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Abstract: The majority of approved therapies for many diseases are developed to target their un-
derlying pathophysiology. Understanding disease pathophysiology has thus proven vital to the
successful development of clinically useful medications. Stroke is generally accepted as the leading
cause of adult disability globally and ischemic stroke accounts for the most common form of the two
main stroke types. Despite its health and socioeconomic burden, there is still minimal availability
of effective pharmacological therapies for its treatment. In this review, we take an in-depth look
at the etiology and pathophysiology of ischemic stroke, including molecular and cellular changes.
This is followed by a highlight of drugs, cellular therapies, and complementary medicines that are
approved or undergoing clinical trials for the treatment and management of ischemic stroke. We
also identify unexplored potential targets in stroke pathogenesis that can be exploited to increase
the pool of effective anti-stroke and neuroprotective agents through de novo drug development and
drug repurposing.

Keywords: ischemic stroke; neuroinflammation; oxidative stress; neuroprotection; cellular therapy;
drug repurposing

1. Introduction

For over three decades, researchers have had tremendous success unravelling the
molecular and cellular changes that occur following a stroke. This breakthrough also
accurately identifies the various risk factors for stroke. Typically, stroke is a neurological
disorder that results from a partial or complete shortage of blood supply to any part of
the brain. The shortage of blood supply is often the consequence of obstructed blood flow
(ischemic stroke, IS) or blood leakage from a ruptured cerebral blood vessel (haemorrhagic
stroke). In the face of limited or absent blood supply, the affected brain region(s) suffer
oxygen and nutrient deprivation and become necrotic. In the absence of prompt interven-
tion, this event is followed by a cascade of events that can cause the death of surrounding
tissues, known as the ischemic penumbra. Stroke treatment thus occurs via three major
approaches—preventive measures, management measures, and post-stroke rehabilitation
measures [1]. The only FDA- and EU-approved drug for IS treatment, alteplase, has a short
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time window of 3–4.5 h and leaves a post-treatment side effect of intracerebral haemor-
rhage [2–4]. Since its discovery over two decades ago, alteplase remains the most effective
thrombolytic agent for acute IS. There is therefore an urgent need to explore potential
therapies. A clear understanding of the causes and pathophysiology of ischemic stroke
presents a unique opportunity for the development of a pool of potential therapies for
the condition. In this review, we dive deep into ischemic stroke pathophysiology and
identify possible targets for novel therapies including cellular therapies. We also make
recommendations for drug repurposing and redesign of some existing drugs with potential
for use in IS.

2. Etiology and Pathophysiology of Ischemic Stroke

The causes (etiology), pathogenesis, and the underlying molecular, biochemical, and
structural changes that occur in the face of any disease condition constitute its pathophysiology.
Ischemic stroke occurs almost suddenly within minutes of blood supply interruption to brain
tissues due to blockage of arteries supplying the brain by either blood clots formed by atrial
fibrillation or thrombus formed on fatty deposits referred to as atherosclerotic plaque [5]. The
affected brain region is often regarded as the ischemic core. Here, most of the cells undergo
irreversible death before the effect(s) of neuroprotective agents are established. Surrounding
the ischemic core is a region of salvageable cells known as the ischemic penumbra that often
constitutes the target of therapeutic interventions. An interplay between complex molecular
and cellular mechanisms results in some phenotypic manifestations including hemiplegia,
paraplegia, dysarthria, and paresis. Other manifestations may occur depending on the region
of the brain that receives blood supply from the occluded arteries [6]. Similar to numer-
ous other neurodegenerative conditions, ischemic stroke is characterized by a multitude of
changes within the afflicted ischemic core and the surrounding penumbra. These macro- and
microscopic changes are commonly categorized under five overarching terms: Neuroinflam-
mation, Excitotoxicity, Oxidative stress, Apoptosis, and Autophagy (Figure 1). Cell death in
ischemic stroke occurs due to complex interactions between these independent but mutually
reinforcing series of pathological events.

2.1. Excitotoxicity

Continuous blood supply is critical to the survival of the brain because the brain
constantly requires oxygen and nutrients for proper functioning, relying on effective blood
circulation [7]. Once a major cerebral artery is blocked, the blood supply to the affected brain
region is reduced. The diminished circulation causes energy disruption due to hypoxia and
ischemia by interfering with ATP production. Consequently, ionic gradients of ion channels,
including calcium ATPase, sodium/calcium exchange, and sodium/potassium ATPase
on plasma and organelle membranes of neurons are disrupted [8]. This leads to an excess
influx of calcium into the neurons, and the activation of calcium ion-dependent enzymes
ultimately causes the release of excess glutamate and a reduction in its reuptake [9,10].
This series of events constitutes excitotoxicity due to excessive stimulation of N-methyl-D-
Aspartate receptors (NMDAR) in the membrane of postsynaptic neurons leading to the
generation of reactive oxygen species (ROS) causing oxidative stress, which then interrupts
mitochondrial function and neuronal death occurs [11]. Excessive activation of NMDA
receptors also contributes to the disruption of neuronal plasticity, affecting aging, memory,
and learning, which leads to cognitive decline associated with stroke [12].

2.2. Oxidative Stress

When blood flow to the brain is disrupted, it leads to impaired energy metabolism and
oxidative stress injury. Recanalization and reperfusion following blood flow obstruction
have been established as culprits in oxidative stress-induced injury. Oxidative stress, a
major mechanism in ischemic stroke, disrupts the oxidant–antioxidant balance, particularly
in brain cells rich in polyunsaturated fatty acids. Factors such as low antioxidants, high pro-
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oxidants (e.g., iron), and elevated oxidative metabolism contribute to worsened oxidative
damage [13].
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ply is halted leading to a fall in energy (ATP), nutrient, and oxygen supply to the affected brain 
region(s). Consequently, a cascade of events occurs—an imbalance in calcium, sodium, and potas-
sium ions, deployment of adhesion molecules, activation of AMPK, and inhibition of mTOR activa-
tion. These diverse events result in calcium accumulation and subsequently excitotoxicity, neuroin-
flammation, oxidative stress, apoptosis, and autophagy, with each occurring separately and sup-
porting the other to cause cell death. Key: aa= Amino acids, Fe = Iron, ATP = Adenosine triphosphate, 
Ca2+ = Calcium ions, Na+ = Sodium ions, potassium ion = K+, COX = Cyclooxygenase enzyme, ROS 
= Reactive oxygen species, AMPK = Adenosine monophosphate-activated protein kinase, mTOR = 
mammalian target of rapamycin, arrow pointing up = rise/increase/upregulation, arrow pointing 
down = drop/decrease/decline/downregulation, arrows with multiple heads = series of events. 
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Figure 1. Pathogenesis of Ischaemic Stroke. In the event of cerebrovascular obstructions, blood
supply is halted leading to a fall in energy (ATP), nutrient, and oxygen supply to the affected brain
region(s). Consequently, a cascade of events occurs—an imbalance in calcium, sodium, and potassium
ions, deployment of adhesion molecules, activation of AMPK, and inhibition of mTOR activation.
These diverse events result in calcium accumulation and subsequently excitotoxicity, neuroinflam-
mation, oxidative stress, apoptosis, and autophagy, with each occurring separately and supporting
the other to cause cell death. Key: aa = Amino acids, Fe = Iron, ATP = Adenosine triphosphate,
Ca2+ = Calcium ions, Na+ = Sodium ions, potassium ion = K+, COX = Cyclooxygenase enzyme,
ROS = Reactive oxygen species, AMPK = Adenosine monophosphate-activated protein kinase,
mTOR = mammalian target of rapamycin, arrow pointing up = rise/increase/upregulation, arrow
pointing down = drop/decrease/decline/downregulation, arrows with multiple heads = series
of events.

Acute ischemic stroke disrupts calcium homeostasis, releasing calcium in the brain and
activating pathways that produce ROS and oxidative damage. This imbalance in oxidants
and antioxidants results in excessive ROS and hydroxyl radicals, causing extensive damage
to the brain [14]. Cellular ROS generation further increases during ischemic stroke due
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to glucose and oxygen deprivation, exacerbating oxidative stress and brain damage [15].
Superoxide anion production during ischemia is attributed primarily to xanthine oxidase
(XO) and NADPH oxidase (NOX). ATP depletion during ischemia causes an accumula-
tion of hypoxanthine and xanthine, substrates for XO, leading to ROS generation [16,17].
Increased XO expression in the infarcted area after an ischemic stroke has been observed.
NOX, another significant source of ROS, is upregulated post-stroke, with NOX2 identified
as the primary source of superoxide production activated by the N-methyl-D-aspartate
receptor [18,19].

Mitochondria recognized as the cellular powerhouses, play a crucial role in maintain-
ing cell energy homeostasis, making them integral players in ischemic neuronal death.
The breakdown of mitochondrial respiratory function and membrane potential triggers
a cascade of events leading to neuronal demise after ischemia. The depolarization of
mitochondria initiates excessive production of ROS, decreased ATP generation, and the
accumulation of PTEN-induced putative kinase 1 (PINK1) and unfolded protein response
(UPR) [20]. As ROS levels rise and calcium overloads, the membrane permeability transi-
tion pore (MPTP) opens, releasing cytochrome c. This activation triggers effector caspases,
ultimately executing apoptotic death [21]. PINK1, in response to mitochondrial damage,
recruits Parkin and phosphorylates both Parkin and ubiquitin, initiating mitophagy [22].

2.3. Neuroinflammation

Neuroinflammation involving several immune cells, such as innate immune cells and
adaptive immune cells also plays a crucial role in IS. The brain insult that follows ischemic
stroke results in necrosis and apoptosis, driving an inflammatory reaction controlled
by the discharge of ROS, chemokines, and cytokines. This process springs up in the
microcirculation and involves several cytotypes, such as innate immune cells (i.e., the
microglia) and adaptive immune cells (i.e., lymphocytes), causing neuronal death [23]. The
neuroinflammation process depends on the scene, period, and course of the neurological
insult. Microglia play a dual role in neuroinflammation during the acute phase of stroke
onset. MicroRNAs, such as miR-203, have been found to mitigate cerebral ischemia–
reperfusion injury by targeting microglia [24]. Furthermore, the polarization of microglia,
particularly M1 polarization, has been associated with exacerbating cerebral ischemia [25].
The intense neuroinflammation during the acute phase of stroke is linked to blood–brain
barrier (BBB) breakdown, neuronal injury, and poor outcomes [26]. Neuronal death is
the ultimate determinant of IS-induced morbidity and mortality, and the success of its
management is determined by the extent to which it is prevented.

2.4. Apoptosis

Apoptosis involves a series of intrinsic and/or extrinsic events that shrink the neurons
and condense the cytoplasm ultimately breaking their nuclear membrane to form apoptotic
bodies. In the intrinsic pathway, reduced nutrients and oxygen supply to the cell disrupts
ATP production by the normal glycolytic oxidative phosphorylation pathway. As such,
the anaerobic pathway predominates, and the ATP produced is insufficient to maintain
cellular activities. This results in ionic imbalance (Na+/Ca2+ influx and K+ efflux) and
calcium ion accumulates in the cell, which causes excessive release of excitatory amino acid
neurotransmitters, especially glutamate, into the extracellular space. This process is then
followed by a cascade of cytotoxic events in the nucleus and cytoplasm, including activation
of calpain (calpain-mediated), generation of ROS (reactive oxygen species-mediated) from
mitochondrial metabolism, which causes damage to the cellular membrane, and DNA
breakage (DNA damage-mediated events) [27], while the extrinsic pathway, which often
occurs independently or in synergy with the intrinsic pathway, involves the activity of the
signaling factors of inflammation released by astrocytes, microglia, and oligodendrocytes
due to cerebrovascular damage. These inflammatory signaling factors include various
proinflammatory cytokines and receptors including TNF-α/β, chemokines, interleukin
1β, TNF-related apoptosis-inducing ligand receptor (TRAIL-R), and Fas ligand (FasL) [28].
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These receptors at the neuronal cell membrane trigger an apoptotic event involving a signal
induced by caspase-8 activating the downstream effector caspase-3 or BID, which mediates
apoptosis through the mitochondrial-dependent pathway [29].

In addition to apoptosis, cell death following an ischemic stroke can also occur via any
of these five mechanisms: ferroptosis, phagoptosis, parthanatos, pyroptosis, and necropto-
sis (Figure 2). Understanding the intricate interplay of these different cell death pathways
in the context of ischemic stroke is crucial for developing targeted therapeutic interven-
tions. Combining insights from these mechanisms could pave the way for more effective
strategies to mitigate neuronal damage and improve outcomes in ischemic stroke patients.
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2.4.1. Ferroptosis

A recently defined form of cell death that has been implicated in the pathogenesis of
ischemic stroke is ferroptosis. It is characterized by the accumulation of lipid peroxides
and iron-dependent ROS, leading to oxidative damage and cell death [30]. In IS, ferroptosis
has been shown to contribute to neuronal death and tissue damage [31]. For example, the
level of soluble tau protein, which mediates iron transport, decreases in the ischemic region
after stroke, leading to iron accumulation and neuronal death [32]. Inhibition of ferroptosis
using specific inhibitors has been shown to protect against neuronal damage in animal
models of stroke [33].

The regulation of iron metabolism and lipid peroxidation are key factors in the de-
velopment of ferroptosis. Excessive iron accumulation and impaired antioxidant defense
mechanisms, such as reduced glutathione peroxidase 4 (GPx4) activity, can promote lipid
peroxidation and trigger ferroptotic cell death. Therefore, targeting iron metabolism
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and lipid peroxidation pathways may represent potential therapeutic strategies for is-
chemic stroke [34].

2.4.2. Necroptosis

Necroptosis is a regulated form of necrosis that occurs in response to various stimuli, in-
cluding ischemia and inflammation. It is mediated by the activation of receptor-interacting
protein kinase 1 (RIPK1) and RIPK3, which ultimately leads to the phosphorylation and
activation of mixed lineage kinase domain-like protein (MLKL). MLKLs then translocate
to the plasma membrane, disrupting membrane integrity and cell death [35]. Necroptosis
has been shown to contribute to neuronal death in ischemic stroke [36–40]. Inhibition
of necroptosis through RIPK1 pharmacologic and genetic inhibition has been found to
reduce neuronal damage and improve functional outcomes in animal models of ischemic
stroke [41]. However, the exact role of necroptosis in ischemic stroke is still not fully under-
stood, and further research is needed to elucidate its precise contribution to IS pathogenesis.
Clinical evidence regarding the efficacy of necroptosis inhibitors for ischemic stroke is
also limited

2.4.3. Pyroptosis

This is a form of programmed cell death that is implicated in neuronal death during
IS. Pyroptosis is mediated by the activation of caspase-1, triggered by the formation of
inflammasomes in response to cerebral ischemia [42]. Inflammasomes are multi-protein
complexes that consist of sensor proteins NLRP1, NLRP3, and NLRP4 that play a role in
processing pro-inflammatory cytokines [43]. During cerebral ischemia, the activation of
inflammasomes leads to the activation of caspase-1, which cleaves pro-IL-1β and IL-17 to
produce IL-1β and IL-17, respectively, both of which are key inflammatory cytokines, inducing
neuronal death along with other pro-inflammatory factors during pyroptosis [44]. Therefore,
the mechanisms by which pyroptosis contributes to neuronal death in IS is believed to be the
release of pro-inflammatory factors and the activation of inflammatory pathways, leading to
neuroinflammation and exacerbating the damage caused by ischemia [45].

2.4.4. Parthanatos

This is a form of regulated cell death that may be a possible mechanism of neuronal
death in IS [46]. It is dependent on the PARP1 enzyme (poly ADP-ribose polymerase 1)
and is activated by oxidative stress-induced DNA damage and chromatinolysis. Unlike
apoptosis, parthanatos does not result in the formation of apoptotic bodies and small DNA
fragments, but occurs without cell swelling and is accompanied by plasma membrane
rupture [47]. PARP1, which is a nuclear, chromatin-associated protein, plays a critical role in
parthanatos by recognizing and repairing DNA breaks through the poly (ADP-ribosyl)ation
process that utilizes nicotinamide adenine dinucleotide (NAD+) and ATP [48]. Parthanatos
is characterized by the depletion of NAD+ and the inhibition of glycolytic enzyme hex-
okinase, leading to necrosis, while excessive PARP1 activity and NAD+ depletion further
impair cellular metabolic processes, promoting cell death [49].

2.4.5. Phagoptosis

The mechanism of phagoptosis in IS involves the recognition, engulfment, and diges-
tion of neurons by microglia. Microglia constantly monitor the surface of neurons and can
recognize and engulf neurons that expose “eat me” signals. One of the typical “eat me”
signals is the presence of phosphatidylserine (PS) on the cell surface [50]. PS expression
may occur due to oxidative stress, increased calcium levels, or ATP depletion [51]. Neu-
rons expressing PS are recognized by opsonins such as milk fat globule EGF-like factor
8 (MFG-E8) and vitronectin receptors or growth arrest-specific factor 6 and Mer receptor
tyrosine kinase (MERTK) receptors [52,53]. Additionally, the presence of calreticulin on the
cell surface, as a result of ER stress, can serve as an “eat me” signal [54]. Microglia and
astrocytes produce C1q and C3 to induce phagocytosis in neuronal cells [55,56].
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Cell death following ischemic stroke can occur via any of the five mechanisms: ferrop-
tosis, phagoptosis, parthanatos, pyroptosis, and necroptosis. Understanding the intricate
interplay of these different cell death pathways in the context of ischemic stroke is crucial
for developing targeted therapeutic interventions. Combining insights from these mecha-
nisms could pave the way for more effective strategies to mitigate neuronal damage and
improve outcomes in ischemic stroke patients. Ferroptosis is a form of regulated cell death
characterized by the iron-dependent accumulation of lipid peroxides, leading to membrane
damage and cell demise. The disruption of cellular homeostasis during the ischemic event
can induce the accumulation of ROS and iron, often exacerbated by ischemia–reperfusion
injury, triggering lipid peroxidation. This, in turn, damages cell membranes and contributes
to neuronal death. In phagoptosis, cells are eliminated through phagocytosis without un-
dergoing the typical morphological changes associated with apoptosis. IS can induce
phagoptosis as part of the neuroinflammatory response where activated microglia and
macrophages phagocytose stressed or damaged neurons, thus clearing cellular debris. In
parthanatos, cell death is triggered by the overactivation of PARP and subsequent energy
depletion. Oxidative stress and DNA damage can lead to PARP activation, resulting in
the excessive consumption of NAD+ and ATP, leading to energy failure and cell death.
Pyroptosis is slightly similar to phagoptosis in terms of the involvement of inflammation.
Pyroptosis is a highly inflammatory form of programmed cell death involving the release of
pro-inflammatory cytokines and cell swelling due to the activation of inflammasomes. The
release of pro-inflammatory cytokines such as interleukin-1β amplifies neuroinflammation,
exacerbating ischemic injury. Last is necroptosis, a regulated form of necrosis involv-
ing receptor-interacting protein kinases (RIPK) and a mixed-lineage kinase domain-like
protein (MLKL). IS- can induce necroptosis through various signaling pathways. Activa-
tion of death receptors and subsequent RIPK activation leads to MLKL phosphorylation,
causing plasma membrane rupture and cell death. Key: 4-HNE = 4-Hyfroxy-2-nonenal,
ADP = Adenosine diphosphate, AIF = Apoptosis-inducing factor, PARP = Poly(ADP-ribose)
polymerase, ATP = Adenosine triphosphate, DAMPs = Damage-associated molecular
patterns, GPX4 = Glutathione peroxidase 4, GSDM-D = Gasdermin D, IL = Interleukin,
IS = Ischemic stroke, MDA = Malondialdehyde, MLKL = Mixed-lineage kinase domain-
like protein, MLKLp = Phosphorylated MLKL, NLRP = NOD-like receptor pyrin domain-
containing, PS = Phosphatidylserine, RIPK = Receptor-interacting protein kinases,
ROS = Reactive oxygen species, TNFR1 = Tumour necrosis factor receptor 1. Arrows
with flat ends = Inhibition.

2.5. Autophagy

Autophagy is a cellular process involved in the degradation and recycling of damaged
or unnecessary cellular components through packaging into auto-phagosomes and assem-
bling in the lysosomes, which plays a significant role in ischemic stroke [57]. Autophagy
forms part of the cellular cascade of events triggered by oxygen and nutrient deprivation
in IS [58]. During cerebral ischemia, the limited availability of insulin and amino acids
prevents the activation of the mammalian target of rapamycin complex 1 (mTORC1), a
primary inhibitor of autophagy [59]. This, along with the increased ratio of adenosine
monophosphate (AMP) to adenosine triphosphate (ATP), activates AMP-activated protein
kinase (AMPK), which enhances autophagy [60]. Additionally, mitochondrial dysfunction,
accumulation of reactive oxygen species (ROS), and endoplasmic reticulum (ER) stress also
induce autophagy in response to cerebral ischemia [61,62]. Hypoxia-inducible factor 1α
(HIF-1α) signaling pathway is another mechanism through which autophagy is induced in
ischemic stroke. HIF-1α, activated during hypoxia, can induce the transcription of genes
involved in autophagy. It responds to systemic oxygen levels and promotes the transcrip-
tion of genes that increase oxygen delivery to hypoxic regions [63,64]. Autophagy has been
shown to have both beneficial and detrimental effects in ischemic stroke. On the one hand,
autophagy can help remove damaged cellular components and promote cell survival. On
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the other hand, excessive or prolonged autophagy can lead to excessive degradation of
cellular components and contribute to neuronal death [65].

3. Current Therapies for Ischemic Stroke and Their Targets
3.1. Thrombolytics/Thrombolytic Agents

Acute ischemic stroke is primarily treated via intravenous thrombolysis and some-
times followed by endovascular thrombolysis to enhance vessel recanalization [66]. The
intravenous thrombolytic (IVT) treatment paradigm was originally developed to treat
coronary thrombolysis but was later found to be effective in treating stroke patients. The
efficacy of thrombolytic drugs depends on many factors including the age of the clot, the
specificity of the thrombolytic agent for fibrin, and the presence and half-life of neutralizing
antibodies [67]. Intravenous thrombolysis is achieved using alteplase, a second-generation
thrombolytic, for the dissolution of blood clots. Other thrombolytics that are undergoing
clinical trials and have shown comparable safety and efficacy to alteplase are prouroki-
nase [68], tenecteplase [69], and staphylokinase [70]. Except for prourokinase which is an
intra-arterial thrombolytic, these fibrinolytics are administered intravenously and repre-
sent a potential future alternative to alteplase. Endovascular thrombolysis is utilized for
unclogging large vessels, and it is sometimes used as an add-on to intravenous thromboly-
sis [71,72]. Typically, these thrombolytics are plasminogen activators that aim to promote
fibrinolysin formation. They act by converting plasminogen to soluble plasmin, a prote-
olytic enzyme that breaks down fibrin and fibrinogen in the thrombi blocking the affected
cerebral vessel(s) [73].

In addition to endovascular thrombolysis, mechanical thrombectomy (MT) is becom-
ing routine in many countries for large vessel occlusion (LVO) stroke [74]. Despite high
rates of successful recanalization (≈85%) however, about 50% of patients do not reach func-
tional independence at 3 months [75]. Adjunctive anti-thrombotic therapy might improve
angiographic reperfusion by reducing the risk of distal emboli and arterial re-occlusion but
is likely to expose patients to a higher intracranial hemorrhage (ICH) risk. Moreover, the
concept of incomplete microvascular reperfusion (IMR), derived from observations of focal
no-reflow following focal ischemia, may partially explain poor outcomes even after fast
and complete proximal reperfusion [76]. Experimental utilization of antithrombotic agents
has shown a reduction in IMR and improved outcomes [77].

3.2. Adjunctive Therapies

The reperfusion of the affected brain region(s) following an IS attack often occurs
later than the optimal time needed to prevent damage to surrounding tissues. Com-
plete recanalization is further made practically impossible by the presence of thrombi in
smaller and non-visualized cerebral vessels consequently causing the formation of ischemic
penumbrae. Many therapeutic approaches—antithrombotic agents, cellular therapy, and
cytoprotectants—exist to salvage the ischemic penumbra. These strategies improve the
speed and extent of reperfusion, promote neural repair and remodeling, and prevent or
delay the deterioration of ischemic penumbra.

3.2.1. Anti-Thrombotic Agents

In addition to the use of thrombolytics, other drugs known as anti-thrombotic agents
are given to IS patients to prevent new clots from forming, thus enhancing the efficacy of
alteplase and any other administered thrombolytics. These drugs ensure complete vessel
recanalization by preventing clot formation via glycoprotein IIb/IIIa inhibition. Argatroban,
glenzocimab, tirofiban, and eptifibatide are anti-thrombotic agents at different clinical trial
phases used as adjuncts to intravenous thrombolysis with alteplase [78–81].

3.2.2. Antiplatelet Therapy

This therapy is used for acute IS management and prevention of stroke incidence. It
is also vital in controlling non-cardioembolic IS and transient ischemic attack (TIA). An-
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tiplatelet agents like aspirin, clopidogrel, and ticagrelor are the most widely administered
drugs to stroke sufferers within the first few days of attack [82]. They play a crucial role
in the management of ischemic stroke by inhibiting platelet aggregation and preventing
the formation of blood clots. These drugs act primarily by interfering with platelet acti-
vation and the coagulation cascade. Cyclooxygenase (COX) is responsible for converting
arachidonic acid into prostaglandins, which play a role in platelet activation and aggre-
gation. Aspirin irreversibly inhibits platelet COX, thereby decreasing the synthesis of
thromboxane A2, a potent platelet aggregator. Clopidogrel is a thienopyridine derivative
that irreversibly inhibits the P2Y12 adenosine diphosphate (ADP) receptor on the platelet
surface, thus inhibiting ADP-induced platelet aggregation. Ticagrelor acts in a similar
fashion to clopidogrel, but in a reversible manner.

Dual antiplatelet therapy, which involves the combination of clopidogrel, prasugrel,
or ticagrelor with aspirin, has become popular; many studies have tested the efficacy and
safety of this dual therapy. Trial outcomes have suggested that clopidogrel and aspirin
combination therapy is most beneficial if introduced within 24 h of stroke and continued
for 4–12 weeks [83]. Multiple studies on antiplatelet therapy revealed that clopidogrel,
alone or combined with aspirin, proves more effective in preventing blood clot formation
during acute coronary syndrome and after percutaneous coronary intervention compared
to aspirin alone [84–86]. On the contrary, the MATCH trial concluded that combining
aspirin with clopidogrel did not reduce the risk of secondary stroke compared to using
clopidogrel alone. Instead, the combination increased the likelihood of life-threatening
bleeding complications. As a result, the trial did not recommend using clopidogrel and
aspirin together for preventing recurrent ischemic stroke after an initial event or TIA [86,87].
These findings were consistent with the CHARISMA trial findings that compared the
efficacy and safety of the combination of low-dose aspirin (75–162 mg/day) and clopidogrel
(75 mg/day) versus low-dose aspirin alone in patients with high risk of atherothrombotic
cerebrovascular events and prior documented vascular disease, including MI, stroke, TIA,
and symptomatic peripheral vascular disease [88,89].

3.2.3. Fibrinogen-Depleting Agents

High fibrinogen levels in stroke patients have been consistently linked to poor progno-
sis and unfavorable clinical outcomes, as indicated by research findings [90–94]. Fibrinogen-
depleting agents decrease blood plasma levels of fibrinogen, hence reducing blood thickness
and increasing blood flow. They also remove the blood clots in the artery and restore blood
flow in the affected regions of the brain. Although some randomized clinical trials of defib-
rinogenation therapy identified beneficial effects of fibrinogen-depleting agents in stroke
patients, others failed to show positive effects on clinical outcomes following stroke [95].
Moreover, some studies reported bleeding after treatment with defibrinogenating agents.
Ancrod is a defibrinogenating agent derived from snake venom that has been studied for
its ability to treat IS within three hours of onset [91]. The European Stroke Treatment with
Ancrod Trial (ESTAT) concluded that controlled administration of ancrod at 70 mg/dL
fibrinogen was efficacious, safe, and achieved a lower prevalence of ICH than observed at
lower fibrinogen levels [92,96].

3.3. Cellular Therapies for Ischemic Stroke: A Paradigm Approach

Cellular therapies are important therapeutic options to be considered in the manage-
ment of ischemic stroke due to their overwhelming effect in improving patient recovery.
Stem cells can restore damaged brain tissue and neuronal cell loss, as well as reduce neu-
roinflammation. Mesenchymal stem cells, hematopoietic stem cells (blood stem cells),
neural stem cells, and epithelial stem cells constitute the four main cells that have been tried
in stem cell therapy (SCT) for the treatment of IS. The popularity and general acceptance
of SCTs stems from their unique advantage of promoting tissue repair and regeneration,
owing to their ability for self-renewal and multilineage differentiation [6]. SCTs offer
promising therapeutic opportunities, safety, and efficacy to stroke patients. Research on
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embryonic stem cells, mesenchymal cells, and induced pluripotent stem cells has assessed
their potential for tissue regeneration, maintenance, migration, and proliferation, rewiring
of neural circuitry, and physical and behavioral rejuvenation [97]. Recently, a new type
of mesenchymal stem cells (MSCs), called multilineage differentiating stress-enduring
(Muse) cells, has been found in connective tissues. These cells offer great regenerative
capacity and have been tested as a stroke treatment. After intravenous transplantation of
Muse cells in a mouse model, they were found to engraft into the damaged host tissue
and differentiate to provide functional recovery in the host [98]. Careful experimental
design and clinical trials of stem cell therapies are likely to usher in a new era of treatment
for stroke by promoting neurogenesis, rebuilding neural networks, and boosting axonal
growth and synaptogenesis [1,99]. Additionally, amelioration and inhibition of one or
more of the earlier mentioned overarching components of IS constitute the mechanism of
neuroprotection and neurorepair properties of SCT [100–102] (Table 1).

Table 1. Stem cell therapy for ischemic stroke in clinical trials.

S/No Identifier Stem Cell Type Study Centre Study Aim Clinical Trial
Phase Study Status

1 NCT00875654 Autologous
mesenchymal stem cells France, Europe Feasibility and tolerance Phase I Completed

2 NCT05008588

Umbilical cord
mesenchymal stem cells

(whole cell and
conditioned medium)

Indonesia, Asia Safety and Efficacy Phase I/II Ongoing

3 NCT02117635 Allogeneic human
neural stem cell

United Kingdom,
Europe Efficacy Phase II Completed

4 NCT01501773 Autologous bone
marrow stem cell India, Asia Safety, feasibility, and

efficacy Phase II Completed

5 NCT04811651 Umbilical cord-derived
mesenchymal stem cells China, Asia Safety and efficacy Phase II Recruiting

6 NCT01716481 Autologous
mesenchymal stem cells South Korea, Asia Neuroprotection Phase III Completed

7 NCT04631406 Neural stem cell California, North
America

Safety and tolerability
profile Phase I/II Recruiting

8 NCT03356821 Stromal cells
(intranasal) Netherlands, Europe. Safety and feasibility Phase I/II Completed

9 NCT05292625

Umbilical cord-derived
MSC

(intrathecal and
intravenous)

Vietnam, Asia Safety and efficacy Phase I/II Recruiting

11 NCT06138210 Induced pluripotent
stem cell China, Asia Safety and preliminary

efficacy Phase I Starts 2024

12 NCT00859014

Autologous
mononuclear bone

marrow cells
(intravenous)

Houston, North
America Safety and tolerability Phase I Completed

13 NCT02178657

Autologous
mononuclear bone

marrow cells
(intra-arterial)

Spain, Europe Safety and
neuroprotection Phase II Ongoing

14 NCT00950521
CD34+ stem cell

(intracerebral
implantation)

Taiwan, Asia Efficacy Phase II Completed

15 NCT00535197

Autologous CD34+
subset bone marrow

stem cell
(intra-arterial infusion)

London, Europe Safety and tolerability Phase I/II Completed
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Neural repair is an alternative therapy to neuroprotection. It is used to rejuvenate the
tissue when the damage is already done and is therefore not time-bound but is most effective
when administered 24 h after a stroke attack. Many animal models have been used in an
attempt to stimulate neurogenesis and initiate the neuronal repair process [103]. Neural
repair utilizes stem cell therapy to initiate repair mechanisms through cell integration into
the wound or the use of neurotrophic factors to block neuronal growth inhibitors. These
cells may be channeled to any injured region to facilitate greater synaptic connectivity.
Clinical trials using neural stem cells have proven beneficial in stroke patients.

This table summarizes some clinical trials at different stages where stem cells are
utilized for ischemic stroke. The trials are mainly focused on the safety and efficacy profile
of these stem cells.

Limitations of Stem Cell Therapy and Way Forward

Stem cell therapy for IS, while promising, faces several limitations that currently hinder
its widespread application. One significant challenge is the variable efficacy observed
among individuals, with not all patients experiencing substantial improvements [104,105].
The factors influencing this variability remain poorly understood. Moreover, concerns
about the safety of stem cell therapy persist, including the potential for teratoma formation
and unintended tissue differentiation [106–108]. Ensuring the long-term safety of stem cell
treatments is crucial for gaining regulatory approval and patient acceptance.

Determining the optimal timing, route, and dosage of stem cell administration poses
another complex issue. The therapeutic window for effective treatment may be narrow,
and the ideal dose and type of stem cells are still under investigation. There have been
suggestions that lower cell doses (<107) are preferred for use in chronic IS stages and vice
versa [109]. Additionally, the question of immunorejection arises when stem cells from
foreign donors are used, potentially requiring the use of immunosuppressive drugs and
introducing additional risks and complications. This has led to debates in support of the
use of close alternatives such as stem cell-derived conditioned medium, and extracellular
vesicles such as exosomes and microRNAs [110–112].

Ethical considerations surround the use of embryonic stem cells, and obtaining suf-
ficient quantities of adult stem cells for transplantation can also be challenging. While
induced pluripotent stem cells (iPSCs) offer an alternative, concerns about their potential
tumorigenicity persist. The delivery of stem cells to the damaged brain tissue is also a
critical aspect that requires improvement. Ensuring proper migration, integration, and
differentiation of transplanted stem cells into the affected areas remains a complex task.
Scientists are exploring genetic modifications, preconditioning, and co-administration of
supportive factors to improve the overall success of SCT.

4. Emerging Neuroprotective Agents for Ischemic Stroke: Pathophysiology-
Targeted Therapies

The protection of ischemic penumbra from post-stroke degeneration and damage is
ensured using neuroprotective and, more recently, neuroreparative agents. These agents
act primarily by targeting one or several aspects of the underlying pathophysiology of IS
thus increasing the likelihood of developing effective add-on neuroprotective therapies.
In the subsequent paragraphs, we discuss neuroprotective drugs that target the various
cascades in IS pathophysiology.

Prevention/reduction of Neuroinflammation: Preventing the activation of pro-
inflammatory microglia phenotype holds promise in offering post-stroke neuroprotec-
tion. The calcium-activated potassium channel (KCa3.1) that is expressed by microglia,
cerebral vessel endothelial cells, and infiltrating monocytes in injured CNS has been re-
ported to play an exacerbatory role in neuroinflammation [113]. Inhibitors of this channel
cause a significant decrease in microglia production of nitric oxide and cyclooxygenase-2
(COX-2) [114,115].
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Inhibition of Excitotoxicity: To minimize excitotoxicity, researchers targeted Ca2+

transport in the CNS (the neurons and blood vessels) by preventing calcium influx into
neurons or by reducing extracellular Ca2+ availability using voltage-gated Ca2+ channel
blockers (CCBs) and chelates. CCBs decreased ischemic insult in animal models of brain
injury. The ability of these blockers to reduce stroke risk by 13.5% in comparison to
diuretics and β-blockers in another study underscores their potential as preventive stroke
therapy [116]. In addition, the highly lipophilic Ca2+ antagonist nimodipine was shown
to enhance acute reperfusion in patients with acute ischemic stroke [117]. Furthermore,
a Ca2+ chelate, DP-b99, proved safe and efficacious in phase I/II clinical trials when
administered to stroke patients by significantly improving their clinical symptoms within
12 h of onset [118]. Despite the poor safety and efficacy profile of some sodium channel
blockers in clinical stroke trials, mexiletine, which is also a Na+ channel blocker, proved
effective in grey and white matter IS in animals, though further evaluation is required to
confirm its role [119].

Prevention of Oxidative stress: This is a strong target for prospective IS therapies.
Increasing evidence suggests that oxidative stress and apoptosis are closely linked phe-
nomena in the pathophysiology of IS [120]. Progress has been made in the trial of free-
radical-targeted agents as potential neuroprotective agents in stroke. Antioxidants with the
ability to chelate iron or scavenge/trap free radicals have been examined in experimental
IS models and clinically evaluated as neuroprotective agents [121]. Ebselen, a seleno-
organic antioxidant with a glutathione-like mode of action, protects cellular structures
from oxidative damage by scavenging reactive radicals and reacting with peroxynitrites,
hydroperoxides, and thiols. The preclinical neuroprotective activity of ebselen has been
replicated in numerous clinical trials including those of IS [121–123]. Although ischemic
stroke patients treated with ebselen had a slightly better outcome, the observed difference
in some studies was not statistically significant [124]. Alternatively, edaravone performed
well in clinical trials [125]. Similarly, NXY-059, a spin trap agent, was neuroprotective in the
rabbit model of embolic IS when combined with alteplase [126]. The neuroprotective effect
of NXY-059 was not replicated in a phase III clinical trial NCT00119626 conducted by Lees
et al., but there was a significant reduction in the occurrence of disability at 90 days [127].
Based on the findings from a larger study by the same researchers, NCT00061022, it was
concluded that NXY-059 is devoid of therapeutic benefits in acute IS [128]. Deferoxamine,
an iron chelate, that acts by reducing iron availability for hydroxyl radical production, has
been shown to reduce oxidative stress and glutamate excitotoxicity-induced neurotoxic-
ity [129,130]. Deferoxamine showed neuroprotective potentials in an unpublished pilot
study in ischemic stroke patients [131].

Apoptosis Inhibition: Following IS, neurons in the ischemic penumbra are typically
lost to apoptosis via intrinsic and extrinsic mechanisms [132]. Cdp-choline, a key inter-
mediary in the biosynthesis of the important component of the neural cell membrane
phosphatidylcholine, has shown antiapoptotic effects in cerebral ischemia. An exogenous
form of CDP-choline is citicoline, whose mechanism of action includes inhibition of some
phospholipases, increasing the availability of some catecholamines in the brain, and stimu-
lating the synthesis of neuronal membrane phospholipids. In a meta-analysis conducted
by pooling the individual patients’ data from several clinical trials in acute stroke, citi-
coline showed a significant increase in the odds of recovery at 3 months compared with
placebo [133]. The meta-analysis findings were confirmed in the phase III clinical trial in
which, in addition to being safe, citicoline caused remarkable improvement in functional,
global, and neurological outcomes in IS patients [134]. Additionally, there are emerging
therapies that target other forms of apoptosis such as necroptosis. Necroptosis inhibitors,
such as Nec-1 and GSK’872, have shown promising results in preclinical studies by reducing
infarct volume and improving neurological deficits [135].

Mitochondria stabilization: Neuroprotection via apoptosis inhibition has been achieved
by inhibitors of mitochondrial permeability transition pores (MPTP). Mitochondria are
considered the main link between cellular stress signals and the execution of programmed
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neuronal death [136,137]. Translocation of cytochrome c (Cyt c) from mitochondria to
the cytoplasm is a key step in the initiation and/or amplification of apoptosis. Calcium-
induced Cyt c release, as occurs in neurons during stroke and ischemia, involves rupture
of the mitochondrial outer membrane and can be blocked by inhibitors of MPTP, thus
preventing astrocyte activation [138]. MPTP blockers, such as cyclosporin A (CsA) and
bongkrekic acid, have shown neuroprotective effects in animal models of ischemia and IS
clinical trials [139–142].

Moreover, the dynamic morphology of mitochondria is retained through two oppo-
site processes—fission and fusion. While the fission process involves the constriction and
cleavage of mitochondria, the elongation of mitochondria via the joining and tethering of
the mitochondria in close proximity constitutes the fusion process [143–146]. Accumulating
evidence indicates that the maintenance of the mitochondrial function is crucial for neuron
survival and neurological improvement. Therefore, targeting mitochondria is one of the
promising neuroprotective strategies for stroke treatment [147]. Dynamin-related protein 1
(Drp1) is a mitochondrial-binding GTPase that mediates mitochondrial fission [148]. Main-
taining mitochondrial dynamics has emerged as a crucial process in the regulation of cell
survival and death, particularly as the fission process precedes neuronal death after cerebral
ischemia [145,146]. Expectedly, Drp1 inhibitors such as mdivi-1, mdivi-A, and mdivi-B were
shown to reduce infarct volume in a focal cerebral Ischemia model [147–149] (Figure 3).

1 
 

 
Figure 3. Mechanism of Neuroprotection by Potential Neuroprotective Therapies.
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5. Future Perspectives: Drug Repurposing and Re-Designing

In the face of limited time and financial resources coupled with the urgent need for
newer IS therapies, drug repurposing presents an opportunity for the rapid development
of safe and efficacious drugs for acute IS treatment and the optimal management of post-
stroke sequelae. This approach involves either utilizing drugs that are approved for treating
certain disease conditions for another disease/disorder with similar pathophysiology or
using safe drugs that failed to improve clinical outcomes in one condition and trying them
in a different but related disease condition. Many of the currently available neuroprotec-
tive agents were discovered via drug repositioning. Drugs like deferoxamine, citicoline,
cyclosporin A, and nimodipine, which have been established for the management of iron
poisoning, Parkinsonism, post-transplant immunosuppressant, and ischemic heart disease,
respectively, have now found use as neuroprotectants in IS patients. A wide range of drug
classes are currently being considered for the treatment and management of IS. Antidia-
betics, immunomodulatory, calcium channel blockers (CCB), potassium channel blockers
(PCB), opioid antagonists, antibiotics, and xanthine oxidase inhibitors constitute some of
the drug classes with member(s) that have been tried for IS management.

Metformin, glibenclamide, glyburide, and saxagliptin are antidiabetic agents with
promising use as post-stroke neuroprotectives. These drugs generally confer neuropro-
tection by regulating oxidative stress and modulating the AMPK/mTOR signaling path-
way [150–153]. In addition, saxagliptin and other dipeptidyl-peptidase-4 inhibitors prevent
inflammation by activating CXCR4/stromal-derived factor-1α pathway [153]. Interestingly,
metformin, because of its biguanide moiety, drives microglia to the anti-inflammatory
M2 phenotype, resulting in immune modulation [154]. Like the peripheral nerves, central
nerve endings contain calcium channels that regulate Ca2+ transport. CCBs prevent excito-
toxicity, and the neuroprotective effects of amlodipine and nimodipine have been reported
in acute IS patients [117,155]. The neuroprotective effect of ziconotide, a conopeptide ap-
proved by the FDA for the management of chronic intractable pain, has been shown in sev-
eral animal stroke models. Ziconotide inhibits N-type calcium channels, suppressing neural
activity, and has since demonstrated neuroprotective potential in various animal stroke
models [156–159]. Senicapoc, a KCa3.1 channel inhibitor initially designed for treating
vaso-occlusive crisis in sickle cell anemia, now shows potential for alleviating post-stroke
inflammation due to its ability to cross the blood–brain barrier [115,160,161]. In addition
to preventing post-stroke infections, reports suggest that antibiotics like minocycline and
azithromycin reduce infarct volume, decrease the brain levels of matrix metalloproteinase-9
(MMP-9), and drive microglia to an anti-inflammatory phenotype [162,163]. Minocycline
in particular may also act by inhibiting oxidative stress, apoptosis, and glutamate-induced
excitotoxicity [163,164]. Naloxone, naltrexone, β-funaltrexamine, and allopurinol are other
drugs with reported neuroprotective potential in IS [165–167] (Table 2).

The table highlights certain features of some drugs that have found use in the man-
agement of post-stroke sequelae. These drugs act by targeting at least one of the main
pathogenetic pathways in ischemic stroke.

Despite the preclinical success recorded for some IS pathophysiology-targeting drugs,
a handful of these drugs could not replicate their remarkable preclinical performance
in human stroke volunteers. For instance, lubeluzole, a sodium-channel blocker and an
NMDA receptor antagonist, was shown to reduce mortality in stroke in initial clinical trials,
but successive trials failed to reproduce similar outcomes. Moreover, the required dose
for neuroprotection was too high and is associated with a significant possibility of heart
failure [168,169]. Similarly, sipatrigine, a neuronal Na+- and Ca2+-channel blocker, failed
in a phase II clinical trial in stroke patients despite remarkable results in preclinical stroke
models. Additionally, amiodarone was shown to aggravate brain injury due to defective
transportation and accumulation of Na+ ions in the brain after stroke [170]. As it is the main
inhibitory neurotransmitter in the brain, it was thought that elevating the level of gamma
amino butyric acid (GABA) would counteract glutamate-induced excitotoxicity that occurs
after an IS attack, thus preventing neuronal death. However, the use of the GABA agonist
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clomethiazole failed to reduce the glutamate-induced toxicity in stroke patients in clinical
trials [171]. Drug redesign offers a plausible approach to circumvent challenges like this.

Table 2. Some repurposed drugs for IS management and their pathophysiological targets.

Drugs Drug Class Approved Indication(s) Pathophysiology Target(s)

Wang et al., 2007 [155] Amlodipine Calcium channel blocker (CCB) Hypertension, Angina Excitotoxicity

Smith et al., 2019 [162] Azithromycin Macrolide antibiotic
Sinusitis, conjunctivitis,

community-acquired
pneumonia

Neuroinflammation

Cho & Kim, 2009 [134] Citicoline Neurotropic Parkinsonism, head
injury Apoptosis

Forsse et al., 2019 [139] Cyclosporin A Immunomodulator Post-transplant
immunosuppression

Mitochondrial dysfunction
secondary to oxidative stress

and excitotoxicity

Selim et al., 2009 [131] Deferoxamine Chelate Iron poisoning Excitotoxicity, oxidative stress,
ferroptosis

King et al., 2018 [152] Glyburide Sulfonylureas antidiabetic Diabetes mellitus Neuroinflammation and
oxidative stress

Zhao et al., 2019 [151] Metformin Biguanide antidiabetic
Diabetes mellitus,
polycystic ovary

syndrome

Neuroinflammation and
oxidative stress

Kikuchi et al., 2012 [164] Minocycline Tetracycline antibiotic
Inflammatory acne,

gonococcal infections,
urinary tract infection

Excitotoxicity,
neuroinflammation, apoptosis,

and oxidative stress

Anttila et al., 2018 [167] Naloxone Opioid receptor antagonist Opioid overdose Neuroinflammation

Staal et al., 2017 [161] Senicapoc Calcium-dependent potassium
channel (KCa3.1) blocker Sickle cell anemia Neuroinflammation

Twede et al., 2009 [156] Ziconotide Conopeptide, analgesic,
N-type CCB Chronic intractable pain Excitotoxicity

Redesigning a drug often involves purposeful alteration of its structure to obtain desired
physicochemical properties. Drugs can be redesigned to modify their solubility, receptor-site
specificity, enzyme affinity, and therapeutic target, and enhance safety/tolerability. Nimodip-
ine is a dihydropyridine L-type calcium channel blocker that has high affinity for cerebral
arteries where it acts to dilate them and cause recanalization. The difference between nimodip-
ine and other CCBs lies in the chemical structure of the former having more alkyl moiety
attached to the pyridine ring to make it highly lipophilic and able to cross the BBB. Similarly,
the structure of ziconotide can be manipulated to enhance its lipophilicity, thus reducing the
amount needed to achieve desired post-stroke neuroprotection in IS patients, and invariably
reducing its side effects. Similarly, the peripheral cardiac effect associated with high doses of
lubeluzole can be mitigated through structural modification. Bulky groups can be added to
lubeluzole’s aromatic rings to enhance its lipophilicity. This modification can likely improve
its blood–brain barrier penetration, reducing the required dosage for neuroprotection in IS.

6. Conclusions

Factors such as the complexity of ischemic injury, heterogeneity of patient population,
limited therapeutic window for effective neuroprotection, and unforeseen side effects make
translating experimental findings to clinical therapies a challenge. Considering the mul-
tifactorial nature of ischemic injury, exploring combination therapies that target multiple
pathways simultaneously may enhance the likelihood of success in clinical translation.
Moreover, refining the preclinical stroke models to better mimic the complexity of human
stroke may increase the predictive value of preclinical studies. Nonetheless, a compre-
hensive understanding of ischemic stroke pathophysiology has been and will continue to
inspire the development of novel drugs for its treatment. In the era of in silico drug design
offering high-throughput screening of innumerable drugs at a go, it is much easier now to
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discover IS drugs from existing drugs and from de novo synthesis. The hope to increase
the pool of effective therapy for the prevention and management of IS is thus not lost.

CNS delivery of drugs, especially those with poor lipophilicity, is often a challenge.
Thankfully, emerging technologies are presenting novel and effective ways to circumvent
them. Improving the delivery of natural antioxidants to the CNS for ischemic stroke
treatment involves employing advanced modalities. Nanoparticle-based systems, such as
liposomes and polymeric nanoparticles, enable targeted and sustained release, overcoming
the blood–brain barrier (BBB). Ligand-targeted nanocarriers and intranasal administration
provide non-invasive alternatives to enhance antioxidant access to the CNS. Prodrug strate-
gies and innovative formulations like nanosuspensions and hydrogels improve solubility
and stability. Focused ultrasound with microbubbles temporarily disrupts the BBB. Addi-
tionally, microneedles and combination therapies offer promising avenues for optimizing
the multimodal mechanisms of action for effective antioxidant delivery in ischemic stroke.
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