, R. Mitochondrial Dynamics: Molecular Mechanisms,

Related Primary Mitochondrial Disorders and Therapeutic Approaches. Genes 2021, 12, 247. [CrossRef]
30. Palmieri, F.; Scarcia, P.; Monné, M. Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review. Biomolecules

2020, 10, 655. [CrossRef]
31. Seguin, A.; Jia, X.; Earl, A.M.; Li, L.; Wallace, J.; Qiu, A.; Bradley, T.; Shrestha, R.; Troadec, M.B.; Hockin, M.; et al. The

Mitochondrial Metal Transporters Mitoferrin1 and Mitoferrin2 Are Required for Liver Regeneration and Cell Proliferation in
Mice. J. Biol. Chem. 2020, 295, 11002–11020. [CrossRef]

32. Rosencrans, W.M.; Rajendran, M.; Bezrukov, S.M.; Rostovtseva, T.K. VDAC Regulation of Mitochondrial Calcium Flux: From
Channel Biophysics to Disease. Cell Calcium 2021, 94, 102356. [CrossRef]

33. Rath, S.; Sharma, R.; Gupta, R.; Ast, T.; Chan, C.; Durham, T.J.; Goodman, R.P.; Grabarek, Z.; Haas, M.E.; Hung, W.H.W.; et al.
MitoCarta3.0: An Updated Mitochondrial Proteome Now with Sub-Organelle Localization and Pathway Annotations. Nucleic
Acids Res. 2021, 49, D1541–D1547. [CrossRef]

34. Sutovsky, P.; Moreno, R.D.; Ramalho-Santos, J.; Dominko, T.; Simerly, C.; Schatten, G. Ubiquitin Tag for Sperm Mitochondria.
Nature 1999, 402, 371–372. [CrossRef]

https://doi.org/10.1016/S1474-4422(17)30401-5
https://doi.org/10.1016/j.neulet.2017.06.052
https://doi.org/10.3390/cells11132049
https://doi.org/10.1016/j.nbd.2005.01.012
https://doi.org/10.1002/ana.410380424
https://doi.org/10.1179/016164105X18430
https://doi.org/10.1111/j.1600-079X.2006.00377.x
https://doi.org/10.1080/17482960801933942
https://doi.org/10.1111/j.1471-4159.1993.tb07478.x
https://doi.org/10.1523/JNEUROSCI.3829-04.2005
https://doi.org/10.3389/fnins.2019.00487
https://doi.org/10.1016/j.nbd.2017.02.004
https://doi.org/10.3390/cells13030248
https://doi.org/10.1093/hmg/ddt319
https://doi.org/10.1038/nm.4130
https://doi.org/10.1016/j.exger.2014.03.027
https://doi.org/10.1093/molbev/msn225
https://doi.org/10.1016/S0378-1119(97)00404-6
https://doi.org/10.1074/jbc.REV120.011202
https://doi.org/10.1146/annurev-genet-102108-134850
https://doi.org/10.15252/embj.2020104705
https://doi.org/10.3390/genes12020247
https://doi.org/10.3390/biom10040655
https://doi.org/10.1074/jbc.RA120.013229
https://doi.org/10.1016/j.ceca.2021.102356
https://doi.org/10.1093/nar/gkaa1011
https://doi.org/10.1038/46466


Biomolecules 2024, 14, 411 29 of 33

35. Zhang, R.; Wang, Y.; Ye, K.; Picard, M.; Gu, Z. Independent Impacts of Aging on Mitochondrial DNA Quantity and Quality in
Humans. BMC Genom. 2017, 18, 890. [CrossRef]

36. Wallace, D.C.; Chalkia, D. Mitochondrial DNA Genetics and the Heteroplasmy Conundrum in Evolution and Disease. Cold Spring
Harb. Perspect. Biol. 2013, 5, a021220. [CrossRef]

37. Ashar, F.N.; Moes, A.; Moore, A.Z.; Grove, M.L.; Chaves, P.H.M.; Coresh, J.; Newman, A.B.; Matteini, A.M.; Bandeen-Roche,
K.; Boerwinkle, E.; et al. Association of Mitochondrial DNA Levels with Frailty and All-Cause Mortality. J. Mol. Med. 2015, 93,
177–186. [CrossRef]

38. Mehta, A.R.; Walters, R.; Waldron, F.M.; Pal, S.; Selvaraj, B.T.; Macleod, M.R.; Hardingham, G.E.; Chandran, S.; Gregory, J.M.
Targeting Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Brain Commun.
2019, 1, fcz009. [CrossRef]

39. Sasaki, S.; Iwata, M. Mitochondrial Alterations in the Spinal Cord of Patients with Sporadic Amyotrophic Lateral Sclerosis. J.
Neuropathol. Exp. Neurol. 2007, 66, 10–16. [CrossRef]

40. Ladd, A.C.; Keeney, P.M.; Govind, M.M.; Bennett, J.P. Mitochondrial Oxidative Phosphorylation Transcriptome Alterations in
Human Amyotrophic Lateral Sclerosis Spinal Cord and Blood. NeuroMolecular Med. 2014, 16, 714–726. [CrossRef]

41. D’Erchia, A.M.; Gallo, A.; Manzari, C.; Raho, S.; Horner, D.S.; Chiara, M.; Valletti, A.; Aiello, I.; Mastropasqua, F.; Ciaccia, L.; et al.
Massive Transcriptome Sequencing of Human Spinal Cord Tissues Provides New Insights into Motor Neuron Degeneration in
ALS. Sci. Rep. 2017, 7, 10046. [CrossRef]

42. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.;
et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome
Res. 2010, 20, 1297–1303. [CrossRef]

43. Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2010, 26, 589–595.
[CrossRef]

44. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Align-
ment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef] [PubMed]

45. Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast Processing of NGS Alignment Formats. Bioinformatics
2015, 31, 2032–2034. [CrossRef]

46. Kuhn, R.M.; Haussler, D.; James Kent, W. The UCSC Genome Browser and Associated Tools. Brief. Bioinform. 2013, 14, 144–161.
[CrossRef]

47. Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and Revision of the
Cambridge Reference Sequence for Human Mitochondrial DNA. Nat. Genet. 1999, 23, 147. [CrossRef] [PubMed]

48. Wu, T.D.; Nacu, S. Fast and SNP-Tolerant Detection of Complex Variants and Splicing in Short Reads. Bioinformatics 2010, 26,
873–881. [CrossRef]

49. Simone, D.; Calabrese, F.M.; Lang, M.; Gasparre, G.; Attimonelli, M. The Reference Human Nuclear Mitochondrial Sequences
Compilation Validated and Implemented on the UCSC Genome Browser. BMC Genom. 2011, 12, 517. [CrossRef]

50. Picardi, E.; Pesole, G. Mitochondrial Genomes Gleaned from Human Whole-Exome Sequencing. Nat. Methods 2012, 9, 523–524.
[CrossRef] [PubMed]

51. Calabrese, C.; Simone, D.; Diroma, M.A.; Santorsola, M.; Gutta, C.; Gasparre, G.; Picardi, E.; Pesole, G.; Attimonelli, M. MToolBox:
A Highly Automated Pipeline for Heteroplasmy Annotation and Prioritization Analysis of Human Mitochondrial Variants in
High-Throughput Sequencing. Bioinformatics 2014, 30, 3115–3117. [CrossRef] [PubMed]

52. García-Alcalde, F.; Okonechnikov, K.; Carbonell, J.; Cruz, L.M.; Götz, S.; Tarazona, S.; Dopazo, J.; Meyer, T.F.; Conesa, A. Qualimap:
Evaluating next-Generation Sequencing Alignment Data. Bioinformatics 2012, 28, 2678–2679. [CrossRef] [PubMed]

53. Alkanaq, A.N.; Hamanaka, K.; Sekiguchi, F.; Taguri, M.; Takata, A.; Miyake, N.; Miyatake, S.; Mizuguchi, T.; Matsumoto, N.
Comparison of Mitochondrial DNA Variants Detection Using Short- and Long-Read Sequencing. J. Hum. Genet. 2019, 64,
1107–1116. [CrossRef]

54. Rebolledo-Jaramillo, B.; Su, M.S.W.; Stoler, N.; McElhoe, J.A.; Dickins, B.; Blankenberg, D.; Korneliussen, T.S.; Chiaromonte,
F.; Nielsen, R.; Holland, M.M.; et al. Maternal Age Effect and Severe Germ-Line Bottleneck in the Inheritance of Human
Mitochondrial DNA. Proc. Natl. Acad. Sci. USA 2014, 111, 15474–15479. [CrossRef] [PubMed]

55. Li, H. A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping and Population Genetical Parameter
Estimation from Sequencing Data. Bioinformatics 2011, 27, 2987–2993. [CrossRef] [PubMed]

56. Tan, A.; Abecasis, G.R.; Kang, H.M. Unified Representation of Genetic Variants. Bioinformatics 2015, 31, 2202–2204. [CrossRef]
[PubMed]

57. Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating
and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain
W1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [CrossRef] [PubMed]

58. Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila Melanogaster as a Model for
Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Genet. 2012, 3, 35. [CrossRef] [PubMed]

59. Niroula, A.; Vihinen, M. PON-Mt-TRNA: A Multifactorial Probability-Based Method for Classification of Mitochondrial TRNA
Variations. Nucleic Acids Res. 2016, 44, 2020–2027. [CrossRef]

https://doi.org/10.1186/s12864-017-4287-0
https://doi.org/10.1101/cshperspect.a021220
https://doi.org/10.1007/s00109-014-1233-3
https://doi.org/10.1093/braincomms/fcz009
https://doi.org/10.1097/nen.0b013e31802c396b
https://doi.org/10.1007/s12017-014-8321-y
https://doi.org/10.1038/s41598-017-10488-7
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp352
https://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1093/bioinformatics/btv098
https://doi.org/10.1093/bib/bbs038
https://doi.org/10.1038/13779
https://www.ncbi.nlm.nih.gov/pubmed/10508508
https://doi.org/10.1093/bioinformatics/btq057
https://doi.org/10.1186/1471-2164-12-517
https://doi.org/10.1038/nmeth.2029
https://www.ncbi.nlm.nih.gov/pubmed/22669646
https://doi.org/10.1093/bioinformatics/btu483
https://www.ncbi.nlm.nih.gov/pubmed/25028726
https://doi.org/10.1093/bioinformatics/bts503
https://www.ncbi.nlm.nih.gov/pubmed/22914218
https://doi.org/10.1038/s10038-019-0654-9
https://doi.org/10.1073/pnas.1409328111
https://www.ncbi.nlm.nih.gov/pubmed/25313049
https://doi.org/10.1093/bioinformatics/btr509
https://www.ncbi.nlm.nih.gov/pubmed/21903627
https://doi.org/10.1093/bioinformatics/btv112
https://www.ncbi.nlm.nih.gov/pubmed/25701572
https://doi.org/10.4161/fly.19695
https://www.ncbi.nlm.nih.gov/pubmed/22728672
https://doi.org/10.3389/fgene.2012.00035
https://www.ncbi.nlm.nih.gov/pubmed/22435069
https://doi.org/10.1093/nar/gkw046


Biomolecules 2024, 14, 411 30 of 33

60. Sonney, S.; Leipzig, J.; Lott, M.T.; Zhang, S.; Procaccio, V.; Wallace, D.C.; Sondheimer, N. Predicting the Pathogenicity of Novel
Variants in Mitochondrial TRNA with MitoTIP. PLOS Comput. Biol. 2017, 13, e1005867. [CrossRef]

61. Castellana, S.; Biagini, T.; Petrizzelli, F.; Parca, L.; Panzironi, N.; Caputo, V.; Vescovi, A.L.; Carella, M.; Mazza, T. MitImpact
3: Modeling the Residue Interaction Network of the Respiratory Chain Subunits. Nucleic Acids Res. 2021, 49, D1282–D1288.
[CrossRef] [PubMed]

62. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and
Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [CrossRef] [PubMed]

63. Ng, P.C.; Henikoff, S. SIFT: Predicting Amino Acid Changes That Affect Protein Function. Nucleic Acids Res. 2003, 31, 3812–3814.
[CrossRef] [PubMed]

64. Bianco, S.D.; Parca, L.; Petrizzelli, F.; Biagini, T.; Giovannetti, A.; Liorni, N.; Napoli, A.; Carella, M.; Procaccio, V.; Lott, M.T.; et al.
APOGEE 2: Multi-Layer Machine-Learning Model for the Interpretable Prediction of Mitochondrial Missense Variants. Nat.
Commun. 2023, 14, 5058. [CrossRef] [PubMed]

65. Li, B.; Krishnan, V.G.; Mort, M.E.; Xin, F.; Kamati, K.K.; Cooper, D.N.; Mooney, S.D.; Radivojac, P. Automated Inference of
Molecular Mechanisms of Disease from Amino Acid Substitutions. Bioinformatics 2009, 25, 2744–2750. [CrossRef] [PubMed]

66. Tang, H.; Thomas, P.D. PANTHER-PSEP: Predicting Disease-Causing Genetic Variants Using Position-Specific Evolutionary
Preservation. Bioinformatics 2016, 32, 2230–2232. [CrossRef] [PubMed]

67. Capriotti, E.; Fariselli, P. PhD-SNPg: A Webserver and Lightweight Tool for Scoring Single Nucleotide Variants. Nucleic Acids Res.
2017, 45, W247–W252. [CrossRef] [PubMed]

68. Manfredi, M.; Savojardo, C.; Martelli, P.L.; Casadio, R. E-SNPs&GO: Embedding of Protein Sequence and Function Improves the
Annotation of Human Pathogenic Variants. Bioinformatics 2022, 38, 5168–5174. [CrossRef] [PubMed]

69. Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr.
Protoc. Hum. Genet. 2013, 76, 7.20.1–7.20.41. [CrossRef]

70. Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the Deleteriousness of Variants throughout the
Human Genome. Nucleic Acids Res. 2019, 47, D886–D894. [CrossRef]

71. Zhou, H.; Arapoglou, T.; Li, X.; Li, Z.; Zheng, X.; Moore, J.; Asok, A.; Kumar, S.; Blue, E.E.; Buyske, S.; et al. FAVOR: Functional
Annotation of Variants Online Resource and Annotator for Variation across the Human Genome. Nucleic Acids Res. 2023, 51,
D1300–D1311. [CrossRef] [PubMed]

72. Rogers, M.F.; Shihab, H.A.; Mort, M.; Cooper, D.N.; Gaunt, T.R.; Campbell, C. FATHMM-XF: Accurate Prediction of Pathogenic
Point Mutations via Extended Features. Bioinformatics 2018, 34, 511–513. [CrossRef]

73. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET Knowledge
Platform for Disease Genomics: 2019 Update. Nucleic Acids Res. 2020, 48, D845–D855. [CrossRef]

74. Piñero, J.; Bravo, Á.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong,
L.I. DisGeNET: A Comprehensive Platform Integrating Information on Human Disease-Associated Genes and Variants. Nucleic
Acids Res. 2017, 45, D833–D839. [CrossRef]

75. Gunning, A.C.; Fryer, V.; Fasham, J.; Crosby, A.H.; Ellard, S.; Baple, E.L.; Wright, C.F. Assessing Performance of Pathogenicity
Predictors Using Clinically Relevant Variant Datasets. J. Med. Genet. 2021, 58, 547–555. [CrossRef] [PubMed]

76. Ghosh, R.; Oak, N.; Plon, S.E. Evaluation of in Silico Algorithms for Use with ACMG/AMP Clinical Variant Interpretation
Guidelines. Genome Biol. 2017, 18, 225. [CrossRef]

77. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al.
The STRING Database in 2017: Quality-Controlled Protein–Protein Association Networks, Made Broadly Accessible. Nucleic
Acids Res. 2017, 45, D362–D368. [CrossRef]

78. Doncheva, N.T.; Morris, J.H.; Holze, H.; Kirsch, R.; Nastou, K.C.; Cuesta-Astroz, Y.; Rattei, T.; Szklarczyk, D.; von Mering, C.;
Jensen, L.J. Cytoscape StringApp 2.0: Analysis and Visualization of Heterogeneous Biological Networks. J. Proteome Res. 2023, 22,
637–646. [CrossRef] [PubMed]

79. Bader, G.D.; Hogue, C.W.V. An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks.
BMC Bioinform. 2003, 4, 2. [CrossRef]

80. Battle, S.L.; Puiu, D.; Verlouw, J.; Broer, L.; Boerwinkle, E.; Taylor, K.D.; Rotter, J.I.; Rich, S.S.; Grove, M.L.; Pankratz, N.; et al.
A Bioinformatics Pipeline for Estimating Mitochondrial DNA Copy Number and Heteroplasmy Levels from Whole Genome
Sequencing Data. NAR Genom. Bioinforma. 2022, 4, lqac034. [CrossRef]

81. Joshi, A.U.; Saw, N.L.; Vogel, H.; Cunnigham, A.D.; Shamloo, M.; Mochly-Rosen, D. Inhibition of Drp1/Fis1 Interaction Slows
Progression of Amyotrophic Lateral Sclerosis. EMBO Mol. Med. 2018, 10, e8166. [CrossRef] [PubMed]

82. Abel, O.; Powell, J.F.; Andersen, P.M.; Al-Chalabi, A. ALSoD: A User-Friendly Online Bioinformatics Tool for Amyotrophic
Lateral Sclerosis Genetics. Hum. Mutat. 2012, 33, 1345–1351. [CrossRef] [PubMed]

83. Lev, N.; Ickowicz, D.; Melamed, E.; Offen, D. Oxidative Insults Induce DJ-1 Upregulation and Redistribution: Implications for
Neuroprotection. Neurotoxicology 2008, 29, 397–405. [CrossRef] [PubMed]

84. Chen, Y.; Gao, C.; Sun, Q.; Pan, H.; Huang, P.; Ding, J.; Chen, S. MicroRNA-4639 Is a Regulator of DJ-1 Expression and a Potential
Early Diagnostic Marker for Parkinson’s Disease. Front. Aging Neurosci. 2017, 9, 269182. [CrossRef] [PubMed]

85. Krüger, J.; Rehmsmeier, M. RNAhybrid: MicroRNA Target Prediction Easy, Fast and Flexible. Nucleic Acids Res. 2006, 34,
W451–W454. [CrossRef] [PubMed]

https://doi.org/10.1371/journal.pcbi.1005867
https://doi.org/10.1093/nar/gkaa1032
https://www.ncbi.nlm.nih.gov/pubmed/33300029
https://doi.org/10.1038/nmeth0410-248
https://www.ncbi.nlm.nih.gov/pubmed/20354512
https://doi.org/10.1093/nar/gkg509
https://www.ncbi.nlm.nih.gov/pubmed/12824425
https://doi.org/10.1038/s41467-023-40797-7
https://www.ncbi.nlm.nih.gov/pubmed/37598215
https://doi.org/10.1093/bioinformatics/btp528
https://www.ncbi.nlm.nih.gov/pubmed/19734154
https://doi.org/10.1093/bioinformatics/btw222
https://www.ncbi.nlm.nih.gov/pubmed/27193693
https://doi.org/10.1093/nar/gkx369
https://www.ncbi.nlm.nih.gov/pubmed/28482034
https://doi.org/10.1093/BIOINFORMATICS/BTAC678
https://www.ncbi.nlm.nih.gov/pubmed/36227117
https://doi.org/10.1002/0471142905.hg0720s76
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/nar/gkac966
https://www.ncbi.nlm.nih.gov/pubmed/36350676
https://doi.org/10.1093/bioinformatics/btx536
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1093/nar/gkw943
https://doi.org/10.1136/jmedgenet-2020-107003
https://www.ncbi.nlm.nih.gov/pubmed/32843488
https://doi.org/10.1186/s13059-017-1353-5
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1021/acs.jproteome.2c00651
https://www.ncbi.nlm.nih.gov/pubmed/36512705
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1093/nargab/lqac034
https://doi.org/10.15252/emmm.201708166
https://www.ncbi.nlm.nih.gov/pubmed/29335339
https://doi.org/10.1002/humu.22157
https://www.ncbi.nlm.nih.gov/pubmed/22753137
https://doi.org/10.1016/j.neuro.2008.01.007
https://www.ncbi.nlm.nih.gov/pubmed/18377993
https://doi.org/10.3389/fnagi.2017.00232
https://www.ncbi.nlm.nih.gov/pubmed/28785216
https://doi.org/10.1093/nar/gkl243
https://www.ncbi.nlm.nih.gov/pubmed/16845047


Biomolecules 2024, 14, 411 31 of 33

86. Denzler, R.; McGeary, S.E.; Title, A.C.; Agarwal, V.; Bartel, D.P.; Stoffel, M. Impact of MicroRNA Levels, Target-Site Complemen-
tarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression. Mol. Cell 2016, 64, 565–579. [CrossRef]
[PubMed]

87. Kikuchi, H.; Furuta, A.; Nishioka, K.I.; Suzuki, S.O.; Nakabeppu, Y.; Iwaki, T. Impairment of Mitochondrial DNA Repair Enzymes
against Accumulation of 8-Oxo-Guanine in the Spinal Motor Neurons of Amyotrophic Lateral Sclerosis. Acta Neuropathol. 2002,
103, 408–414. [CrossRef] [PubMed]

88. Ledahawsky, L.M.; Terzenidou, M.E.; Edwards, R.; Kline, R.A.; Graham, L.C.; Eaton, S.L.; van der Hoorn, D.; Chaytow, H.; Huang,
Y.T.; Groen, E.J.N.; et al. The Mitochondrial Protein Sideroflexin 3 (SFXN3) Influences Neurodegeneration Pathways in Vivo. Febs
J. 2022, 289, 3894. [CrossRef] [PubMed]

89. van Oven, M.; Kayser, M. Updated Comprehensive Phylogenetic Tree of Global Human Mitochondrial DNA Variation. Hum.
Mutat. 2009, 30, E386–E394. [CrossRef]

90. Umbria, M.; Ramos, A.; Aluja, M.P.; Santos, C. The Role of Control Region Mitochondrial DNA Mutations in Cardiovascular
Disease: Stroke and Myocardial Infarction. Sci. Rep. 2020, 10, 2766. [CrossRef]

91. Belle, E.M.S.; Piganeau, G.; Gardner, M.; Eyre-Walker, A. An Investigation of the Variation in the Transition Bias among Various
Animal Mitochondrial DNA. Gene 2005, 355, 58–66. [CrossRef] [PubMed]

92. Fiermonte, G.; Dolce, V.; Palmieri, L.; Ventura, M.; Runswick, M.J.; Palmieri, F.; Walker, J.E. Identification of the Human
Mitochondrial Oxodicarboxylate Carrier. J. Biol. Chem. 2001, 276, 8225–8230. [CrossRef] [PubMed]

93. Ioakeimidis, F.; Ott, C.; Kozjak-Pavlovic, V.; Violitzi, F.; Rinotas, V.; Makrinou, E.; Eliopoulos, E.; Fasseas, C.; Kollias, G.; Douni, E.
A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae
Disorganization, and Lymphoid Abnormalities in Mice. PLoS ONE 2014, 9, 104237. [CrossRef] [PubMed]

94. Samant, S.A.; Zhang, H.J.; Hong, Z.; Pillai, V.B.; Sundaresan, N.R.; Wolfgeher, D.; Archer, S.L.; Chan, D.C.; Gupta, M.P. SIRT3
Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress. Mol. Cell. Biol. 2014, 34, 807–819. [CrossRef]
[PubMed]

95. Knippenberg, S.; Sipos, J.; Thau-Habermann, N.; Körner, S.; Rath, K.J.; Dengler, R.; Petri, S. Altered Expression of DJ-1 and PINK1
in Sporadic ALS and in the SOD1G93A ALS Mouse Model. J. Neuropathol. Exp. Neurol. 2013, 72, 1052–1061. [CrossRef]

96. Guo, S.; Zhou, K.; Yuan, Q.; Su, L.; Liu, Y.; Ji, X.; Gu, X.; Guo, X.; Xing, J. An Innovative Data Analysis Strategy for Accurate
Next-Generation Sequencing Detection of Tumor Mitochondrial DNA Mutations. Mol. Ther. Nucleic Acids 2021, 23, 232. [CrossRef]

97. Laricchia, K.M.; Lake, N.J.; Watts, N.A.; Shand, M.; Haessly, A.; Gauthier, L.; Benjamin, D.; Banks, E.; Soto, J.; Garimella, K.; et al.
Mitochondrial DNA Variation across 56,434 Individuals in GnomAD. Genome Res. 2022, 32, 569–582. [CrossRef] [PubMed]

98. Keeney, P.M.; Bennett, J.P. ALS Spinal Neurons Show Varied and Reduced MtDNA Gene Copy Numbers and Increased MtDNA
Gene Deletions. Mol. Neurodegener. 2010, 5, 21. [CrossRef]

99. Stoccoro, A.; Mosca, L.; Carnicelli, V.; Cavallari, U.; Lunetta, C.; Marocchi, A.; Migliore, L.; Coppedè, F. Mitochondrial DNA Copy
Number and D-Loop Region Methylation in Carriers of Amyotrophic Lateral Sclerosis Gene Mutations. Epigenomics 2018, 10,
1431–1443. [CrossRef]

100. Stoccoro, A.; Smith, A.R.; Mosca, L.; Marocchi, A.; Gerardi, F.; Lunetta, C.; Cereda, C.; Gagliardi, S.; Lunnon, K.; Migliore, L.; et al.
Reduced Mitochondrial D-Loop Methylation Levels in Sporadic Amyotrophic Lateral Sclerosis. Clin. Epigenetics 2020, 12, 137.
[CrossRef]

101. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou,
K.P.; et al. STRING V10: Protein–Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015, 43,
D447–D452. [CrossRef]

102. Lin, Z.F.; Xu, H.B.; Wang, J.Y.; Lin, Q.; Ruan, Z.; Liu, F.B.; Jin, W.; Huang, H.H.; Chen, X. SIRT5 Desuccinylates and Activates
SOD1 to Eliminate ROS. Biochem. Biophys. Res. Commun. 2013, 441, 191–195. [CrossRef]

103. Kaufmann, P.; Thompson, J.L.P.; Levy, G.; Buchsbaum, R.; Shefner, J.; Krivickas, L.S.; Katz, J.; Rollins, Y.; Barohn, R.J.; Jackson, C.E.;
et al. Phase II Trial of CoQ10 for ALS Finds Insufficient Evidence to Justify Phase III. Ann. Neurol. 2009, 66, 235–244. [CrossRef]

104. Yáñez, M.; Galán, L.; Matías-Guiu, J.; Vela, A.; Guerrero, A.; García, A.G. CSF from Amyotrophic Lateral Sclerosis Patients
Produces Glutamate Independent Death of Rat Motor Brain Cortical Neurons: Protection by Resveratrol but Not Riluzole. Brain
Res. 2011, 1423, 77–86. [CrossRef] [PubMed]

105. Wang, J.; Zhang, Y.; Tang, L.; Zhang, N.; Fan, D. Protective Effects of Resveratrol through the Up-Regulation of SIRT1 Expression
in the Mutant HSOD1-G93A-Bearing Motor Neuron-like Cell Culture Model of Amyotrophic Lateral Sclerosis. Neurosci. Lett.
2011, 503, 250–255. [CrossRef] [PubMed]

106. D’Erchia, A.M.; Atlante, A.; Gadaleta, G.; Pavesi, G.; Chiara, M.; De Virgilio, C.; Manzari, C.; Mastropasqua, F.; Prazzoli, G.M.;
Picardi, E.; et al. Tissue-Specific MtDNA Abundance from Exome Data and Its Correlation with Mitochondrial Transcription,
Mass and Respiratory Activity. Mitochondrion 2015, 20, 13–21. [CrossRef] [PubMed]

107. Mavraki, E.; Labrum, R.; Sergeant, K.; Alston, C.L.; Woodward, C.; Smith, C.; Knowles, C.V.Y.; Patel, Y.; Hodsdon, P.; Baines, J.P.;
et al. Genetic Testing for Mitochondrial Disease: The United Kingdom Best Practice Guidelines. Eur. J. Hum. Genet. 2022, 31,
148–163. [CrossRef]

108. Macken, W.L.; Falabella, M.; Pizzamiglio, C.; Woodward, C.E.; Scotchman, E.; Chitty, L.S.; Polke, J.M.; Bugiardini, E.; Hanna,
M.G.; Vandrovcova, J.; et al. Enhanced Mitochondrial Genome Analysis: Bioinformatic and Long-Read Sequencing Advances
and Their Diagnostic Implications. Expert. Rev. Mol. Diagn. 2023, 23, 797–814. [CrossRef]

https://doi.org/10.1016/j.molcel.2016.09.027
https://www.ncbi.nlm.nih.gov/pubmed/27871486
https://doi.org/10.1007/s00401-001-0480-x
https://www.ncbi.nlm.nih.gov/pubmed/11904761
https://doi.org/10.1111/febs.16377
https://www.ncbi.nlm.nih.gov/pubmed/35092170
https://doi.org/10.1002/humu.20921
https://doi.org/10.1038/s41598-020-59631-x
https://doi.org/10.1016/j.gene.2005.05.019
https://www.ncbi.nlm.nih.gov/pubmed/16039074
https://doi.org/10.1074/jbc.M009607200
https://www.ncbi.nlm.nih.gov/pubmed/11083877
https://doi.org/10.1371/journal.pone.0104237
https://www.ncbi.nlm.nih.gov/pubmed/25111180
https://doi.org/10.1128/MCB.01483-13
https://www.ncbi.nlm.nih.gov/pubmed/24344202
https://doi.org/10.1097/NEN.0000000000000004
https://doi.org/10.1016/j.omtn.2020.11.002
https://doi.org/10.1101/gr.276013.121
https://www.ncbi.nlm.nih.gov/pubmed/35074858
https://doi.org/10.1186/1750-1326-5-21
https://doi.org/10.2217/epi-2018-0072
https://doi.org/10.1186/s13148-020-00933-2
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1016/j.bbrc.2013.10.033
https://doi.org/10.1002/ana.21743
https://doi.org/10.1016/j.brainres.2011.09.025
https://www.ncbi.nlm.nih.gov/pubmed/21983205
https://doi.org/10.1016/j.neulet.2011.08.047
https://www.ncbi.nlm.nih.gov/pubmed/21896316
https://doi.org/10.1016/j.mito.2014.10.005
https://www.ncbi.nlm.nih.gov/pubmed/25446395
https://doi.org/10.1038/s41431-022-01249-w
https://doi.org/10.1080/14737159.2023.2241365


Biomolecules 2024, 14, 411 32 of 33

109. Bonawitz, N.D.; Clayton, D.A.; Shadel, G.S. Initiation and Beyond: Multiple Functions of the Human Mitochondrial Transcription
Machinery. Mol. Cell 2006, 24, 813–825. [CrossRef]

110. Kühl, I.; Miranda, M.; Posse, V.; Milenkovic, D.; Mourier, A.; Siira, S.J.; Bonekamp, N.A.; Neumann, U.; Filipovska, A.; Polosa,
P.L.; et al. POLRMT Regulates the Switch between Replication Primer Formation and Gene Expression of Mammalian MtDNA.
Sci. Adv. 2016, 2, e1600963. [CrossRef]

111. Doda, J.N.; Wright, C.T.; Clayton, D.A. Elongation of Displacement-Loop Strands in Human and Mouse Mitochondrial DNA Is
Arrested near Specific Template Sequences. Proc. Natl. Acad. Sci. USA 1981, 78, 6116–6120. [CrossRef] [PubMed]

112. Jemt, E.; Persson, Ö.; Shi, Y.; Mehmedovic, M.; Uhler, J.P.; López, M.D.; Freyer, C.; Gustafsson, C.M.; Samuelsson, T.; Falkenberg,
M. Regulation of DNA Replication at the End of the Mitochondrial D-Loop Involves the Helicase TWINKLE and a Conserved
Sequence Element. Nucleic Acids Res. 2015, 43, 9262–9275. [CrossRef] [PubMed]

113. Blumberg, A.; Rice, E.J.; Kundaje, A.; Danko, C.G.; Mishmar, D. Initiation of MtDNA Transcription Is Followed by Pausing, and
Diverges across Human Cell Types and during Evolution. Genome Res. 2017, 27, 362–373. [CrossRef] [PubMed]

114. Rappold, P.M.; Cui, M.; Grima, J.C.; Fan, R.Z.; De Mesy-Bentley, K.L.; Chen, L.; Zhuang, X.; Bowers, W.J.; Tieu, K. Drp1 Inhibition
Attenuates Neurotoxicity and Dopamine Release Deficits in Vivo. Nat. Commun. 2014, 5, 5244. [CrossRef] [PubMed]

115. Li, D.; Lloyd, R.S. Complex Roles of NEIL1 and OGG1: Insights Gained from Murine Knockouts and Human Polymorphic
Variants. DNA 2022, 2, 279–301. [CrossRef]

116. Oka, S.; Leon, J.; Sakumi, K.; Abolhassani, N.; Sheng, Z.; Tsuchimoto, D.; LaFerla, F.M.; Nakabeppu, Y. MTH1 and OGG1 Maintain
a Low Level of 8-Oxoguanine in Alzheimer’s Brain, and Prevent the Progression of Alzheimer’s Pathogenesis. Sci. Rep. 2021, 11,
5819. [CrossRef] [PubMed]

117. Michel, M.; Benítez-Buelga, C.; Calvo, P.A.; Hanna, B.M.F.; Mortusewicz, O.; Masuyer, G.; Davies, J.; Wallner, O.; Sanjiv, K.; Albers,
J.J.; et al. Small-Molecule Activation of OGG1 Increases Oxidative DNA Damage Repair by Gaining a New Function. Science 2022,
376, 1471–1476. [CrossRef] [PubMed]

118. Liu, W.; Yamashita, T.; Tian, F.; Morimoto, N.; Ikeda, Y.; Deguchi, K.; Abe, K. Mitochondrial Fusion and Fission Proteins Expression
Dynamically Change in a Murine Model of Amyotrophic Lateral Sclerosis. Curr. Neurovascular Res. 2013, 10, 222–230. [CrossRef]
[PubMed]

119. Wang, X.; Su, B.; Siedlak, S.L.; Moreira, P.I.; Fujioka, H.; Wang, Y.; Casadesus, G.; Zhu, X. Amyloid-Beta Overproduction Causes
Abnormal Mitochondrial Dynamics via Differential Modulation of Mitochondrial Fission/Fusion Proteins. Proc. Natl. Acad. Sci.
USA 2008, 105, 19318–19323. [CrossRef]

120. Martin, L.J.; Gertz, B.; Pan, Y.; Price, A.C.; Molkentin, J.D.; Chang, Q. The Mitochondrial Permeability Transition Pore in Motor
Neurons: Involvement in the Pathobiology of ALS Mice. Exp. Neurol. 2009, 218, 333–346. [CrossRef]

121. Méndez-lópez, I.; Sancho-bielsa, F.J.; Engel, T.; García, A.G.; Padín, J.F. Progressive Mitochondrial SOD1G93A Accumula-
tion Causes Severe Structural, Metabolic and Functional Aberrations through OPA1 down-Regulation in a Mouse Model of
Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021, 22, 8194. [CrossRef]

122. Del Dotto, V.; Fogazza, M.; Lenaers, G.; Rugolo, M.; Carelli, V.; Zanna, C. OPA1: How Much Do We Know to Approach Therapy?
Pharmacol. Res. 2018, 131, 199–210. [CrossRef] [PubMed]

123. Chanson, J.B.; Echaniz-Laguna, A.; Vogel, T.; Mohr, M.; Benoilid, A.; Kaltenbach, G.; Kiesmann, M. TDP43-Positive Intraneuronal
Inclusions in a Patient with Motor Neuron Disease and Parkinson’s Disease. Neurodegener. Dis. 2010, 7, 260–264. [CrossRef]

124. Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.;
Serre, V.; Moore, D.G.; et al. A Mitochondrial Origin for Frontotemporal Dementia and Amyotrophic Lateral Sclerosis through
CHCHD10 Involvement. Brain 2014, 137, 2329–2345. [CrossRef] [PubMed]

125. Paganoni, S.; Macklin, E.A.; Hendrix, S.; Berry, J.D.; Elliott, M.A.; Maiser, S.; Karam, C.; Caress, J.B.; Owegi, M.A.; Quick, A.; et al.
Trial of Sodium Phenylbutyrate–Taurursodiol for Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2020, 383, 919–930. [CrossRef]

126. Zhou, W.; Bercury, K.; Cummiskey, J.; Luong, N.; Lebin, J.; Freed, C.R. Phenylbutyrate Up-Regulates the DJ-1 Protein and Protects
Neurons in Cell Culture and in Animal Models of Parkinson Disease. J. Biol. Chem. 2011, 286, 14941–14951. [CrossRef]

127. Lind-Holm Mogensen, F.; Scafidi, A.; Poli, A.; Michelucci, A. PARK7/DJ-1 in Microglia: Implications in Parkinson’s Disease and
Relevance as a Therapeutic Target. J. Neuroinflam. 2023, 20, 95. [CrossRef] [PubMed]

128. Boczonadi, V.; King, M.S.; Smith, A.C.; Olahova, M.; Bansagi, B.; Roos, A.; Eyassu, F.; Borchers, C.; Ramesh, V.; Lochmüller, H.;
et al. Mitochondrial Oxodicarboxylate Carrier Deficiency Is Associated with Mitochondrial DNA Depletion and Spinal Muscular
Atrophy–like Disease. Genet. Med. 2018, 20, 1224–1235. [CrossRef] [PubMed]

129. Hor, J.H.; Santosa, M.M.; Lim, V.J.W.; Ho, B.X.; Taylor, A.; Khong, Z.J.; Ravits, J.; Fan, Y.; Liou, Y.C.; Soh, B.S.; et al. ALS Motor
Neurons Exhibit Hallmark Metabolic Defects That Are Rescued by SIRT3 Activation. Cell Death Differ. 2020, 28, 1379–1397.
[CrossRef]

130. Mancuso, R.; del Valle, J.; Modol, L.; Martinez, A.; Granado-Serrano, A.B.; Ramirez-Núñez, O.; Pallás, M.; Portero-Otin, M.; Osta,
R.; Navarro, X. Resveratrol Improves Motoneuron Function and Extends Survival in SOD1(G93A) ALS Mice. Neurotherapeutics
2014, 11, 419–432. [CrossRef]

131. Sun, Q.; Kang, R.R.; Chen, K.G.; Liu, K.; Ma, Z.; Liu, C.; Deng, Y.; Liu, W.; Xu, B. Sirtuin 3 Is Required for the Protective Effect of
Resveratrol on Manganese-Induced Disruption of Mitochondrial Biogenesis in Primary Cultured Neurons. J. Neurochem. 2021,
156, 121–135. [CrossRef] [PubMed]

https://doi.org/10.1016/j.molcel.2006.11.024
https://doi.org/10.1126/sciadv.1600963
https://doi.org/10.1073/pnas.78.10.6116
https://www.ncbi.nlm.nih.gov/pubmed/6273850
https://doi.org/10.1093/nar/gkv804
https://www.ncbi.nlm.nih.gov/pubmed/26253742
https://doi.org/10.1101/gr.209924.116
https://www.ncbi.nlm.nih.gov/pubmed/28049628
https://doi.org/10.1038/ncomms6244
https://www.ncbi.nlm.nih.gov/pubmed/25370169
https://doi.org/10.3390/DNA2040020
https://doi.org/10.1038/s41598-021-84640-9
https://www.ncbi.nlm.nih.gov/pubmed/33758207
https://doi.org/10.1126/science.abf8980
https://www.ncbi.nlm.nih.gov/pubmed/35737787
https://doi.org/10.2174/15672026113109990060
https://www.ncbi.nlm.nih.gov/pubmed/23713734
https://doi.org/10.1073/pnas.0804871105
https://doi.org/10.1016/j.expneurol.2009.02.015
https://doi.org/10.3390/ijms22158194
https://doi.org/10.1016/j.phrs.2018.02.018
https://www.ncbi.nlm.nih.gov/pubmed/29454676
https://doi.org/10.1159/000273591
https://doi.org/10.1093/brain/awu138
https://www.ncbi.nlm.nih.gov/pubmed/24934289
https://doi.org/10.1056/NEJMoa1916945
https://doi.org/10.1074/jbc.M110.211029
https://doi.org/10.1186/s12974-023-02776-z
https://www.ncbi.nlm.nih.gov/pubmed/37072827
https://doi.org/10.1038/gim.2017.251
https://www.ncbi.nlm.nih.gov/pubmed/29517768
https://doi.org/10.1038/s41418-020-00664-0
https://doi.org/10.1007/s13311-013-0253-y
https://doi.org/10.1111/jnc.15095
https://www.ncbi.nlm.nih.gov/pubmed/32426865


Biomolecules 2024, 14, 411 33 of 33
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