
Citation: Athanasiou, P.E.;

Gkountela, C.I.; Patila, M.; Fotiadou,

R.; Chatzikonstantinou, A.V.;

Vouyiouka, S.N.; Stamatis, H.

Laccase-Mediated Oxidation of

Phenolic Compounds from Wine

Lees Extract towards the Synthesis of

Polymers with Potential Applications

in Food Packaging. Biomolecules 2024,

14, 323. https://doi.org/10.3390/

biom14030323

Academic Editors: Grzegorz Janusz

and Anna Pawlik

Received: 7 February 2024

Revised: 5 March 2024

Accepted: 6 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Laccase-Mediated Oxidation of Phenolic Compounds from
Wine Lees Extract towards the Synthesis of Polymers with
Potential Applications in Food Packaging
Panagiotis E. Athanasiou 1 , Christina I. Gkountela 2, Michaela Patila 1 , Renia Fotiadou 1 ,
Alexandra V. Chatzikonstantinou 1 , Stamatina N. Vouyiouka 2 and Haralambos Stamatis 1,*

1 Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina,
45110 Ioannina, Greece; p.athanasiou@uoi.gr (P.E.A.); mpatila@uoi.gr (M.P.); renia.fotiadou@gmail.com (R.F.);
alexandra_xatzi@hotmail.com (A.V.C.)

2 Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens,
Zographou Campus, 15772 Athens, Greece; cgkountela@mail.ntua.gr (C.I.G.); mvuyiuka@central.ntua.gr (S.N.V.)

* Correspondence: hstamati@uoi.gr

Abstract: Laccase from Trametes versicolor was applied to produce phenolic polymeric compounds
with enhanced properties, using a wine lees extract as the phenolic source. The influence of the
incubation time on the progress of the enzymatic oxidation and the yield of the formed polymers
was examined. The polymerization process and the properties of the polymeric products were
evaluated with a variety of techniques, such as high-pressure liquid chromatography (HPLC) and
gel permeation chromatography (GPC), Fourier-transform infrared (FTIR) and nuclear magnetic
resonance (NMR) spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric
analysis (TGA). The enzymatic polymerization reaction resulted in an 82% reduction in the free
phenolic compounds of the extract. The polymeric product recovery (up to 25.7%) and the molecular
weight of the polymer depended on the incubation time of the reaction. The produced phenolic
polymers exhibited high antioxidant activity, depending on the enzymatic oxidation reaction time,
with the phenolic polymer formed after one hour of enzymatic reaction exhibiting the highest
antioxidant activity (133.75 and 164.77 µg TE mg−1 polymer) towards the ABTS and DPPH free
radicals, respectively. The higher thermal stability of the polymeric products compared to the wine
lees phenolic extract was confirmed with TGA and DSC analyses. Finally, the formed phenolic
polymeric products were incorporated into chitosan films, providing them with increased antioxidant
activity without affecting the films’ cohesion.

Keywords: oxidoreductase; winery by-products; phenolic polymers; polymerization; enzymatic
oxidation; chitosan films; antioxidant activity

1. Introduction

Laccases (EC 1.10.3.2) are oxidoreductases that can catalyze the oxidation of several
compounds, by producing water from molecular oxygen [1]. Many different laccases
are produced from various organisms such as bacteria and fungi [2–5]. One of the most
used laccases is the laccase derived from the mushroom Trametes versicolor (T. versicolor).
Laccase from T. versicolor (TvL) is well characterized as a biocatalytic tool for the oxidation
of different substrates, depending on its redox potential. Moreover, TvL is applied in
enzymatic oligomerization/polymerization of phenolic compounds, as an alternative
to chemical methods [1,6,7], offering the advantages of the absence of toxic chemicals,
controlled reaction conditions, and a wide range of the initial substrates [8]. This oligo- or
polymerization reaction is conducted via two main stages: the enzyme-catalyzed generation
of phenoxy radicals and the spontaneous non-enzymatic oxidative coupling [9]. In the first
step, laccase catalyzes the oxidation of the phenolic compounds, creating phenoxy radicals
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and quinones. In the second, the non-enzymatic step, the phenoxy radicals or the quinones
form C-O or C-C covalent bonds via oxidative phenolic coupling, oxidative coupling, or
oxidative condensation. This procedure leads to the production of different homomolecular
or heteromolecular oligomers or polymers [9–11]. Moreover, in the presence of other non-
laccase reactants, laccase can promote the synthesis of heteromolecular dimers or oligomers
between a phenolic compound and a non-laccase substrate. This procedure may lead to the
formation of phenolic, quinonoid, or quinonimine structures [12]. Some of the indicative
laccase-promoted polymerization reactions are summarized in Scheme 1. Several studies
aim to produce new biopolymers, derived from the enzymatic oxidation of phenolics, to
improve the biological or physicochemical properties of their monomer precursors [13,14].
These phenolic polymers could be used as alternatives to their monomer precursors due to
their high stability and antioxidant activity. For example, the dimerization of ferulic acid by
laccase leads to increased antioxidant activity [13], while the polymerization of flavonoids
amplifies their thermal stability [15].
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Scheme 1. Indicative laccase-promoted polymerization reactions: laccase oxidation of phenolics for
the formation of phenoxy radicals (1), and non-enzymatic polymerization of the phenoxy radicals
with other phenolics and/or non-laccase reactants for the formation of oligomers and/or polymers
(2) (adapted from Catherine et al. [10]).

However, most studies report the enzymatic polymerization of individual compounds
to form dimers, trimers, or oligomers [7,12,16,17]. Only a small part of the recent literature
presents the polymerization of a mixture of different phenolic compounds or the poly-
merization of phenolics in natural extracts [16,18,19]. Natural extracts constitute an area
of great research interest due to their high content of bioactive compounds [20,21]. The
antioxidant, antimicrobial, and other biological activities of extracts are often attributed
to their high phenolic content [22–24]. In this context, Su and colleagues reported the
laccase-mediated synthesis of polymers from a bamboo extract [18]. The authors claimed
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that laccase promoted the bonding of phenolics, leading to the production of hard bamboo
tablets. However, the polymers were not further investigated for their biological and
structural properties. In another work, propolis and poplar bud extracts were treated with
laccase to enhance their antioxidant activity [25]. The obtained products were character-
ized for their antioxidant activity, concluding that a lower reaction time led to a higher
antioxidant activity than the parental extract. Recently, the laccase-catalyzed synthesis of
polymers from cork and grape extracts was reported [19]. The formed polymers exhibited
remarkable antioxidant and antiaging properties compared to the initial extract. The au-
thors also provided some information on the composition and structure of the oxidation
polymeric products. Thus, due to the restricted knowledge of the use of natural extracts as
the phenolic source for polymerization reactions, and the further characterization of the
resulting polymers, research in this field constitutes an area of great interest in synthesizing
novel bio-products.

One potential application of these biopolymers could be their incorporation in food
packaging films, reinforcing their parental properties. In recent years, the need to replace
plastic films has arisen due to the great environmental problem. Biopolymers such as
starch, gelatin, and chitosan (CS) are derived from natural sources and are used as al-
ternatives for food packaging film production due to their characteristics and their high
biodegradability [26]. The use of phenolic compounds and natural extracts as additives
in food packaging films is well known due to their high antioxidant and antimicrobial
activity [26–29]. Furthermore, only a small part of the literature reports the use of grape
or winery by-product extracts as additives in biopolymer films [27,30,31]. However, the
stability of the extract-/phenolic-enriched films may be low due to the oxidation of the in-
corporated phenolic compounds, while small phenolic antioxidants could be released from
the polymer matrix during contact with water [32]. This problem could be addressed by re-
placing natural extracts with phenolic polymers; this may improve the stability of the films
by reducing the releasing effect and providing them with sufficient antioxidant activity.

Considering all that mentioned above, the present work reports the laccase-catalyzed
polymerization of phenolic compounds of wine lees extract (WLE) towards the production
of novel functional polymers. Wine lees, as one of the most abundant and important
by-products of the winemaking industry, are an excellent source of phenolic compounds,
with high antioxidant and other biological activities [23,33–35]. The phenolic polymer-
ization reaction of the WLE was studied for different time intervals to produce phenolic
polymers with tunable characteristics. The polymerization reaction and the formed poly-
meric products were analyzed with spectroscopic and analytical techniques to monitor the
polymerization process and to investigate the characteristics of the newly formed products,
such as thermal stability. Lastly, the different polymeric products were incorporated in CS
films to enrich them with antioxidant activity, indicating that they can be effectively used
as alternative additives in biodegradable food packaging films. To our knowledge, this is
the first time that high molecular weight phenolic polymers, derived from the enzymatic
oxidation–polymerization of a natural extract, are incorporated into CS films.

2. Materials and Methods
2.1. Chemicals and Reagents

Laccase from Trametes versicolor (0.78 U mg−1), Folin–Ciocalteu’s phenol reagent,
chitosan (75–85% deacetylated, low molecular weight, 20–300 cP), acetic acid (99.8%), 2,2-
diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic
acid) diammonium salt (ABTS) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Potassium peroxydisulfate was purchased from Merck KGaA (Darmstadt, Germany). Gallic
acid hydrate (GA) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox)
were obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Methanol (HPLC
grade), acetonitrile (HPLC grade), water (HPLC grade), potassium bromide, and glycerol
were purchased from Fisher Scientific Co. (Loughborouch, UK). Ethanol (99.8%), acetone
(99.5%), and sodium carbonate were purchased from Riedel de Haen (Charlotte, NC,
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USA). n-hexane and N, N-dimethylformamide (≥99.9%) were purchased from Carlo-Erba
(Emmendingen, Germany). Methyl alcohol-D4 was purchased from Deutero (Kastellaun,
Germany). Double-distilled water (ddH2O) was used for all experiments.

2.2. Wine Lees Extraction

Wine lees were recovered from a wine produced in a local winery (region of Epirus,
Greece). Syrah, Merlot, and Cabernet red grapes (60, 30, and 10%, respectively), originating
from the Nemea wine region (Peloponnese, Greece), were destemmed and pressed, and
fermentation was conducted by adding to the must 20 g/hL of Saccharomyces cerevisiae
Mycoferm-Pro (Ever S.R.L, Pramaggiore VE, Italy). The fermentation was carried out at
18 ◦C. The wine lees were collected from the bottom of a stainless steel wine stabilization
tank, washed twice with distilled water, and centrifuged (9500 rpm, 10 min). The obtained
pellet was used for phenolic extraction. The ultrasound-assisted extraction of wine lees
was carried out in 70% ethanol under the previously optimized conditions: solid-to-solvent
ratio 1:5, 20 min extraction time, and ultrasound power at 200 Watt. The ethanol was
evaporated through rotary evaporation (Buchi Rotavapor R-114, Büchi Labortechnik AG,
Flawil, Switzerland), and the extract was freeze-dried. The extract was stored at −20 ◦C
until use.

2.3. TvL Activity and Stability

The enzymatic activity of TvL was determined using ABTS as the substrate [36].
The reaction mixture consisted of 1 mM ABTS and 50 µg mL−1 TvL in 0.1 M phosphate
buffer pH 5.7. The oxidation of the ABTS was measured spectrophotometrically at 405 nm
(ε405 = 36,000 M−1 cm−1) for 5 min. One unit of enzymatic activity (U) was determined to
be the amount of enzyme that catalyzed the oxidation of 1 µmol of ABTS per minute.

The residual activity of TvL was measured after incubation at 30 ◦C to determine its
stability during the polymerization reaction. Briefly, a TvL solution of 0.5 mg mL−1 in
buffer was incubated at 30 ◦C, and appropriate aliquots were taken at 0, 1, 2, 4, 6, and
24 h to determine the activity, as described above. The results are expressed as % residual
activity through the following Equation (1):

Residual activity(%) =
A0 − At

A0
∗ 100 (1)

where A0 is the initial activity of TvL at t = 0 and At is the activity of TvL at different
time intervals.

2.4. Enzymatic Synthesis of Phenolic Polymers

The enzymatic oxidation of the WLE and the further synthesis of the phenolic polymers
was carried out according to a protocol developed for standard phenolic compounds, with
some modifications [16]. The reaction mixtures (50 mL) contained 2.5 mg mL−1 WLE,
0.5 mg mL−1 TvL, and phosphate buffer (0.1 M, pH 5.7). The reaction was carried out in
round bottom flasks at 30 ◦C and under continuous stirring at 140 rpm for 1, 2, 6, and 24 h.
After that, the reaction mixtures were transferred into 50 mL falcon tubes and left overnight
at 4 ◦C to facilitate the precipitation of the polymeric products. Then, the samples were
centrifuged at 9500 rpm for 10 min at 4 ◦C, and the precipitants were washed at least three
times with water: acetone mixture (3:1) until the supernatant was clear. One more washing
step with water was also performed to remove the excess acetone. Finally, the polymeric
products were freeze-dried, weighed, and stored at −20 ◦C until used. A blank reaction
without enzyme was also prepared to investigate the self-oxidation of the extract phenolics
during the process. The produced polymeric products are named P1h, P2h, P6h, and P24h
corresponding to 1, 2, 6, and 24 h of reaction, respectively. All experiments were conducted
in triplicate.
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2.5. Dephenolization of the Extract during Polymer Synthesis

The total phenolic content (TPC) of the reactions, before the enzymatic polymerization
and after the enzymatic polymerization, was estimated with the Folin–Ciocalteu method,
as described by Spyrou et al., and adapted at a total volume of 200 µL [6]. A standard
curve of gallic acid was used to express the results as mg of gallic acid equivalents (GAE)
per mL (mg GAE mL−1). The dephenolization yield was calculated through the following
Equation (2):

Dephenolization (%) =
TPCi − TPCs

TPCi
∗ 100 (2)

where TPCi is the initial total phenolic content of the reaction mixtures and TPCs is the total
phenolic content in the supernatant after the enzymatic polymerization. All experiments
were conducted in triplicate.

2.6. Analytical and Spectroscopic Characterization
2.6.1. Ultraviolet–Visible Spectroscopy

The alterations in the ultraviolet–visible (UV-Vis) spectra of the extract, before and
after different durations of the enzymatic treatment of the extract with TvL, were monitored
in the range of 250–800 nm on an Elisa reader (Thermo Scientific, Waltham, MA, USA), on
96-well UV-Elisa plates. The samples were centrifuged (12,000 rpm, 2 min) and diluted
with buffer (1:4), and an aliquot of 200 µL was used for spectra recording.

2.6.2. HPLC Analysis

Chromatographic separation of the phenolic compounds of the extract in the reaction
buffer before and after the enzymatic treatment was performed using a high-pressure
liquid chromatography system (Shimadzu, Tokyo, Japan) equipped with a photodiode
array detector and a Kinetex Evo C18 reversed-phase column (5 µm, 250 × 4.6 mm) with a
guard column, Gemini-NX C18 (4 × 3.0 mm) (Phenomenex, Torrance, CA, USA). Samples
were dissolved in 10% acetonitrile and filtered through a 0.22 µm nylon membrane syringe
filter. The column temperature was set at 30 ◦C, and the flow rate and injection volume
were 1 mL min−1 and 20 µL, respectively. The mobile phase consisted of acetonitrile (A)
and water (B, with 0.1% acetic acid) with gradient elution from 10–90% at 0–5 min to 16–84%
B at 5–18 min, 18–82% B at 18–26 min, 28–72% B at 26–31 min, 40–60% B at 31–40 min
and 10–90% B at 40–43 min; the total program time was 43 min. Phenolic compounds
were identified based on the retention time and absorption profile spectra of the reference
substances. All comparisons were carried out at the absorption maxima of the reference
compounds, and the concentration of each compound was calculated from standard curves
in terms of µg mL−1. The results are expressed as % reduction, which is calculated using
the following Equation (3):

Reduction(%) =
Ci − C f

Ci
× 100 (3)

where Ci represents the concentration of each compound in the extract before the enzymatic
treatment and Cf is the concentration of each compound in the reaction mixture after the
enzymatic treatment.

2.6.3. NMR Analysis
1H NMR experiments were conducted using a Bruker AVANCE 500 MHz spectrometer

at 298 K, equipped with a broadband inverse probe (Bruker Biospin, Rheinstetten, Ger-
many). Samples (8 mg mL−1) were dissolved in deuterated methanol (CD3OD). Spectral
data were processed using TopSpin 4.1.3 software.
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2.6.4. Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared (FTIR) was used to investigate the polymerization stages of
wine lees extract phenolics. The spectral measurements were performed at the 400–4000 cm−1

range, using 64 scans and a 4 cm−1 resolution, in a Jasco FT/IR 4700 (Jasco Co., Ltd., Tokyo,
Japan) spectrometer. The samples were analyzed after mixing with KBr to form pellets
including 1% (w/w) of the sample.

2.6.5. Gel Permeation Chromatography Analysis

Gel permeation chromatography (GPC) was carried out using the Agilent 1260 Infinity
II instrument (Agilent Technologies, Santa Clara, CA, USA), equipped with a guard column
(PLgel 5 µm) and two PLgel MIXED-D 5 µm columns (300 × 7.5 mm). Elution was
performed with N, N-dimethylformamide at a 1 mL·min−1 flow rate. The analysis was
performed using the Agilent 1260 Infinity II refractive index detector (RID) (G7162A).
The instrument was calibrated with polystyrene standards of molecular weight from 162
to 500,000 g mol−1 (EasiVial PS-M 2 mL, Agilent Technologies, Santa Clara, CA, USA).
It should be noted that a universal calibration was not applied, due to a lack of Mark–
Houwink (K and a) constants for the specific polymer–solvent system.

2.6.6. Differential Scanning Calorimetry Measurements

Differential scanning calorimetry (DSC) measurements were performed in a Mettler
DSC 1 STARe System (Mettler Toledo, Columbus, OH, USA) under N2 flow (10 mL·min−1).
A small quantity of each sample (8–25 mg, depending on the sample morphology) was
isothermally heated at 100 ◦C to remove any residual water or solvents and then heated
from 0 to 400 ◦C at a rate of 10 ◦C min−1.

2.6.7. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was conducted in a Mettler TGA/DSC 1 ther-
mobalance (Mettler Toledo, Columbus, OH, USA) from 30 to 600 ◦C at a 10 ◦C min−1

heating rate under N2 flow (20 mL min−1). Before the measurement, the samples were
isothermally heated at 100 ◦C to remove any residual water or solvents. The onset de-
composition temperature was defined as the temperature at 5% weight loss (Td,5%), the
degradation temperature (Td) was determined at the maximum rate of weight loss, and the
char yield was defined as the % residue at 600 ◦C.

2.7. Formation of Polymers-Enriched CS Films

A CS solution was prepared by dissolving 3 g of CS in 200 mL of a 1% (v/v) acetic
acid solution at 75 ◦C for 30 min under continuous stirring [37]. Then, glycerol, 3% (w/w,
concerning chitosan), was added as a plasticizer under stirring for 10 min. Then, 10 mL
of the chitosan solution was mixed with the polymeric products. Three different loading
concentrations were tested. The consistency of the different produced films for each
polymeric product is summarized in Table 1. The solutions were cast in 50 mm plastic Petri
dishes and dried at 35 ◦C for 4 days. CS films without polymer addition were prepared as
control samples.

2.8. Antioxidant Activity

The antioxidant activity of the polymeric compounds was tested against ABTS and
DPPH free radicals.

The ABTS assay was conducted according to Adelakun et al. with some modifications [13].
In brief, ABTS and potassium peroxydisulfate aqueous solutions were mixed to achieve final
concentrations of 7.0 and 2.45 mM, respectively. The mixture was incubated in darkness for
16–18 h and then diluted with ddH2O to obtain an absorbance of 0.700 ± 0.020 at 734 nm.
Then, 30 µL of the methanolic polymer solutions were mixed with 270 µL of the diluted
ABTS•+ to achieve final concentrations of 10–100 µg mL−1. The absorbance of the samples
was measured at 734 nm after 30 min of incubation in darkness.
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Table 1. Samples corresponding to the polymer-enriched CS films.

Polymeric Products Abbreviation Amount of Polymeric
Products (mg)

Chitosan Solution
(mL)

- CS - 10

P1h
CS/P1h5 5 10
CS/P1h10 10 10
CS/P1h20 20 10

P2h
CS/P2h5 5 10
CS/P2h10 10 10
CS/P2h20 20 10

P6h
CS/P6h5 5 10
CS/P6h10 10 10
CS/P6h20 20 10

P24h
CS/P24h5 5 10

CS/P24h10 10 10
CS/P24h20 20 10

The DPPH assay was conducted according to previous works [6,20]. A methanolic
solution of DPPH (0.1 mM) was prepared, and the tested concentration of the polymers
was 10–150 µg mL−1. The reaction mixtures were incubated in darkness for 30 min, and
the absorbance of the samples was monitored at 517 nm.

The results for both assays were expressed as µg Trolox equivalents (TE) per mg of
dry polymers, using Trolox standard curves.

The same methods were used to determine the antioxidant activity of the CS-polymers
films. The films were cut into 1 × 1 cm (~9 mg) and 0.6 × 0.6 cm (~4 mg) pieces for ABTS
and DPPH assays, respectively. For the ABTS assay, 1 mL of the diluted ABTS•+ was mixed
with the film’s pieces, and the absorbance was monitored at 734 nm after 5, 10, 20, and
30 min of incubation in darkness. For the DPPH assay, 1 mL of a methanolic DPPH solution
(0.03 mM) was mixed with the film’s pieces, and the absorbance was monitored at 517 nm
after 30 min of incubation in darkness.

The results are presented as % antioxidant activity after 30 min of incubation for both
assays using the following Equation (4):

Antioxidant activity(%) =
Acontrol − Asample

Acontrol
× 100 (4)

where Acontrol represents the absorbance of the control sample (only the free radical without
sample interaction) and Asample represents the absorbance of the free radical after the
interaction with the tested sample. All experiments were conducted in triplicate.

2.9. Moisture Content, Water Swelling, and Water Solubility Assays

The moisture content (MC) and water solubility (WS) of the films were determined
according to Liu et al. [38], and the water swelling (WSw) degree of the films was evaluated
according to Kahya et al. with minor modifications [28]. In our case, the drying time of the
films was adapted to 4 h because no significant weight changes were observed after 3 h of
drying at 105 ◦C. Furthermore, the water immersion of each film piece was conducted in
10 mL of ddH2O for 24 h.

The MC of the films was calculated using the following Equation (5):

MC =
W1 −W2

W1
× 100 (5)

where W1 is the initial weight of the film and W2 is the weight of the dried film.
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The WSw degree was calculated using the following Equation (6):

WSw =
W1 −W2

W1
× 100 (6)

where W1 is the weight of the water-immersed film and W2 is the weight of the dried film.
The WS was calculated using the following Equation (7):

WS =
W1 −W2

W1
× 100 (7)

where W1 is the weight of the dried film before the water immersion and W2 is the weight
of the dried film after water immersion.

All experiments were performed in triplicate.

3. Results and Discussion
3.1. Evaluation of the Polymerization Process

In this study, a wine lees extract was used as a source of different phenolic compounds
to acquire complex oligomers/polymers with new characteristics and sufficient biological
activity. According to the literature, TvL catalyzes the oxidation of polyphenols with no
substrate specificity [39]. Thus, TvL was used to oxidize the phenolics of the WLE towards
the formation of new biopolymeric products.

As the first step, the activity and stability of TvL at the reaction conditions were
determined to ensure that the enzyme is effective during the oxidation–polymerization
process. The specific activity of TvL was determined at 0.096 ± 0.003 U mg−1. The stability
results showed that TvL maintained 98.6 ± 1.1% of its initial activity for up to 24 h of
incubation at 30 ◦C. In the next step, the free -OH group content of the reaction solution
was estimated using the Folin–Ciocalteu assay. The assay can detect the free -OH of the
phenolic compounds in a medium. After enzymatic oxidation, the phenolic compounds
are converted to the corresponding quinones, leading to a free -OH content reduction. This
reduction, referred to as dephenolization, was estimated based on the difference in the
TPC before and after the enzymatic treatment, as previously described by Su et al. [18]. As
it is observed in Table 2, there was no significant difference in the dephenolization yield
between the different incubation times of the enzymatic reaction. The polymeric products
recovery ranged from 22.0 to 25.7%, the latter corresponding to the highest amount of
polymeric products formed after 24 h. This result indicates that most of the phenolics
had been oxidized after 1 h of enzymatic treatment. Moreover, the mass of the produced
polymeric products was slightly higher as the incubation time increased. This difference
could be attributed to the second step of the procedure, the oxidative coupling. We can
assume that as the spontaneous oxidative coupling of the formed quinones to oligomers or
polymers is a chemical procedure, it is not affected by the presence of laccase [40].

Table 2. Effect of incubation time on the dephenolization yield of the WLE and the production of
the polymers.

Sample Name Dephenolization (%) Amount of Polymeric
Products (mg)

Polymeric Products
Recovery * (%)

P1h 82.4 ± 0.1 27.5 ± 0.5 22.0 ± 0.4
P2h 82.2 ± 0.6 27.9 ± 0.6 22.4 ± 0.5
P6h 81.1 ± 0.3 30.2 ± 1.0 24.2 ± 0.8
P24h 80.4 ± 0.7 32.1 ± 1.3 25.7 ± 1.1

* Expressed as the percentage of the amount of polymeric products (mg) to the initial amount (mg) of the WLE
used for the reaction.

The reaction progress was also monitored by UV-Vis spectroscopy. The UV-Vis spectra
of the WLE and the supernatants after the treatment with TvL are presented in Figure 1.
One main peak at 260–290 nm (with a maximum at 273 nm) and two broad bands at
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350–400 nm and 420–650 nm can be identified in the extract’s spectra, as also previously
reported for wine lees extracts [41,42]. The main peak at 260–290 nm is attributed to the
presence of phenolic compounds, while the bands at 350–400 nm and 420–650 nm could
be ascribed to flavonoids and anthocyanins, respectively [42]. As time increased, the color
of the reaction changed from dark purple to dark brown, and polymeric products were
observed to precipitate. These observations were mirrored by the gradual disappearance
of the UV-Vis characteristic peaks after 10 min of enzymatic treatment. More specifically,
the broad peaks presented at 350–400 and 420–650 nm of the extract were depleted after
enzymatic treatment, indicating that flavonoids and anthocyanins were the first phenolic
compounds to be oxidized by laccase. Similarly, the absence of these peaks was also
confirmed in the UV-Vis spectra of the laccase-oxidized grape extracts, as reported by
Li et al. [19]. No significant alterations could be observed after 1 h of incubation, indicating
that the enzymatic oxidation reaction was completed in the first hour of treatment. A
similar result was observed by Spyrou et al. where the peaks of the initial phenolic extract
were decreased and broadened after enzymatic-assisted oxidation of the Ulva sp. extract [6].
The results of the UV-Vis analysis are in line with the results obtained from the Folin–
Ciocalteu assay described above, where the dephenolization yields at 1, 2, 6, and 24 h
were almost the same, hinting that the oxidation is almost completed at the first hour of
enzymatic treatment.
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The HPLC analysis allowed for an initial characterization of the phenolic profile of
the WLE, as well as for the phenolic compounds that were involved in the polymeriza-
tion process to be determined. Table 3 shows the main compounds that characterize the
extract. Different known phenolic acids, phenolic alcohols, and a flavonoid were mostly
present, which is in accordance with the literature, yet unknown polyphenols and a major
fraction attributed to procyanidins/anthocyanins were also evident in the chromatogram
(Figure S1) before the enzymatic treatment [34,43,44]. These fractions were not identified;
however, these polyphenols also contribute to the formation of polymeric products. After
the laccase-mediated polymerization, the peaks of all the known phenolic compounds de-
creased or disappeared, indicating an extensive reduction in the free phenolic compounds’
concentration (Table 3, Figure S2). The appearance of new peaks could be assigned to the
formation of polymeric structures (dimers, trimers, tetramers, or polymers of phenolic
compounds) during the 1 h of incubation. Latos-Brozio et al. have also observed a similar
pattern for the polymerization of specific flavonoid compounds [15]. These results may
explain the results obtained from the Folin–Ciocalteu assay and the UV-Vis spectroscopy,
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which indicate the almost complete oxidation of the main phenolic compounds after 1 h
of treatment.

Table 3. The main phenolic compounds of WLE and the reduction in each phenolic compound in the
supernatant after the enzymatic treatment (1 h), as evaluated by HPLC analysis.

Compound Reduction (%)

Gallic acid 98.1 ± 1.2
Syringic acid 50.0 ± 4.9

p-Coumaric acid 97.3 ± 2.1
Caffeic acid 81.3 ± 2.8
Vanillic acid 98.8 ± 0.9

Hydroxytyrosol 96.3 ± 3.1
Homovanillyl alcohol 42.3 ± 2.3

Tyrosol 76.0 ± 3.7
Catechin 97.6 ± 1.8

Vanillyl alcohol 98.3 ± 0.9
Catechol 97.9 ± 1.3

An NMR study also confirmed the oxidation of the phenolic compounds of the WLE.
As shown in Figure 2, after the enzymatic oxidation reaction, a significant decrease, dis-
appearance, or shift in the peaks in the range of 6–8.30 ppm was observed. Hence, the
aromatic hydroxyl groups were involved in the polymerization process. Previous studies
have also ascertained the participation of these groups in oxidative coupling [15,18,45,46].
As Latos-Brozio et al. also stated, minor differences were also observed in the range
of 3–5 ppm that can be attributed to C−C bonds between flavonoid compounds which
occurred during the polymerization process [15,45].
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FTIR spectroscopy was also applied to evaluate the formation of the polymeric prod-
ucts concerning the reaction time (Figure 3). It can be observed that the spectra of the
polymers differentiate from the spectrum of the extract. More specifically, the band of the
extract at the region of 1710–1730 cm−1 corresponding to C=O stretching vibrations of
the carboxyl groups, was diminished as the formation of the polymers took place. The
band of the extract at 1625 cm−1, which is correlated to the aromatic C=C stretching vi-
brations, was shifted to higher wavenumbers (up to 1641 cm−1) after 24 h of enzymatic
treatment, indicating alterations in the aromatic rings of the phenolic compounds due to
the polymerization reaction. At higher time intervals, the appearance of a new band at
1530 cm−1 was observed and is ascribed to the presence of o-quinones that are formed
after the enzymatic treatment [15]. As incubation time increased, the band at 1110 cm−1,
ascribed to phenolic C-O vibrations, was eliminated, suggesting the appearance of the
oxidative coupling reactions [45], while the appearance of a band at 1230 cm−1 is associated
with the phenolic C-O stretching vibrations [47]. Lastly, the band at 1060 cm−1 which
appeared in the 24 h polymer corresponds to the ketone groups (C–CO–C), indicative of
the polymerization process [15,45]. The FTIR results reinforce the hypothesis that while the
enzymatic oxidation of the phenolic compounds is completed at the first hour of incubation,
the oxidative coupling (the chemical step of the reaction) that leads to the formation of the
polymers continues for up to 24 h.
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Finally, the synthesized polymeric products and extract were also submitted to GPC
analysis (Figure 4a,b). Significant differences were observed when comparing the relevant
chromatograms. Firstly, the polymers’ chromatograms were clearer, resembling typical
polymer GPC curves in contrast to the extract. No peaks were monitored in the region
of 14–16 mL in the polymers’ chromatograms. In contrast, an irregular morphology with
broad, indistinct peaks was observed in the extract in the same region. In the open lit-
erature, there are various works where different natural substances (e.g., extracts from
lignocellulosic materials [48], waste woody materials [49], agro-industrial residues [50],
and phenolic substances [51]) have been submitted to GPC and similar curves with broad
and/or multiple peaks have been obtained.
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Focusing on the synthesized polymers’ chromatograms, unreacted extract residues
were observed with the relevant peaks at 17–19 mL corresponding to MW values of
300 to 1900 g mol−1. At lower elution volumes (5–14 mL), three distinct, sharp peaks
indicating three different higher MW populations were detected for the P24h corresponding
to 44 × 103, 20 × 104, and 106 g mol−1. On the contrary, the P1h, P2h, and P6h presented
broad, unsplit peaks corresponding to 33× 104, 29× 104, and 45× 104 g mol−1, respectively.
Thus, the increased reaction time (24 h) favored the polymerization and led to products of
notably higher MW values.

Macroscopically, the polymeric products presented a uniform morphology compared
to the extract, which seemed inhomogeneous, probably due to the presence of different
compounds in its mass (an irregular morphology with broad indistinct peaks was observed
in the extract GPC chromatogram). All the polymeric products (P1h, P2h, P6h, P24h)
were received in the form of brown, free-flowing powders; P1h is indicatively presented
in Figure 5a. The solid-state character and the free-flowing morphology indicate high
polymerization degrees, in line with the GPC-derived results. On the contrary, the freeze-
dried extract presented a sticky morphology with aggregated particles, attributed to the
presence of low-molecular-weight components; the extract also presented a dark purple
color (Figure 5b). The different colors of the polymeric products (brown) and the extract
(dark purple) indicate their different chemical compositions. The purple color of the extract
can be ascribed to anthocyanins existing in red grapes and wines as complexes either
with themselves (self-association) or with other compounds, resulting in the formation
of co-pigments. These are formed by processes involving stacked molecular aggregation,
primarily held together by hydrophobic interaction; they can significantly increase color
density (hyperchromic effect) and affect color tint, giving a more purple hue [52]. Regarding
the polymer’s brown color, quinones, produced by polyphenol oxidases (i.e., laccases
in our case), are very reactive species and electrophiles that undergo (non-enzymatic)
polymerization to yield brown-colored polymeric pigments and by-products [53,54]. The
color differences between the polymers and the extract were also observable when the
samples were dissolved in DMF; the polymers’ solutions were yellowish, while the extract
was brownish (Figure S3), with better solubility. The extract’s higher susceptibility to
dissolution confirms the presence of lower molecular weight components compared to the
polymers, as indicated via GPC.
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3.2. Thermal Analysis of the Formed Polymers

Different behavior was observed during TGA between the extract and the synthesized
products for reaction times of 1 and 24 h: the extract’s weight loss began already after
150 ◦C (Td,5% = 164 ◦C), while the polymers presented slight weight loss at 30–100 ◦C, due
to residual water or solvents, and then were thermally stable up to 180 ◦C with Td,5% being
increased with reaction time up to 186 and 192.5 ◦C for the P1h and P24h, respectively
(Figure 6a, Table S1). Given that Td,5% is strongly affected by polymer MW, this trend aligns
with the GPC results: a higher MW of the P24h compared to the P1h. On the other hand,
the residues at 600 ◦C were found to be similar for all three samples, ranging between
29 and 35% (Table S1). These high char residues are typical for phenolic compounds due
to the aromatic rings in their structures; for instance, polycatechol and poly(gallic acid)
degradation in TGA (30–800 ◦C, under N2) has been reported in the literature to result in
char residues of ca. 57 and 25%, respectively [55]
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extract monomer. The extract was used as the initial reference material.

Another noticeable difference between the extract and the polymeric products is their
decomposition profile (Figure 6b). The extract presented a single-step decomposition
(Td = 194 ◦C) with two shoulders at ca. 300 and 350 ◦C. The herein-used extract originates
from wine lees. In different works, winery lignocellulosic wastes (e.g., vine shoots and
wine pomaces) have been submitted to TGA under N2. Among their substances, pectin
and non-structural sugars have been shown to decompose at 240–270 ◦C, hemicellulose at
ca. 300 ◦C, cellulose at ca. 340 ◦C, and lignin after 400 ◦C [56,57].
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On the other hand, a two-step decomposition at higher temperatures (Td1 218–238 ◦C,
Td2 271–308 ◦C) occurred for the P1h and P24h. This decomposition profile can be correlated
to the different MW fractions detected in the GPC. Accordingly, in the literature, polyesters
including poly(butylene succinate) (PBS) [58,59], poly(ethylene succinate) (PES) [60], and
poly(ε-caprolactone) (PCL) [61] have been found to decompose in multiple steps when their
MW is below a critical value, showing that some decomposition reactions are restricted to
the lower molecular weight fractions probably due to increased end-group concentrations.
Regarding the effect of polymerization time, for P24h, the second decomposition peak seems
to dominate, as it is broader and more intense compared to the first peak, in contrast to P1h,
where the opposite occurs with the first peak dominating (Figure 6b). This difference could
indicate a higher MW population with increased thermal stability for the P24h compared
to the P1h, in line with GPC results and the above-mentioned Td,5% values.

Turning to the DSC results, the endotherm monitored at 30–40 ◦C in all samples
(Figure 7, Table S2) confirmed the presence of residual water and/or solvents, also evi-
denced in the polymers’ TGA. A remarkable difference between the polymers and the
extract is an endotherm detected at 122–123 ◦C only for the polymers (Figure 7b), probably
indicating melting since no weight loss was monitored at this temperature in TGA. This
transition, absent from the extract thermogram (Figure 7a), further confirmed the success-
ful formation of polymers. Two more broad endotherms were observed in the products’
thermograms, with the first at 220–300 ◦C and the second at 320–380 ◦C. These peaks
correspond to the products’ two-step degradation, also monitored in TGA. Regarding the
extract DSC, multiple indistinct endotherms were detected after 125 ◦C and up to 360 ◦C
(Figure 7a), coinciding with its degradation observed in TGA (see Figure 6).
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Overall, the herein-conducted polymerization can be considered successful based
on the products’ defined thermal properties (increased thermal stability compared to the
extract, thermal transition at 122 ◦C monitored only for the polymers) and the obtained GPC
results (clearer chromatograms of the products, similar to typical polymer curves, high MW
values). Regarding the examined reaction times (1, 2, 6, and 24 h), the P24h was superior,
with a higher Td,5%, in agreement with its higher MW, and the second decomposition peak
dominating in the TGA curve, in contrast to the P1h.

3.3. Antioxidant Activity of the Formed Polymers

The antioxidant activity of the obtained polymers was evaluated by ABTS and DPPH
free radicals. The results were expressed as TE (Trolox being a standard synthetic antioxi-
dant), as well as % antioxidant activity using a concentration of 100 µg mL−1 polymeric
products (Table S3). The antioxidant capacity of the polymeric products was up to ~2.4-fold
and ~4-fold lower than the corresponding extract, according to DPPH and ABTS assays,
respectively. This result could be attributed to the loss of functional -OH groups due to
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the oxidation and polymerization process. Similar results were observed for the enzy-
matic oxidation and polymerization process of phloridzin [62]. The authors reported that
the IC50 value of the polymeric phloridzin was ~2.5-fold lower than the corresponding
monomer. Furthermore, according to Latos-Brozio et al., the catechin polymers obtained
from laccase or peroxidase treatment led to lower antioxidant capacity than their respective
monomers due to the limitation of the reaction of active groups, such as –OH, with the free
radicals [15]. According to the authors, the poly-catechin obtained after laccase treatment
exhibited ~4-fold and 26-fold reductions in the ABTS and DPPH radicals, respectively, at
a tested concentration of 100 µg mL−1, compared to catechin. As shown in Table 4, the
P1h demonstrated the highest antioxidant activity. The other polymer products exhibited
lower values, indicating lower antioxidant activity with no observed significant difference
among them. These findings are similar to those reported for the antioxidant activity of
the products derived from the laccase-catalyzed oxidation of propolis and poplar bud
extracts [25]. The authors reported that the IC50 values of the oxidized products were
35, 99, and 294 µg/mL after 1, 7, and 15 h of laccase-catalyzed oxidation, respectively,
indicating that the antioxidant activity decreases as the reaction time increases [25]. The
highest antioxidant capacity observed for P1h could be attributed to the smaller polymer
consistency. As evaluated from the GPC analysis, the fractions of P1h have the lowest
molecular weight among the four products. It is expected that small compounds can react
more efficiently with the DPPH and ABTS free radicals than bulky compounds due to
steric hindrance phenomena arising from the latter. Accordingly, the polymers with higher
molecular weights may not be easily accessible to the free radicals [63–66]. For instance,
Xiao et al. reported that the dimerization of flavonols leads to lower antioxidant activity
due to higher steric hindrance of the dimer structure [65].

Table 4. Antioxidant activity of the polymeric products, expressed as µg TE mg−1 polymer values
for ABTS and DPPH assays.

Polymeric Products ABTS
(µg TE mg−1 Polymers)

DPPH
(µg TE mg−1 Polymers)

P1h 133.75 ± 1.53 164.77 ± 3.14
P2h 99.39 ± 3.67 122.28 ± 2.45
P6h 95.94 ± 3.06 120.80 ± 1.05
P24h 96.59 ± 4.32 124.51 ± 2.68

3.4. Properties of the Polymer-Enriched CS Films
3.4.1. Antioxidant Activity of the CS-Polymer Films

The antioxidant activity of the phenolic polymer-enriched CS films is presented in
Figure 8. It must be mentioned that when the same proportion of WLE was loaded in the
CS films (20 mg), the antioxidant capacity of the CS-extract film using the DPPH assay
was ~52%. This antioxidant activity is similar to or lower than that of the same loaded CS-
polymers films. As seen, the addition of the phenolic polymers improved the antioxidant
potential of the films, exhibiting antioxidant activities of almost 80 and 70% for ABTS
and DPPH, respectively. Moreover, the films containing higher amounts of the polymers
presented higher antioxidant activity, demonstrating that the result is dose-dependent. The
dose-dependence effect is very common in packaging films incorporating natural extracts
rich in phenolic compounds. For example, the incorporation of curcumin, mango leaf,
or vinasse extracts in natural polysaccharides packaging films increases the antioxidant
activity of the films proportionally to the amount of added extract [30,67,68]. Moreover, CS
films enriched with grape pomace or grape seed extracts exhibited 16 and 34% antioxidant
activity, respectively, using DPPH. Similar results were obtained using the ABTS free
radical, where the extracts exhibited 12 and 25% antioxidant activity, respectively [27].
These results indicate that our films are promising for the development of active food
packaging alternatives. Finally, the DPPH results showed that the antioxidant activity of
the films loaded with P1h was higher than the antioxidant activity of the films with the
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other polymers, indicating that P1h was the most effective as an improving agent for food
packaging applications. This result is in line with the results from Table 4, where P1h
exhibited the highest antioxidant activity.
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3.4.2. Moisture Content, Water Swelling, and Water Solubility of the Films

Chitosan is well known as a biopolymer for food packaging applications due to its
safety, high biodegradability, and mechanical and water-sensitivity properties [26,38,69].
Moisture content, water swelling, and water solubility are important indicators of a film’s
quality [38,69]. For the estimation of the MC, WSw, and WS values, the films enriched with
P1h were chosen as they presented the highest antioxidant activity toward DPPH. The
results are summarized in Figure 9. As observed, the addition of P1h does not significantly
affect the water sensitivity of the films compared to the blank chitosan films. Similarly, the
MC of the films remained unaltered after the addition of the polymer. On the contrary, the
WS and WSw of the CS-P1h films were slightly increased as the amount of the polymer
increased, except for the lowest loading concentration. However, these small changes are
not considered significant in affecting the film’s properties. These observations for the
water sensitivity tests indicate that the CS films are easily biodegradable even after the
addition of the polymer [70,71]. The swelling degree of the films is correlated with their
biodegradability; the permeation of water molecules into the films leads to film swelling,
facilitating their enzymatic degradation by the soil microorganisms [71,72].
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4. Conclusions

In this work, wine lees were exploited due to their high phenolic content to attain
products with interesting properties. TvL was used as a biocatalytic tool for the oxidation
of a wine lees phenolic extract to produce new phenolic polymers with tunable properties
that could potentially replace their phenolic precursors in many applications, such as in
food packaging films. In this context, the laccase-catalyzed oxidation of the WLE was
investigated in various time intervals and different polymeric products were produced.
The obtained results support that the laccase-catalyzed oxidation reaction is completed
after 1 h of enzymatic treatment while the polymerization process continues for up to
24 h, as confirmed by different spectroscopic and analytical techniques. The synthesized
polymeric products proved to be effective as additives in food packaging films, reinforcing
their initial antioxidant activity. Summarizing, the results of this work reveal the potential
use of laccases as biocatalysts to produce value-added polymers from wine lees as new
bioactive materials for alternative packaging applications. This bioprocess could be applied
to other by-products, as well, paving the way for sustainable solutions and promoting the
principles of circular economy. However, there is still a great need for further investigation
of the process and characterization of the isolated polymeric products to deepen our
understanding of the reaction mechanisms and their impact on the properties of the
final products.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biom14030323/s1, Figure S1: HPLC chromatogram of the reaction’s
supernatant before the polymerization process; Figure S2: HPLC chromatograms at 280 nm of the
WLE before and after TvL treatment; Figure S3: (a) The polymeric product P1h and (b) the extract
dissolved in DMF; Table S1: Thermal properties defined via TGA of the extract and the P1h and P24h
synthesized polymers; Table S2: Thermal properties defined via DSC of the extract and the P1h and
P24h synthesized polymers; Table S3: Antioxidant activity (%) of the formed polymeric products
(tested concentration: 20 µg mL−1).
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