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Abstract: Protein phosphatases are primarily responsible for dephosphorylation modification within
signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phos-
phatase implicated in cancer pathogenesis. Understanding PRL-3’s intricate functions and developing
targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory
mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3’s involvement
in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Reg-
ulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational
modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential
target for therapy. Despite advances in small molecule inhibitors, further research is needed for
clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies
and clinical trials. Our review summarizes the current understanding of the cancer-related cellular
function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
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1. Brief Introduction of Protein Phosphatases

In the 1950s, protein phosphorylation was discovered as an important post-translational
modification (PTM) that determines protein function [1]. It has a crucial function in multiple
cellular activities, such as cell growth, proliferation, differentiation, migration, motility,
programmed cell death, and metabolism [2]. According to estimates, phosphorylation
regulates 30% of human genome-encoded proteins [3]. Protein kinases are responsible for
transferring phosphate groups from ATP to substrate proteins, while protein phosphatases
play a role in removing phosphate groups from phosphoproteins and transferring them to
water molecules. Phosphatases and kinases are crucial enzymes involved in cellular signal
transduction, regulating protein phosphorylation [4].

Based on historical classification, protein phosphatases primarily comprise two major
families: protein serine/threonine phosphatases (PSTPs) and protein tyrosine phosphatases
(PTPs). The PSTP family consists of approximately 45 members, whereas the PTPs su-
perfamily encompasses over 100 members [5]. There are currently 241 human active and
13 inactive phosphatases discovered in total, which have been reclassified into 16 superfam-
ilies based on their structure and function (https://depod.bioss.uni-freiburg.de/index.php
(accessed on 21 January 2024)).
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PTPs are highly modular, with about 75% of PTPs containing an additional domain
or motif on top of the core catalytic domain, providing a greater diversity of functions
and regulation targets [6]. The PTPs family possesses the ability to dephosphorylate both
tyrosine and serine residues. The catalytic domain of all these PTPs includes a phosphate-
binding loop (P-loop) or protein-tyrosine phosphatase (PTPase), which consists of an active
site motif HCXXGXXR (where X can be any amino acid). In spite of significant differences
in the HCXXGXXR section, the shared amino acids of cysteine and arginine lead to a
consistently maintained structure of the P-loop [7]. In addition to the P-loop, the acid
loop (known as WPD-loop) is also conserved in PTPs, undergoing conformational changes
during the catalytic process. (Figure 1A) [8]. The PTPs can be broadly classified into several
distinct subfamilies such as Receptor-type tyrosine-protein phosphatase (R-PTP), tyrosine-
specific non-receptor PTPs (NR-PTPs), VH1-like dual-specificity protein phosphatases
(DUSPs), Phosphatase of Regenerating Liver (PRL) based on the amino acid sequences of
their catalytic domains [6,9–11].
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PRL-3 (PDB:1v3a). (B) Aligning PRLs including PRL-1, PRL-2, PRL-3.

2. PRL Family

The PRL family, a unique class of DUSPs, comprises three members: PRL-1, PRL-
2, and PRL-3 (also known as PTP4A1, PTP4A2 and PTP4A3, respectively) [8]. Ranging
around 20 kDa, with PRL-2 at 167 amino acids and PRL-1 and PRL-3 at 173 amino acids,
these phosphatases share significant sequence homology. The amino acid sequences of
the three PRLs display significant similarity. PRL-1 and PRL-2 exhibit an 87% homology,
PRL-1 and PRL-3 share a 79% homology, and PRL-2 and PRL-3 have a 76% homology.
(Figure 1B) [12,13].

PRL genes in humans are found on separate chromosomes, with PRL-1, PRL-2,
and PRL-3 situated on chromosomes 6q12, 1p35, and 8q24.3 correspondingly. Small
phosphatases PRLs are identified as important enhancers of intracellular magnesium
levels [14–17]. They are key enzymes involved in cellular signal transduction, which
demonstrates potential carcinogenic activity [18,19].

PRL-1 was to be recognized as an immediate-early gene that is significantly increased
in the regenerating liver of rats [20]. The expression of PRL-1 mRNA is observed in mul-
tiple human tissues, especially in the small intestine, lung, oviduct, testis, gallbladder,
T-cells and adipocytes [21,22]. The protein functions as a signaling molecule within cells,
exerting regulatory effects on numerous cellular processes, such as cell proliferation and
migration [23,24]. The protein may also be involved in cancer development and metasta-
sis [25,26].

Similarly, elevated amounts of PRL-2 mRNA can be found in almost all human tissues,
with the exception of taste buds and extensively specialized fibrocartilage tissues [21]. The
extensive distribution of PRL-1 and PRL-2 mRNA suggests their potential involvement
in fundamental biological processes shared by the majority of tissues and cell types [27].
PRL-2 is required for vascular morphogenesis, hematopoietic stem cell self-renewal and
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angiogenic signaling [28–30]. Overexpression of PRL-2 in mammalian cells conferred a
transformed phenotype, which suggested its role in tumorigenesis. According to recent
research, PRL-2 facilitates the degradation of PTEN, thus promoting tumor occurrence and
development [31,32].

In contrast to the ubiquitous expression of PRL-1 and PRL-2 in various tissues, PRL-3
exhibits selective expression in specific organs and cancer cells, making it an appealing
target for cancer treatment [33–35]. Increased levels of PRL-3 have been documented in
cases of liver cancer, breast cancer, ovarian cancer, papillary renal cell carcinoma, and
various other conditions (Figure 2). This elevation could potentially impact the disease’s
prognosis [36,37].
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Figure 2. The expression distribution of PRL-3 gene in tumor and normal samples in TCGA and
GTEx. The abscissa represents different tumor tissues, and the ordinate represents the expression dis-
tribution of genes, with different colors representing different groups. ns means p > 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001, asterisks (*) stand for significance levels. The raw count data were nor-
malized using the Trimmed Mean of M-values (TMM) method and comparative analysis through the
Student’s t-test. (ACC: adenoid cystic carcinoma, BLCA: bladder urothelial carcinoma, BRCA: Breast
Invasive Carcinoma, CESC: Cervical Squamous Cell Carcinoma and Endocervical Adenocarci-
noma, CHOL: Cholangiocarcinoma, COAD: Colon Adenocarcinoma, DLBC: Lymphoid Neoplasm
Diffuse Large B-cell Lymphoma, ESCA: Esophageal Carcinoma, GBM: Glioblastoma Multiforme,
HNSC: Head and Neck Squamous Cell Carcinoma, KICH: Kidney Chromophobe, KIRC: Kidney
Renal Clear Cell Carcinoma, KIRP: Kidney Renal Papillary Cell Carcinoma, LGG: Brain Lower
Grade Glioma, LIHC: Liver Hepatocellular Carcinoma, LUAD: Lung Adenocarcinoma, LUSC: Lung
Squamous Cell Carcinoma, OV: Ovarian Serous Cystadenocarcinoma, PAAD: Pancreatic Adenocarci-
noma, PRAD: Prostate Adenocarcinoma, READ: Rectum Adenocarcinoma, SKCM: Skin Cutaneous
Melanoma, STAD: Stomach Adenocarcinoma, TGCT: Testicular Germ Cell Tumors, THCA: Thyroid
Carcinoma, UCEC: Uterine Corpus Endometrial Carcinoma, UCS: Uterine Carcinosarcoma).

3. Regulatory Mechanisms of PRL-3

Although being the last discovered among the PRLs, PRL-3 has garnered significant
attention and has been extensively studied. Multiple reports have indicated that the
regulation of PRL-3 expression occurs at various levels, encompassing DNA, RNA, and
protein levels (Figure 3) [38,39].
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Figure 3. Overview of Regulatory mechanisms of PRL-3. Transcriptional regulators such as P53,
Snail, MEF2C, STAT3, STAT5A, and DDX21 can promote PRL-3 gene expression. PCBP1 recognizes
the GC-motifs of PRL-3 mRNA, suppressing the translation of PRL-3 mRNA. PCBP1-AS1 promotes
the production of PRL-3. PRL-3 undergoes ubiquitin, prenylation, oxidation, and binding to the cell
membrane, exerts biological activity, and then interacts with downstream effectors. Src, USP4 interacts
with PRL-3 and increases the stability of PRL-3. MEF2C: myocyte enhancer factor 2C, STST3: signal
transducers and activators of transcription 3, STAT5A: signal transducer and activator of transcription
5A, DDX21: Nucleolar RNA helicase 2, PCBP1: poly(C)-binding protein, PCBP1-A1: polycytosine
binding protein 1 antisense1, USP4: Ubiquitin-specific protease 4. This Figure was created using
images from FigDraw.

In most cases, the human PRL-3 gene has a solitary copy on chromosome 8, near the
long arm, with 9613 nucleotides in length. Increased levels of PRL-3 have been documented
in cases of liver cancer, breast cancer, ovarian cancer, papillary renal cell carcinoma, and
various other conditions [40–43]. This elevation could potentially impact the disease’s
prognosis. Initially, it was believed that this amplification of copy number was accountable
for the elevated expression of PRL-3 in cancerous conditions. Nevertheless, multiple studies
indicate that there is an absence of a substantial correlation between amplification of the
PRL-3 gene and expression of mRNA, suggesting that the expression of PRL-3 might be
tightly controlled during transcription as well [44,45].

The initial evidence supporting this claim is based on the discovery that the famous
oncogene p53 functions as a transcriptional regulator of PRL-3. The interaction between p53
and the PRL-3 genomic region has been noted, leading to the activation of its transcription
in human and mouse cell lines [46]. Subsequent identification of other transcription factors,
such as Snail, myocyte enhancer factor 2C (MEF2C), signal transducers and activators
of transcription 3 (STAT3), signal transducer and activator of transcription 5A (STAT5A)
and Nucleolar RNA helicase 2 (DDX21), along with their respective functional promoter
binding sites in the PRL-3 gene, further underscored the complexity of PRL-3 transcriptional
regulation [45,47–51]. All of them demonstrate remarkable specificity and capability in
inducing PRL-3 expression. The pre-mRNA of PRL-3 consists of 5 exons, and when
exon 4 undergoes alternative splicing, it produces two distinct transcripts, leading to the
formation of two isoforms of PRL-3 protein [52]. Unlike the full-length PRL-3 protein,
the spliced variant, which comprises only 148 amino acids, does not possess phosphatase
activity [8]. Poly(C)-binding protein 1 (PCBP1) recognizes and binds to three GC-motifs
(GCCCAG) present in the 5’-UTR of PRL-3 mRNA. This RNA-binding protein PCNP1
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serves multiple functions, including mRNA stabilization and translation suppression [53].
The interaction between PCBP1 and the GC motif leads to the inhibition of PRL-3 protein
synthesis, while PCBP1-AS1, which is oriented in the opposite direction to PCBP1, enhances
the generation of PRL-3 protein [53,54].

The regulation of the PRL-3 is also influenced by PTMs. PTMs play a crucial role
in maintaining physiological homeostasis by regulating protein structure, destination,
activity, stability, and function, thus contributing to protein destruction or turnover [55].
Currently, the known PTMs for the PRL-3 protein include Ubiquitin, prenylation, oxidation,
and palmitoylation [51,56,57]. It is generally believed that PRL-3 undergoes PTM at the
C-terminus to bind to the cell membrane and exert biological activity, and then interacts
with downstream effectors [58].

4. PRL-3 in Cancer

PRL-3 was initially discovered in 2001 as the only gene that exhibited a significant
increase in expression in metastases originating from colorectal carcinomas (CRCs) while
remaining undetectable in normal colon epithelia affected by liver cancer [56]. Subse-
quently, more studies confirmed this phenomenon and found that PRL-3 was highly
expressed in other primary and metastatic tumors, including gastric cancer [59–61], col-
orectal cancer [62,63], breast cancer [42,64], liver cancer [43,65], intrahepatic cholangiocar-
cinoma [66], lung cancer [67,68], esophageal cancer [69], nasopharyngeal carcinoma [70],
uveal melanoma [71], ovarian and cervical carcinoma [72,73]. PRL-3 promotes cancer cell
proliferation, migration, metastasis, and angiogenesis through multiple signaling pathways
(Figure 4).

Biomolecules 2024, 14, x FOR PEER REVIEW 5 of 18 
 

when exon 4 undergoes alternative splicing, it produces two distinct transcripts, leading 
to the formation of two isoforms of PRL-3 protein [52]. Unlike the full-length PRL-3 pro-
tein, the spliced variant, which comprises only 148 amino acids, does not possess phos-
phatase activity [8]. Poly(C)-binding protein 1 (PCBP1) recognizes and binds to three GC-
motifs (GCCCAG) present in the 5’-UTR of PRL-3 mRNA. This RNA-binding protein 
PCNP1 serves multiple functions, including mRNA stabilization and translation suppres-
sion [53]. The interaction between PCBP1 and the GC motif leads to the inhibition of PRL-
3 protein synthesis, while PCBP1-AS1, which is oriented in the opposite direction to 
PCBP1, enhances the generation of PRL-3 protein [53,54]. 

The regulation of the PRL-3 is also influenced by PTMs. PTMs play a crucial role in 
maintaining physiological homeostasis by regulating protein structure, destination, activ-
ity, stability, and function, thus contributing to protein destruction or turnover [55]. Cur-
rently, the known PTMs for the PRL-3 protein include Ubiquitin, prenylation, oxidation, 
and palmitoylation [51,56,57]. It is generally believed that PRL-3 undergoes PTM at the C-
terminus to bind to the cell membrane and exert biological activity, and then interacts 
with downstream effectors [58]. 

4. PRL-3 in Cancer 
PRL-3 was initially discovered in 2001 as the only gene that exhibited a significant 

increase in expression in metastases originating from colorectal carcinomas (CRCs) while 
remaining undetectable in normal colon epithelia affected by liver cancer [56]. Subse-
quently, more studies confirmed this phenomenon and found that PRL-3 was highly ex-
pressed in other primary and metastatic tumors, including gastric cancer [59–61], colorec-
tal cancer [62,63], breast cancer [42,64], liver cancer [43,65], intrahepatic cholangiocarci-
noma [66], lung cancer [67,68], esophageal cancer [69], nasopharyngeal carcinoma [70], 
uveal melanoma [71], ovarian and cervical carcinoma [72,73]. PRL-3 promotes cancer cell 
proliferation, migration, metastasis, and angiogenesis through multiple signaling path-
ways (Figure 4). 

 
Figure 4. An overview of signaling pathways regulated by PRL-3 discussed in this re-
view. PRL-3 promotes tumorigenesis by activating the PI3K-AKT pathway, MAPK pathway, JAK-
STAT3 pathway, and TGF-β1/Smad signal pathway. PRL-3: Phosphatase of Regenerating Liver-3, 

Figure 4. An overview of signaling pathways regulated by PRL-3 discussed in this review. PRL-3
promotes tumorigenesis by activating the PI3K-AKT pathway, MAPK pathway, JAK-STAT3 pathway,
and TGF-β1/Smad signal pathway. PRL-3: Phosphatase of Regenerating Liver-3, PTP1B: protein
tyrosine phosphatase 1B, PTEN: Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-
specificity protein phosphatase PTEN, EGFR: epidermal growth factor receptor, IL-6R: Interleukin-6
receptor, TGFβ: transforming growth factor-β, JNK: Jun N-terminal kinase, SMAD: small mother
against decapentaplegic, MMP: matrix metalloproteases. This Figure was created using images
from FigDraw.
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4.1. Proliferation and Tumorigenesis

The capacity for sustained proliferation and metabolic alterations are significant at-
tributes of cancer cells [74,75]. The growth rate of HEK293 cells expressing PRL-3 was
increased compared to the inactive PRL-3 mutant (C104S) [36]. This accelerated growth rate
was mitigated by the inhibition of PRL-3 using PTPase inhibitors, thereby confirming the
necessity of phosphatase activity for the PRL-3-mediated augmentation of cell proliferation.
Moreover, the injection of B16 melanoma cells overexpressing PRL-3 into in vivo xenograft
mouse models resulted in a significant three-fold rise in tumor volume when compared to
the control cells [76].

Recent studies have shown that the presence of PRL-3 enhances the invasion and
proliferation of malignant cells. Moreover, elevated levels of PRL-3 have a strong correlation
with poor Overall Survival (OS) and Progression-free Survival (PFS) in patients with breast
cancer and glioblastoma [42,77]. In contrast, the inhibition of natural PRL-3 through RNA
interference significantly hindered the growth of different cancer cell lines, including
ovarian, lung, gastric, colorectal, and leukemia cancers [34,41,60,63].

Multiple studies have provided evidence suggesting that PRL-3 facilitates cell prolif-
eration by activating Src kinase, promoting STAT3 signaling, and modulating cell cycle
regulators such as cyclin D1, CDK2, STAT5, and AKT [78–81]. Previous research has in-
dicated that the overexpression of PRL-3 in HEK293 cells triggers the activation of Src
kinase by inhibiting C-terminal Src kinase (Csk), which is a suppressor of Src [82]. There
is evidence that SW480 colon cancer with heightened Src activity and low Csk expression
possesses lower PRL-3 expression compared with SW620 cells. The activation of Src triggers
a number of downstream signaling pathways that stimulate cell proliferation [78]. STAT3
signaling cascades are also found to be involved in PRL-3-induced cell proliferation [79,80].
STAT3 triggers the upregulation of various microRNAs, including miR-29c, miR-21, miR-17,
and miR-19a, promoting cellular proliferation [83,84]. In addition, PRL-3 promotes cell
cycle progression and enhances the anti-apoptotic mechanism of tumor cells to achieve
drug resistance by upregulating cyclin D1 and CDK2, as well as activating STAT5 and
AKT [81].

The nuclear factor-κB (NF-κB) pathway is another signaling pathway downstream
involved in the promotion of cell proliferation by PRL-3. NF-κB, an extensive protein
complex, is present in most animal cell varieties and regulates DNA transcription [85].
Enhancement of cellular proliferative ability in LoVo colon cancer cells is achieved through
upregulation of intermediate conductance calcium-activated potassium channel protein
4 (KCNN4) expression in an NF-κB-dependent manner due to PRL-3 overexpression [86].
In addition, USP4, which is elevated in gastric and rectal cancer, interacts with PRL-3 and
increases the stability of PRL-3, promoting NF-κB signaling and cell viability [51,60]. Cele-
coxib, a promising candidate for anticancer therapy, upregulates PTEN protein expression
in mouse hepatoma tissues while downregulating NF-κB and PRL-3 protein expression,
ultimately attenuating liver cell proliferation [87].

Aurora kinase A (AURKA) plays a role in the formation and stability of microtubules
at the spindle pole during chromosome separation. PRL-3 enhances the ubiquitination
and degradation of AURKA in a phosphatase-dependent manner. It was found that PRL-
3-induced G2 m arrest was associated with reduced expression of AURKA [88]. The
proliferation of cells is controlled by the regulation of the cell cycle. According to research,
knockdown of the PRL-3 gene by shRNA resulted in decreased expression of downstream
Stathmin, inhibited cell proliferation, and induced G2/M arrest and cell apoptosis [89],
while another study demonstrated that silence of PRL-3 reduced cell migration and cell
proliferation but had no detectable effect on the cell cycle [38].

4.2. Migration, Invasion and Metastasis

In general, most cells carry out their specialized functions within their organs within a
limited range of motion. However, cancer cells have developed the ability to spread from
their original organ to other areas of the body through a phenomenon known as metastasis.
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Cell–cell adhesion and cell adhesion to extracellular matrix (ECM) are required for the
acquisition of invasive and motile behaviors [90]. Over the last couple of years, numerous
research has indicated a connection between heightened PRL-3 expression and heightened
severity of cancer as well as its transfer ability. Multiple groups have verified that PRL-3
exhibited a significant increase in liver metastases of CRC, as well as in secondary CRC
lesions discovered in the lung, brain, ovary, peritoneum, and lymph nodes [34,91,92].
Furthermore, the analysis of clinical statistics indicated that high PRL-3 expression appears
to be associated with increased liver and lung metastasis in colorectal cancer, suggesting
that PRL-3 expression may play a role in CRC metastasis [62,92]. In HEK293 cells, PRL-3
has the ability to decrease the tyrosine phosphorylation of integrin β1 while promoting the
activation of ERK1/2. The activation of ERK1/2 stimulated by PRL-3 can be eliminated,
and the motility and invasion of LoVo cells can be eradicated by depleting integrin β1
in vitro [92]. The expression of PRL-3 mRNA was also increased in almost all metastatic
lesions derived from CRCs [39,93]. The heightened expression of PRL-3 is also associated
with elevated invasion of the lymphatic and venous systems, metastasis to lymph nodes
and peritoneum, and an escalation in tumor stage [34]. Similarly, the downregulation of
PRL-3 inhibits migration and invasion of lung cancer cells through RhoA and mDia1 [94].
On the contrary, some reports have also surfaced indicating the absence of a substantial
contribution of PRL-3 to the metastasis and proliferation of cancer cells [95].

The exact molecular basis for the increased spread of metastasis caused by PRL-3 re-
mains largely unknown. Several signaling pathways, including PI3K/Akt, P38, JAK/STAT,
ERK, integrin/Src, and Rho family GTPases, have been documented as being involved in
facilitating certain migration and metastasis effects of PRL-3 (Figure 2).

The PI3K/Akt pathway is a significant oncogenic pathway that is commonly overac-
tive in human cancers, playing a role in tumor formation, such as proliferation, invasion,
and migration [96–98]. The PRL-3 protein activates the PI3K/Akt signaling pathways when
overexpressed [99]. Activation of PRL-3 initiates a positive feedback loop involving AKT,
p38, TGFβ1, and FAK, resulting in increased phosphorylation of FAK and facilitating the
proliferation, migration, and adhesion of HCC cells [43]. Downregulation of the PI3K/Akt
signaling pathway can significantly inhibit tumor activity, and simultaneously inhibiting
the WNT/β-catenin pathway can enhance its effects in vitro and in vivo [100]. Expression
of PRL-3 also enhances PIK3C3-BECN1-dependent autophagy in an ATG5-dependent
manner, therefore promoting tumor growth [101].

Some reports suggest that activated p38 MAPK contributes to cancer cell drug re-
sistance, migration, and invasion, whereas other sources claim that it acts as a tumor
suppressor that regulates cell death [102]. Under stressed conditions, PRL-3 functions
as a direct phosphatase for p38 MAPK. PRL-3 enhances tumor cell adaptation to the hy-
poxic stress tumor microenvironment and facilitates tumor lung metastasis by negatively
regulating p38 MAPK activity [67,72].

STATs possess both SH2 and SH3 domains, enabling their interaction with peptide
segments that bear phosphorylated tyrosine residues. Upon phosphorylation, STATs
undergo polymerization, adopting an activated transcriptional activator conformation.
Subsequently, STATs translocate into the nucleus, where they can engage with target genes
and facilitate their transcription [103]. These pivotal proteins assume a vital function in
signal transduction and the activation of transcription. IL6 promotes STAT3-dependent
transcriptional upregulation of PRL-3, which in turn re-phosphorylates STAT3 and aber-
rantly activates STAT3 target genes [48,104]. PRL-3 overexpressed in classical Hodgkin
lymphoma can inhibit the production of IL-13 cytokines and enhance STAT6 signaling,
increasing cell migration and vitality [105].

It has been shown that matrix metalloproteases (MMPs) are highly expressed in many
cancer cases and are associated with cancer progression, invasion, metastasis, and immune
suppression [106]. PRL-3 is found to promote the proliferation, invasion, and migration
of glioma cells by increasing the activity of ERK/JNK/MMP7 in vitro and in vivo [77].
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Additionally, the expression of PRL-3 is significantly correlated with the expression of
various MMPs, such as MMP2 and MMP9 [107,108].

4.3. Inducing Angiogenesis

PRL-3’s association with vascular invasion in hepatocellular carcinoma points to
its role in angiogenesis [43,109]. Studies demonstrate that PRL-3, acting downstream
of the VEGF/MEF2C pathway, recruits and enhances angiogenesis in endothelial cells
in vitro and promotes tumor angiogenesis in vivo [47,110]. Furthermore, PRL-3 upregulates
pERK and Rho expression and promotes their activity, facilitating VEGF expression and
accelerating angiogenesis and distant metastasis [37,110]. Meanwhile, the induction of
EGFR by PRL-3 was associated with enhanced cell proliferation, migratory properties,
and tumorigenicity [111]. The activation of EGFR by PRL-3 leads to the transcriptional
downregulation of protein tyrosine phosphatase 1B (PTP1B), resulting in the inhibition of
EGFR activation [111]. Inactivating PRL-3 downregulated VEGF signaling by reducing the
phosphorylation of ERK1/2 [112].

4.4. Promoting Focal Adhesion

PRL-3 is involved in various cancer-related functions, including but not limited to
metastasis, proliferation, and angiogenesis. A variety of phenotypic characteristics are influ-
enced by cell-matrix interactions, including gene regulation, cytoskeletal structure, differen-
tiation, and cell growth [113]. PRL-3 plays a crucial role in cell adhesion and proliferation by
influencing the expression levels of integrin, matrix, and Ezrin [114]. Deletion of the PRL-3
gene from murine colorectal tumors results in impaired colony formation, spheroid forma-
tion, migration, and adhesion [115]. In mammalian cells, PRL-3 interacts with integrin α1
and integrin β1, transmembrane receptors facilitating cell–cell and cell-extracellular matrix
interactions. This interaction activates the integrin/Src pathway, a key player in epithelial-
mesenchymal transition, focal adhesions, and aiding in cellular migration [116,117]. PRL-3
effector pathway in metastasis involves the integrin/Src pathway, which plays a crucial role
in epithelial-mesenchymal transition and focal adhesions [118–120]. Additionally, apart
from the involvement of Akt and integrin/Src pathways, it has been reported that Rho fam-
ily GTPases also participate in the regulation of PRL-3-induced metastasis. Overexpression
of PRL-3 in embryonic stem cells derived from endometrioma increases the expression of
RhoA, RhoC, ROCK1, and MMP9, promoting cell migration and invasion [107].

4.5. Other Functions

PRL-3 upregulation in colon cancer cells and primary fibroblasts induces telomere
structural abnormalities, telomere deprotection, DNA damage response, chromosomal
instability, and senescence, contributing to tumor progression [121]. Additionally, height-
ened PRL-3 phosphatase activity in the healthy intestinal epithelium disrupts intestinal
cell equilibrium, increasing vulnerability to PRL-3-mediated inflammation or mutation,
which may lead to tumor development [122]. Moreover, PRL-3 has been shown to interact
with cyclin and CBS domain divalent metal cation transport mediator (CNNM) to regulate
the intracellular concentration of calcium and magnesium plasma [123,124]. Interestingly,
PRL-3’s role in promoting H+ extrusion and acid addiction via stimulating lysosomal
exocytosis enhances cancer cell survival in an acidic tumor microenvironment [125].

The dynamic and complex nature of PRL-3’s role in tumor proliferation, invasion, and
metastasis involves multiple signaling pathways, necessitating the activation of different
effector proteins.

5. The Relationship between PRL-3 and Drug Resistance

Chemotherapy, radiotherapy, and targeted therapy resistance remain the main chal-
lenges for cancer treatment [126]. Cancer resistance can be roughly divided into intrinsic
(primary) resistance or acquired (secondary) resistance [127]. Throughout the course of
long-term chemotherapy, cancer cells undergo evolution and may acquire multidrug re-
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sistance (MDR), leading to a substantial reduction in the effectiveness of cancer treatment
and negatively impacting patients’ survival and quality of life [126]. The majority of
chemotherapy, radiotherapy, and immunotherapy have the potential to elevate intracellular
reactive oxygen species (ROS) levels, which are responsible for cancer cell damage [128,129].
Compared with non-MDR cancer and normal cells, the levels of ROS and the activity of
clearance/antioxidant enzymes are usually increased in drug-resistant cancer cells [130].
Several studies have indicated that PRL-3 decreases intracellular ROS levels and induces
overexpression of glycolysis enzymes and molecules, contributing to enhanced tumor cell
proliferation and invasion [131–133]. Silencing PRL-3 in colon cancer cells has been shown
to lead to a ROS-dependent DNA damage response and senescence, indicating a potential
link between PRL-3 and acquired resistance [121]. Further investigation is necessary to
ascertain if PRL-3 augments cell intrinsic resistance by diminishing ROS levels, thereby
enabling them to acquire acquired resistance through adequate exposure time.

Paclitaxel (PTX), a microtubule-stabilizing anticancer chemotherapeutic, is one of the
most common therapeutic commonly used drugs. The mechanism underlying resistance to
PTX is primarily caused by alterations in α-tubulin and β-tubulin [134]. PRL-3 interacts
with α, β, and γ-tubulin, suggesting its involvement in PTX resistance [135]. Integrin-
mediated focal adhesions play a crucial role in cell adhesion, migration, and therapy
resistance in cancer [136,137]. The expression of PRL-3 increases the focal adhesion of cells
to the extracellular matrix, making them more resistant to drug treatment [33].

Extracellular vehicles (EVs), including exosomes, microvesicles, oncosomes, and mi-
croparticles, are associated with anticancer drug resistance [138]. EVs induce cancer cell
resistance by transferring specific cargos that affect drug efflux and regulate signaling
pathways related to epithelial-mesenchymal transition, autophagy, and metabolism [139].
PRL-3 antigen detection on cell surfaces and EV outer membranes may be linked to cell
drug resistance and serve as a potential target for cancer therapy [140].

In addition, PRL-3 also promotes the formation of grossly hyperdiploid and multin-
ucleated cancer cells known as polyploid giant cells (PGCCs), which typically appear in
tumor tissue after chemotherapy, forming a stem cell-like pool that promotes cell survival,
chemotherapy resistance, and tumor recurrence [141,142].

6. Drug Discovery

Chemotherapy, aimed at impeding cancer cell growth and division, often lacks speci-
ficity for cancer cells, causing harm to normal tissues [143]. Targeting PRL-3, which is
overexpressed in certain cancer tissues, provides an opportunity to enhance cancer treat-
ment specificity [116]. Due to the role of PRL-3 in cancer progress, multiple drugs have
been screened that can inhibit PRL-3 at the molecular level, effectively impeding the activity
of PRL-3 in vivo and in vitro (Table 1).

Pentamidine, the initial pharmaceutical agent identified as effective against PRL-3,
demonstrates the capacity to impede the function of PTPs and restrain the proliferation of
human cancer cells [144]. Subsequent research has revealed that certain naturally occurring
compounds derived from plants, including rhodanine, bioflavonoids, anthraquinones,
and curcumin, possess the ability to inhibit the activity of PRL-3 [145–150]. Furthermore,
thienopyridone and its derivatives (such as JMS-053 and NRT-870-59), which act as selective
PRL inhibitors, have been shown to suppress the growth and migration of cells overex-
pressing PRL-3 [80,151–154]. Despite the fact that recent advancements have found that
several new chemicals can inhibit the activity of PRL-3, there remains room for improve-
ment in terms of enhancing the specificity, stability, and solubility of these compounds.
Furthermore, given the potential for adverse side effects and toxicity associated with chem-
ical compounds, it is imperative to conduct further investigations on these drugs before
considering their application as PRL-3-targeted inhibitors in clinical cancer therapy [155].

In 2019, PRL-3-zumab, a First-in-Class humanized antibody drug, demonstrated the
ability to bind to the surface of PRL-3 in a manner consistent with the classical antibody-
dependent cell-mediated cytotoxicity (ADCC) action or antibody-dependent cell phagocytic
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tumor elimination pathway [140,156]. Subsequently, PRL-3-zumab has been proven to
reduce tumor relapse in the ‘tumor removal’ animal model [142] and has been confirmed
to have anti-tumor activity in the PDX model [157]. As a therapeutic mAb, PRL-3-zumab
has demonstrated a strong safety profile in clinical trials, presenting a promising avenue
for targeted therapy against PRL-3 [158].

The most recent study has demonstrated that nanobodies designed to target PRL-3
have the ability to disrupt PRL-3 phosphatase activity and inhibit the interaction between
PRL-3 and CNNM3 by binding to the active site of PRL-3 [159]. These anti-PRL-3 nanobod-
ies have the potential to serve as a valuable tool for further exploration of PRL-3.

Table 1. Representative drug for PRL-3.

Year Drug Discovery Reference

2002 Pentamidine The first reported drug has anticancer
activity via inhibiting PTPs [144]

2006 Biflavonoids The first natural products reported to
have inhibitory effects on PRL. [145]

2008–2017
Thienopyridone,

JMS-053,
NRT-870-59

Selective PRLs inhibitor. [80,151,154]

2016 PRL-3-zumab A humanized antibody drug against
PRL-3 [156]

2023 anti-PRL-3
nanobodies

The first alpaca-derived single-domain
antibodies against PRL-3 [159]

7. Discussion

The dysregulation of kinases and phosphatases, crucial in maintaining cellular home-
ostasis, contributes to the initiation and progression of various diseases, including can-
cer [160,161]. Several protein phosphatases have been found to be dysfunctional prognostic
markers in a variety of cancer contexts, often indicating a higher-grade disease or an ad-
vanced disease [98,162–164]. PRL-3, an important member of the phosphatase family, has
emerged as a key player in multiple signaling pathways in the past two decades, affecting
disease pathogenesis, tumor occurrence, and progression, and is also related to progno-
sis [165,166]. It is clear that PRL-3 signaling plays an important role in the pathogenesis
and development of a wide array of human diseases. Overexpression of PRL-3 in cancers
leads to diverse effects, including sustained proliferative signaling, replicative immortality,
genome instability, mutation, resistance to cell death, and angiogenesis.

PRL-3’s multifaceted roles in tumor cell proliferation, movement, invasion, and metas-
tasis involve complex mechanisms. While significant progress has been made in under-
standing PRL-3’s functions, further research, including knockout studies of specific regula-
tors and effectors, is necessary to unravel its precise role in specific signaling pathways.

Crucially, PRL-3’s expression in various cancer types and absence in normal tissues
make it an attractive therapeutic target. PRL-3 inhibitors have shown promise in inhibiting
tumors, and their combination with anti-tumor drugs enhances therapeutic efficacy [116].
PRL-3 inhibitors will become a viable treatment option for cancer patients with further
research and clinical trials. Importantly, the development of monoclonal antibodies, such
as PRL-3-zumab, provides a novel and safe therapeutic approach, presenting a potential
breakthrough in clinical cancer therapy.

In conclusion, our evolving understanding of PRL-3’s diverse functions and the
potential of PRL-3 inhibitors in human diseases opens the door to more specific targeted
therapeutic strategies. It will be possible to develop more specific targeted therapeutic
strategies in the future if we have a better understanding of the multifunctions and complex
regulatory mechanisms of PRL-3.
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