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Abstract: Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack
of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common
inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular
functions in almost all subcellular compartments under both normal and cellular stress conditions
in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear
localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as
well as its RNA and protein binding domains, and it is modulated by various post-translational
modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review
summarizes the recent advances in understanding the interaction networks of FMRP with a special
focus on FMRP stress-related functions, including stress granule formation, mitochondrion and
endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.

Keywords: FMRP; RNA binding; fragile X messenger ribonucleoprotein protein; protein interaction
network; stress granule

1. General Introduction

A genetic deficiency of the fragile X messenger ribonucleoprotein protein (FMRP, also
known as FRAXA, MGC87458, POF, and POF1) results in the most common inherited form
of intellectual disability, fragile X syndrome (FXS, also known as Escalante syndrome or
Martin–Bell syndrome) [1]. FMRP plays critical roles in germline development during
oogenesis [2]; spermatogenesis [3]; the regulation of heart rate during development [4],
endothelial cell proliferation, and angiogenesis [5]; stem cell maintenance and differenti-
ation [6]; and tumor progression. FXS patients seem to have a lower risk of developing
cancer [7]. Given these numerous, varied, and seemingly fundamental, functions, it is
appropriate to recognize the common roles of FMRP throughout the body, i.e., beyond the
brain and spinal cord.

FMRP is a well-studied RNA-binding protein (RBP) that regulates local translation [8–14]
and controls calcium channels [15], actin cytoskeletal dynamics [16–18], chromatin dy-
namics [19], DNA damage response (DDR) [19,20], and replication stress response [21].
These cellular functions presume physical properties for FMRP, which are required for
both the recognition and localization of messenger RNA (mRNA) targets and the direct
association with a multitude of proteins and protein complexes [22,23]. FMRP consists of
an N-terminal domain comprising two Tudor (Tud) domains and one K homology 0 (KH0)
domain, a central region comprising two KH1 and KH2 domains, and a C-terminal domain
comprising a phosphorylation site [24] and an arginine–glycine–glycine (RGG) region [25].
FMRP displays a nuclear localization signal (NLS), a nuclear export signal (NES), and two
nucleolar localization signals (NoLSs) [23,26–29], consequently localizing FMRP to differ-
ent subcellular compartments in the cytosol and nucleus (Figure 1) [23]. Nuclear FMRP
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has been suggested to regulate the DDR and genomic stability as a chromatin-binding
protein [19].

Biomolecules 2024, 14, x FOR PEER REVIEW 2 of 14 
 

(NES), and two nucleolar localization signals (NoLSs) [23,26–29], consequently localizing 
FMRP to different subcellular compartments in the cytosol and nucleus (Figure 1) [23]. 
Nuclear FMRP has been suggested to regulate the DDR and genomic stability as a chro-
matin-binding protein [19]. 

 
Figure 1. Stress-related functions and interaction networks of FMRP. Proteins in bold have been 
identified as direct or indirect FMRP interactors. Important FMRP functions related to stress granule 
formation (SG), mitochondrial and endoplasmic reticulum plasticity (ME), ribosome biogenesis 
(RB), cell cycle (CC), and DNA damage response (DDR) are highlighted. Red and green lines in (SG) 
represent RNA and protein, respectively. For further details, see the text. 

The most prominent and studied function of FMRP is translational regulation. More-
over, FMRP is a member of the FXR protein family that includes fragile X-related proteins 
1 (FXR1P) and 2 (FXR2P). They share high sequence conservation with their N-terminal 
and central regions and form heteromeric complexes [30–33]. All three FMRP family 

Figure 1. Stress-related functions and interaction networks of FMRP. Proteins in bold have been
identified as direct or indirect FMRP interactors. Important FMRP functions related to stress granule
formation (SG), mitochondrial and endoplasmic reticulum plasticity (ME), ribosome biogenesis (RB),
cell cycle (CC), and DNA damage response (DDR) are highlighted. Red and green lines in (SG)
represent RNA and protein, respectively. For further details, see the text.

The most prominent and studied function of FMRP is translational regulation. More-
over, FMRP is a member of the FXR protein family that includes fragile X-related proteins 1
(FXR1P) and 2 (FXR2P). They share high sequence conservation with their N-terminal and
central regions and form heteromeric complexes [30–33]. All three FMRP family members
are RNA-binding proteins that regulate the translation of their cargo mRNAs and asso-
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ciate both physically and functionally with the microRNA pathway [34]. FMRP has been
shown to suppress the translation of its target mRNAs via association with either stalled,
non-translating polyribosomes or microRNA [35–38]. This can lead to the formation of
cytoplasmic ribonucleoprotein (RNP) granules, which control the expression, repression,
or decay of specific mRNAs [39]. There are many types of cytoplasmic RNA granules,
which differ markedly in size, composition, and mode of biogenesis [40]. Some granules,
such as processing bodies (P-bodies) and stress granules (SGs), which are assembled by
many cell types, transport, store, or degrade mRNAs, thereby indirectly regulating protein
synthesis [39,41–43]. Accordingly, they contribute to various aspects of cellular homeosta-
sis. There is increasing evidence suggesting that such RNP granules are associated with
several age-related neurodegenerative diseases [44]. However, the molecular networks that
regulate and guide FMRP towards these cellular processes need further investigation.

2. Integrated Stress Response

The cell responds to various stressors by adapting its cellular functions and bio-
logical processes. This results in a wide range of dynamic and morphological changes
affecting all subcellular structures, such as nucleoli, mitochondria, and the cytoplasm.
The prompt integrated cellular response to stress is crucial to avoid pathophysiological
consequences [45]. FMRP is associated with several kinases, including protein kinase RNA-
activated (PKR) and phosphatidylinositol 4-kinase alpha (PI4KA), as well as a wide range
of stress-related proteins, such as RAS-GTP-activating protein SH3 domain-binding protein
(G3BP), ubiquitin-associated protein 2-like (UBAP2L), Ataxin-2-Like Protein (ATXN2L),
cell cycle-associated protein 1 (CAPRIN1), FXR1P, FXR2P, DEAD-Box Helicase 3 X-Linked
(DDX3X), and Nuclear FMRP Interacting Protein 2 (NUFIP2) (Figure 1 SG) [46–49]. This
suggests that FMRP acts as a stress sensor for different types of stressors, such as viral
infection, cellular toxicity, and DNA damage [47,50]. Consequently, other working groups
have anticipated the role of FMRP in stress-related pathways, such as cell apoptosis and
tissue tumor necrosis [51,52]. The integrated stress response typically begins with the halt
of cellular translation and the formation of SGs [53]. This function requires continuous
protein trafficking between the cytoplasm and the nucleus, which may be facilitated by the
interaction of FMRP with either the importin/karyopherin superfamily member KPNA2
(Importin α1) or nucleoporins proteins (NUPs) [47,54].

3. Stress Granules Formation

SGs are reversible and dynamic membrane-less assemblies of proteins, mainly nucleo-
proteins and RNA, formed in the cytoplasm of eukaryotic cells in response to stress [46].
Recently, SGs have become the focus of translational medicine studies for the treatment of
various infectious and non-infectious diseases, including cancer [55,56]. Recent studies have
shown that stress granule formation can attenuate the phenotypes of neurodegenerative
diseases [57].

A variety of environmental, endogenous, and genetic factors can induce a cellular
stress response by forming SGs and inhibiting general protein translation [58]. This re-
sponse is triggered by the phosphorylation of eukaryotic initiation factor 2α (eIF2α) by
PKR [59].

The presence of RNA-binding proteins and RNA is critical for stress granule assembly
and liquid–liquid phase separation (LLPS). The intrinsically disordered regions (IDRs) of
RNA-binding proteins, such as G3BP1, TIA-1, CAPRIN1, and FMRP, contribute to LLPS and
stress granule nucleation [60–62]. UBAP2L is an interacting protein of FMRP and is thought
to be a core protein in SGs [63,64]. Arginine methylation in the RGG domain of the UBAP2L
protein is responsible for the recruitment of G3BP1 to stress granule assembly [65,66].
Interestingly, the interaction between UBAP2L and FMRP was identified in two different
proteomic studies. The first study used the amino- and carboxy-terminal domains of FMRP
in HeLa cells [47]. The second study used nuclear FMRP isoform 6, which is approximately
86% homologous to FMRP isoform 1, in osteosarcoma cells. Importantly, FMRP isoform 6
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has a different carboxyl-terminal domain and lacks the nuclear export signal (NES) present
in FMRP isoform 1 [50]. In the mouse brain, approximately 30% of FMRP is associated with
ribosomal proteins [43]. However, according to Asano-Inami et al., FMRP is less abundant
in SGs compared to other proteins [67]. In particular, it was found to be present at lower
levels compared to UBAP2L, Protein Arginine methyltransferase 1 (PRMT1), FXR1P, FXR2P,
G3BP1, and G3BP2, respectively. Among these proteins, UBAP2L is the most abundant in
SGs [67]. In addition to its role in stress granule formation and translation inhibition, FMRP
phosphorylation is critical for translation activation by releasing its binding partner YTH
N6-methyladenosine RNA-binding protein F1 (YTHDF1) [68]. This suggests that FMRP
can positively and/or negatively regulate different cellular processes. Taken together, these
findings suggest that FMRP may have a potential role both during and after the cessation
of stress.

4. Mitochondrion and Endoplasmic Reticulum Plasticity

FMRP regulates calcium homeostasis by regulating the contact point between the
ER and mitochondria [69]. In early 2014, we noticed a remarkable association of FMRP
with the mitochondria, which colocalize with the mitochondrially encoded cytochrome C
oxidase II (MTCO2) [23]. Other proteomic studies, including ours, have supported the role
of FMRP in mitochondrial homeostasis. This was achieved by analyzing the proteomic
changes in mitochondria in the presence and absence of FMRP [70], or by identifying its
association with mitochondrial proteins [47].

Mitochondrial dysfunction and oxidative stress are common phenomena in almost all
neurodegenerative diseases [71,72]. Other possible roles of FMRP may be in mitophagy and
mitochondrial biogenesis through its interactions with sequestosome 1 (SQSTM1) and the
ATPase family, AAA domain-containing protein3 (ATAD3) [47,73,74]. SQSTM1 is recruited
to putative mitochondrial serine/threonine kinase (PINK1)-induced mitochondrial clusters
and may be involved in the clearance of mitochondria [75,76]. SQSTM1 not only assists and
links PINK1 to the mitophagy pathway but is also a selective cargo receptor for autophagy
to degenerate misfolded proteins [73].

FMRP is associated with the ATPase family, AAA domain-containing protein 3B
(ATAD3B), which plays a role in mitochondrial biogenesis (Figure 1 ME) [77]. ATAD3A
and ATAD3B are also involved in ER–mitochondrial interaction [74]. Complement C1q-
binding protein (C1QBP), another FMRP-interacting protein appears to be critical for
mitochondrial energy metabolism [78]. Its deficiency has been suggested to be a major
cause of leukoencephalopathy due to axonal degeneration [79].

FMRP interaction with single-stranded DNA-binding protein (SSBP1) may support cell
survival and the maintenance of the mitochondrial membrane potential against proteotoxic
stress by forming a complex with the heat shock factor HSF1 and facilitating the recruitment
of the chromatin remodeling factor BRG1 [80]. The role of FMRP in controlling cytoskeletal
dynamics and microtubule formation may indirectly affect mitochondrial mobility [81],
as well as mitochondrial functions and morphology in Drosophila [82]. In mice, ER stress
induces FMRP phosphorylation through the activation of inositol-requiring enzyme-1
(IRE1), which, in turn, reduces atherosclerosis [83]. Recently, Phosphatidylinositol 4-kinase
III α (PI4KA) has been identified as an interacting partner with the nuclear isoform of
FMRP (isoform 6) [50]. PI4K produces phosphatidylinositol 4-phosphate (PI4P), which
is then converted to Phosphatidylinositol 4,5-bisphosphate (PIP2). The latter serves as a
regulator for ion channels and transporters and interacts with the proteins involved in
endo-/exo-cytosis regulation. Finally, phosphatidylinositol 3,4,5-trisphosphate (PIP3) and
diacylglycerol are generated from PIP2 and phospholipase C by PI3K [84]. PIP3 controls
various processes such as phagocytosis, exocytosis, and cytoskeletal organization [85].
However, further research is needed to better understand the role of ER and inositol-3-
phosphate (IP3) receptors in neurodegeneration.
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5. Ribosome Biogenesis

Nucleoli are membrane-less subcellular organelles that are morphologically and dy-
namically affected by stress. They are considered to be the center of the cellular stress
response [86,87]. The complex and dynamic assembly and maturation of the eukaryotic
ribosome, which is called ribosome biogenesis, is orchestrated by ribosomal proteins, ap-
proximately 500 rRNAs, small nucleolar RNAs (snoRNAs), and trans-acting factors [88].
FMRP localizes to the nucleolus [23], where it may participate in the biogenesis of riboso-
mal subunits, given the large number of FMRP-associated proteins, which are involved in
various stages of ribosome biogenesis [47].

Nucleophosmin (NPM1) participates in several stages of ribosome biogenesis, initiated
by rRNA transcription. NPM1 binds at G-quadruplex regions, at ribosomal DNA, gene
promoters, and also the c-MYC promoter, which is a regulator of rRNA processing and
maturation [89,90]. Cyclin-dependent kinase inhibitor 2A (CDKN2A) inhibits ribosomal
biogenesis through its physical interaction with nucleolar phosphoprotein NPM1, RNA
helicase DDX5, and RNA polymerase I termination factor TTF-I (Figure 1 RB) [91]. CARF,
as a collaborator of ARF, regulates the early steps of pre-rRNA processing during ribo-
some biogenesis by controlling the spatial distribution of XRN2, a 5′-3′ exoribonuclease,
between the nucleoplasm and nucleolus [92]. Other FMRP-associating proteins involved
in pre-rRNA processing are FtsJ RNA 2′-O-methyltransferase 3 (FTSJ3), MYB-binding
protein 1a (MYBBP1A), N-acetyltransferase 10 (NAT10), Nucleolar Protein 2 (NOP2), PUF
(Pumilio/FBF)-A, and TSR1 [93–95].

NAT10, for example, is a lysine acetyltransferase and targets not only microtubules
and histones but also the 30S precursor of 18S rRNA [96]. Active nuclear protein complexes
of PKR and NPM1 were recently described to be associated with ribosome biogenesis [97].
On one hand, ribosomal RNA processing 12 homologs (RRP12) and the exportin CRM1 are
involved in the late assembly of the 40S ribosomal subunit in the nucleolus [98], and LTV1
is involved in the nuclear export of the 40S ribosomal subunit [99]. TSR1 acts as a quality
control checkpoint in the maturation of 40S ribosomal subunits [100]. On the other hand,
nucleolar eIF6, SDAD1 (SDA1 Domain Containing 1), and SKI2 are components of the
pre-ribosomal particles. NFAR and eIF6 are required for the assembly and maturation of
60S subunits, respectively [101,102]. The GTPase NOG2 binds to immature nucleoplasmic
60S particles and blocks the association of the nuclear export adapter protein NMD3 [103].
Cytosolic GTPase LSG1, along with RPL10, is required for releasing the 60S subunits from
nuclear export adapter NMD3 in the cytoplasm [104].

6. Cell Cycle Control

A series of events, such as cell growth, DNA replication, and mitosis, take place during
the cell division cycle, which underlies the cell-cycle checkpoint activation, caused, for
example, by DNA damage and replication stress [105]. A large number of FMRP-interacting
proteins are involved in the control and modulation of the cell cycle [47]. GPC1 regulates
the cell cycle and proliferation by suppressing cell cycle inhibitors, including p21WAF1
(CDKN1A), p27 (CDKN1B), p16INK4a (CDKN2A), p19 (CDKN2D), and D-type cyclins,
together with inducing CDK2 and SKP2 [106]. More specifically, CDKN2B and CDKN2D
contribute to G2/M cell cycle arrest [107], while CDK2 promotes G1/S transition [108]. The
arginine methyltransferase PRMT5 binds to CDK4 and activates CDK4-RB-E2F-mediated
transcription by releasing CDKN2A from CDK4 [109]. Interestingly, SND1 binds and
activates E2F and also modulates G1/S transition [110]. CARF differently regulates the
cell cycle by undergoing a complex crosstalk with other proteins including p16INK4a,
Retinoblastoma protein (pRB), Human double minute 2 protein (HDM2), and p21WAF1
(CDKN1A) [111]. CARF is also crucial for DNA damage and the checkpoint response
of cells through ATM/CHK1/CHK2, p53, and ERK pathways [112]. On the other hand,
pathways like ATM/CHK2 and CHK2/ERF regulate G2/M progression through regulating
CDC25C [113]. In response to genotoxic agents, CDC5L interacts with ATR and is required
for the S-phase cell-cycle checkpoint [114]. RPL6 appears to bind to HDM2 and attenuates
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HDM2-mediated p53 ubiquitination and degradation [115]. EWSR1 regulates mitosis
by dynamically influencing microtubule acetylation [116], while TPX2 is a microtubule-
associated protein that is required for mitotic spindle function [117]. FAU, a ubiquitin-like
protein, covalently coupled to BCL-G, a pro-apoptotic member of the B-cell lymphoma 2
(BCL-2) family, regulates UV-induced apoptosis [118]. Lastly, FAM120A regulates the
activity of SRC kinases to protect cells from oxidative stress-induced apoptosis [119]. The
patient-derived FXS astrocyte model showed altered cell cycle dynamics, characterized
by shortened S-phase length and increased expression of cyclin D1, a regulator of the
G1/S checkpoint [120]. In mouse brain neurons, FMRP interferes with cell cycle regulation
through its interaction with cell division cycle 20 (CDC20). CDC20 is responsible for
ubiquitinating and downregulating the anaphase-promoting complex/cyclosome (APC/C),
and FMRP activates the E3 ubiquitination (Figure 1 CC) [121]. In the nuclear fraction of rat
forebrains, FMRP was found to be associated with several nuclear pore complex proteins
(NUP153, NUP37, and NUP93), where it was suggested that FMRP controls the function of
the nuclear pore complex (NPC) proteins during mitosis [54,122].

7. DNA Damage Response

The DDR is a network of cellular pathways that sense, signal, and repair DNA le-
sions. These pathways strictly control the cell cycle checkpoint, chromatin remodeling
and transcriptional programs, DNA repair, and, in the case of severe damage, apoptosis.
Different studies have provided the first insights into the role of FMRP in DDR [19,21,123].
It controls, in complex with staufen double-stranded RNA-binding protein 1 (STAU1) and
TAR DNA-binding protein 43 (TDP-43), the expression and synthesis of SIRT1, a deacety-
lase involved in the repair of DNA double-strand breaks (DSBs) [123]. The induction of
DNA damage by DNA polymerase inhibitors alters the nuclear FMRP interaction protein
network through the recruitment of DNA damage response proteins such as aurora kinase
B (AURBK), DNA topoisomerase II alpha (TOP2A), heterochromatin protein 1 binding
protein 3 (HP1BP3), kinesin family member 22 (KIF22), and epithelial cell transforming 2
(ECT2) [50]. It has been reported that nuclear isoforms of FMRP regulate or inhibit the
formation of DNA bridges through direct binding during mitotic anaphase. Depletion of
these isoforms leads to the accumulation of DNA bridges [124].

On the one hand, it has been implicated that FMRP is involved in a feed-forward
mechanism that triggers a replication stress-induced DDR [21]. On the other hand, Alpatov
et al. have previously demonstrated that FMRP participates in the DDR in a chromatin-
binding-dependent manner [19]. They have shown that FMRP binds chromatin through
its tandem Tud domain in vitro and associates with chromatin in vivo. Thus, FMRP is
recruited to chromatin in response to replication stress [19], and Drosophila FMRP in
the nucleus is involved in a replication stress-induced DDR [21]. FMRP is thought to
regulate genomic stability at the chromatin interface by negatively modulating CHD1
function. The FMRP- and PAF1 complex (PAF1C-) associated tumor suppressor CHD1
represents an ATP-dependent chromatin remodeling protein [47]. Deletion of CHD1 is most
common in prostate cancer, which is characterized by genomic instability [125]. Another
proteomic study identified chromodomain helicase DNA-binding protein 4 (CHD4) as
an FMRP interactor in rat neuronal cells. CHD4 regulates DNA repair and chromatin
remodeling via its interaction with zinc finger protein (ZNF) 410 or via the formation
of nucleosome remodeling and the deacetylase (NuRD) complex with Ewing sarcoma
RNA-binding protein (EWSR1) [126–128].

High levels of FMRP were identified in human cancer [129]. The embryonic lethality of
BRCA1/2 mutations has been discussed to be rescued by the presence of low FMR1 alleles
that are characterized by less than 26 CGG repeats [130]. In this regard, there is a functional
relationship between FMRP and BRCA1. On the one hand, BRCA1 cooperates with the
positive transcription elongation factor b (P-TEFb) and the FMRP-associated NUFIP to
activate transcription through RNAP II [131]. On the other hand, BRCA1 regulates the
biogenesis of noncoding microRNAs by forming a protein interaction network with the
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DROSHA microprocessor complex, SMAD3, p53, and the FMRP-associating RNA helicases
DDX5 and DHX9 [132]. Remarkably, DDX5 undergoes interactions with other different
proteins. It is critical for the p53-induced expression of p21WAF1/CIP1, leading to cell-
cycle arrest in response to DNA damage [133]. It interacts with c-MYC and modulates
its transcription and transforming activity [134]. Strikingly, p14Arf blocks the physical
interaction between DDX5 and c-MYC [134]. Another FMRP-interacting protein that
regulates p53 is ubiquitin-specific peptidase 10 (USP10). An early DNA damage response
is ATM-mediated stabilization and the nuclear translocation of USP10, which, in turn,
activates p53 [64]. SSBP1 recruits the checkpoint complex to initiate ATR signaling [135].
Collectively, FMRP appears to be involved in mechanisms underlying growth-inhibitory
effects, given the interdependence with diverse tumor suppressors.

The FMRP-associating proteins Exosome Component 10 protein (EXOSC10), Hetero-
geneous nuclear ribonucleoprotein U (hnRNPU), MATR3, Non-POU domain-containing
octamer-binding protein (NONO), poly (ADP-ribose) polymerase 1 (PARP1), PTB-associated
splicing factor (PSF), tripartite motif containing 28 (TRIM28), Vigilin, and X-ray repair cross-
complementing 6 (XRCC6) play critical roles in response to DDBs. A striking event is the
recruitment of NONO, probably in complex with PSF and MATR3 [136], to DNA damage
sites, which depends on poly-ADP-ribosylation, via PARP1 [137]. NONO and TRIM28, in
turn, promote non-homologous end joining (NHEJ) and attenuate homologous recombina-
tion (HR) (Figure 1 DDR) [137]. Thereby, BCL2-associated transcription factor 1 (BCLAF1)
stabilizes the Vigilin/XRCC6/DNA-PKcs complex and facilitates NHEJ-based DSB repair
in the surviving cells [138,139], while exosome component 10 protein (EXOSC10) is required
for the recruitment of RAD51 to DSBs [140]. Interestingly, DNA end resection inhibits NHEJ
and triggers homology-directed DSB repair [141]. hnRNPU regulates DNA-end resection
by binding to the DSB sensor complex MRE11-RAD50-NBS1 (MRN) [63], a process that
appears to be modulated by SQSTM1 [142]. The FMRP-associating, deubiquitinating en-
zyme Valosin-containing protein (VCP) is involved in orchestrating the proper association
of P53-binding Protein 1 (53BP1), BRCA1, and RAD51, three factors critical for DNA repair
and genome surveillance mechanisms [143].

8. Conclusions and Future Perspectives

The wealth of published data on FMRP has significantly deepened our understanding
of its biological functions, greatly expanded the physical and functional protein and RNA
interaction networks of FMRP, and suggested its involvement in various fundamental
cellular processes throughout the body beyond the central and peripheral nervous sys-
tems. Accordingly, FMRP functions may begin in the nucleolus after cytoplasmic-nuclear
translocation, where it may be involved in ribosomal subunit biogenesis and, most likely,
nuclear export. FMRP may be part of the transcription factory, regulating gene expression
through interaction and orchestration of RNA polymerase II, where it binds directly to
a large number of mRNAs and transports them to sites of local translation. Upon any
type of cellular stress, FMRP accumulates at sites of stress response and facilitates, for
example, the stabilization of double-stranded RNA binding and the activation of PKR,
leading to the formation of stress granules. In addition, recent FMRP interactome analysis
suggests that FMRP may play central roles in DNA damage response, cell cycle regulation,
intracellular trafficking, and actin dynamics and that FMRP virally induces innate immune
responses. Of note, FMRP may also be involved in mitochondrial quality control and
mitophagy, functions directly linked to neurodegenerative and cognitive disorders, includ-
ing FXS, Huntington’s disease, Alzheimer’s disease, Down syndrome, and progressive
supranuclear palsy.

Many research groups have expressed a growing interest in the analysis of FMRP inter-
acting partners. This is mainly due to the limited success achieved so far in understanding
the function of FMRP through its full-length purification and determination of its complete
structure. In this review, we have focused on the FMRP interaction network as a key factor
in understanding its multifunctional properties. The FMRP interaction network sheds
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light on the intricate structural domains and post-translational modifications of FMRP.
FMRP is involved in diverse and highly interconnected cellular processes. For example,
its role in cell cycle control is based on checkpoints that depend on DNA integrity and
its role in the DNA damage response. Its role in many different diseases, such as cancer,
viral infection, innate immunity, and neurodegeneration, is expected to depend on its
stress-related function. Focusing on FMRP’s role in stress will be a possible hallmark for
understanding the association between elevated oxidative stress and different groups of
diseases (e.g., diabetes, cancer, neurodegeneration, and even aging) and consequently in
different types of cells.

Given neuronal cells’ limited differentiation and renewability, they must have a robust
anti-stress mechanism to counteract their increased vulnerability. Any potential breakdown
in this mechanism can lead to the formation of pathological aggregates and subsequent
neuronal dysfunction. Therefore, gaining a comprehensive understanding of the role of
FMRP in the stress response will serve as a fundamental pillar in the prevention and
treatment of various diseases associated with pathological aggregation. In addition, the
absence of FMRP reflects the impact of increased stress on multiple processes and cellular
organelles, particularly mitochondrial energy and calcium homeostasis.
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DROSHA, DROSophila, Homolog of ribonuclease III; E2F, transcription factor (adenovirus E2 gene
promoter-associated family1); eIF6, Eukaryotic translation initiation factor 6; ER, endoplasmic reticu-
lum; EWSR1, EWS RNA-binding protein 1; FAM120, Family with Sequence Similarity 120 Member
A; FMR1*, Fragile X messenger ribonucleoprotein 1; FMRP*, Fragile X messenger ribonucleoprotein
protein; G1/2, phase Gap1/2 phase; GPC1, glypican 1; GTPase, guanosine riphosphatase; LSG1,
Large 60S Subunit Nuclear Export GTPase 1; LTV1, Low-temperature viability protein; MATR3, Ma-
trin3; MRE11, Meiotic Recombination 11; NBS1, Nijmegen breakage syndrome; NFAR, nuclear factor
associated with RNA; NMD3, non-sense-mediated mRNA decay; NOG2, Nucleolar GTP-binding
protein 2; p16INK4A, The inhibitors of cyclin-dependent kinases; PAF1, polymerase-associated factor
1; PI3K, Phosphatidylinositol 3-kinase; PI4K, Phosphatidylinositol 4-kinase; PINK1, PTEN-induced
kinase 1; PKR, protein kinase RNA-activated; POF1, premature ovarian failure 1; PTB, Polypyrimi-
dine tract-binding protein; RAD51, RADiation sensitive protein 51; RB, retinoblastoma protein; RNA,
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Ribonucleic acid; RNAPII, RNA polymerase II; RPL10, ribosomal large Protein 10; S phase, synthesis
phase; SH3, domain SRC Homology 3 Domain; SIRT1, Sirtuin 1; SKP2, S-phase kinase-associated
protein 2; SMAD3, SMAD (Suppressor of mother against decapentaplegic) family member 3; SND1,
Staphylococcal nuclease domain-containing protein 1; TIA1, T-cell intracellular antigen 1; TPX2,
Targeting protein for Xklp2; TSR1, thrombospondin type 1 repeat; TTF-I, transcription termination
factor 1; WAF1, wildtype p53-activated fragment 1; Xklp2, Xenopus plus end-directed kinesin-like
protein (KLP); XRN2, 5′-3′ exoribonuclease 2; YTH, YT521-B homology.
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