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Abstract: Background: The pathophysiologic heterogeneity of heart failure (HF) necessitates a more
detailed identification of diagnostic biomarkers that can reflect its diverse pathogenic pathways.
Methods: We conducted weighted gene and multiscale embedded gene co-expression network
analysis on differentially expressed genes obtained from HF and non-HF specimens. We employed
a machine learning integration framework and protein–protein interaction network to identify
diagnostic biomarkers. Additionally, we integrated gene set variation analysis, gene set enrichment
analysis (GSEA), and transcription factor (TF)-target analysis to unravel the biomarker-dominant
pathways. Leveraging single-sample GSEA and molecular docking, we predicted immune cells
and therapeutic drugs related to biomarkers. Quantitative polymerase chain reaction validated the
expressions of biomarkers in the plasma of HF patients. A two-sample Mendelian randomization
analysis was implemented to investigate the causal impact of biomarkers on HF. Results: We first
identified COL14A1, OGN, MFAP4, and SFRP4 as candidate biomarkers with robust diagnostic
performance. We revealed that regulating biomarkers in HF pathogenesis involves TFs (BNC2,
MEOX2) and pathways (cell adhesion molecules, chemokine signaling pathway, cytokine–cytokine
receptor interaction, oxidative phosphorylation). Moreover, we observed the elevated infiltration
of effector memory CD4+ T cells in HF, which was highly related to biomarkers and could impact
immune pathways. Captopril, aldosterone antagonist, cyclopenthiazide, estradiol, tolazoline, and
genistein were predicted as therapeutic drugs alleviating HF via interactions with biomarkers. In vitro
study confirmed the up-regulation of OGN as a plasma biomarker of HF. Mendelian randomization
analysis suggested that genetic predisposition toward higher plasma OGN promoted the risk of
HF. Conclusions: We propose OGN as a diagnostic biomarker for HF, which may advance our
understanding of the diagnosis and pathogenesis of HF.

Keywords: heart failure; diagnostic biomarker; pathogenic mechanism; bioinformatics

1. Introduction

Heart failure (HF) is a heterogeneous and life-threatening clinical syndrome encom-
passing symptoms such as breathlessness, excessive fatigue, and swollen ankles [1]. HF has
been considered a global pandemic estimated to affect more than 64 million individuals
worldwide. Its prevalence has continuously increased over the past decades, posing a great
threat to public health [2,3]. Traditionally, HF was defined as a pathophysiological condi-
tion in which cardiac structure or function abnormality results in increased intra-cardiac
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pressures or reduced cardiac output at rest or during activities [4]. However, the traditional
definition only mentioned the non-specific symptoms or signs in clinical practice but did
not include objective indicators to support HF diagnosis [4,5]. In 2021, a universal con-
sensus on the definition of HF was proposed, namely a clinical syndrome with symptoms
and/or signs caused by structural and/or functional cardiac abnormalities and corrobo-
rated by elevated natriuretic peptide levels and/or objective evidence of pulmonary or
systemic congestion by diagnostic modalities [4], which was conceptually comprehensive
and clinically practical with at least one objective detection indicator included. Notably,
the elevated levels of natriuretic peptides, including the B-type natriuretic peptide (BNP)
and N-terminal pro-B-type natriuretic peptide (NT-proBNP), were enrolled in this newly
proposed definition of HF, which suggested the pivotal role of objective detective signs in
HF recognition.

Biomarker-guided diagnosis and management have gained popularity in clinical ap-
plication [5], and the natriuretic peptide has become a golden standard widely used in
HF diagnosis or prognostic evaluation [6]. Nevertheless, the elevated concentrations of
natriuretic peptides do not always meet the commands of diagnosing HF in clinics because
it might be affected by numerous factors, such as renal failure, pulmonary embolism,
and obesity [7]. Previously, evidence has shown that a deterioration in renal function
significantly elevates the concentrations and associations of natriuretic peptides, indicating
that the clinical interpretation of increased natriuretic peptides should consider renal func-
tion [8]. In the condition of acute pulmonary embolism, the concentrations of natriuretic
peptides were also identified to increase as well as predict adverse prognostic outcomes [9].
Additionally, it has been demonstrated that obese patients with HF show a state of de-
creased levels of natriuretic peptides. Thus, lower thresholds of natriuretic peptide levels
should be made to meet the diagnosis of obese individuals with HF [10]. Therefore, the
application of natriuretic peptides remains limited in HF because of its vulnerability to
other pathophysiologic conditions, indicating that exploring novel biomarkers that could
provide additional diagnostic utility is urgently needed [11]. Given the complex pathophys-
iology of HF, which ranges from cardiac dysfunction to extra-cardiac alteration, emerging
HF biomarkers that tackle different pathophysiological processes could significantly ben-
efit the risk stratification and management of patients with HF [12]. In the past decades,
two novel identified HF biomarkers, Galectin-3 (Gal-3) and tumorigenesis-2 (sST2), have
yet to prove their utility in the clinics [13]. Moreover, growing evidence suggested that the
multi-biomarker panel strategy, combining novel biomarkers with well-established ones,
showed both strong diagnostic and prognostic values compared to a single-biomarker ap-
proach [5,14]. Hence, we hypothesized investigating newer specific diagnostic biomarkers
together with elucidating their regulated pathogenic pathways involved in HF, which could
provide candidates for the multi-biomarker strategy, thus deepening our understanding of
molecular alterations in the progression of HF.

Given the explosion of biomedical big data, there is growing research enthusiasm in
utilizing bioinformatics approaches for mining high-throughput RNA sequencing (RNA-
seq) or single-cell RNA-seq (scRNA-seq) data, which make us better understand the altered
molecular features in HF at tissue or cell levels [15]. With these rapidly developed sequenc-
ing techniques and computational analysis approaches, novel biomarkers and mechanisms
could be rapidly identified rather than speckled through traditional hypothetical-driven
research [5,15], bringing new insight into understanding the physiopathology of HF and
developing the diagnosis or clinical management. Although several bioinformatics studies
have already tackled exploring the underlying biomarkers and molecular mechanisms
of HF [16–19], apparent limitations existed mainly due to the lack of comprehensive
multi-datasets analysis from both tissue and single-cell views, rational speculation of
the biomarkers-regulated pathways, and external experimental validation of biomarkers
on testing patients’ samples. Considering these shortcomings in previous research, we
intended to mine novel candidate biomarkers of HF as well as explicitly interpret their
mechanisms (including upstream and downstream ways) that participated in HF via the



Biomolecules 2024, 14, 179 3 of 33

in silico analysis on multiple RNA-seq datasets (including bulk RNA-seq and scRNA-seq)
and in vitro validation on plasma collected from HF patients and control cases.

In this study, multiple transcriptional datasets derived from patients with HF and
control, including four expression profiles (GSE141910, GSE57338, GSE42955, GSE135055)
and one sc-RNA seq dataset (GSE121893), were acquired from the Gene Expression Om-
nibus (GEO) database. Training the cohort (GSE141910) for major analysis and test cohorts
(GSE57338 and GSE42955) for validation were then processed and obtained, respectively.
GSE135055 served as an external validation cohort. First, the differential expression genes
(DEGs) between the HF and control were identified. Second, weighted gene co-expression
network analysis (WGCNA) and multiscale embedded gene co-expression network analy-
sis (MEGENA) complementing each other via different algorithms were performed on the
DEG expression profiles to filter key gene modules. Subsequently, Disease Ontology (DO),
Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses were conducted on the overlapping genes between WGNCA-identified and
MEGNA-identified modules, and genes significantly enriched in HF-related terms were
retained. Fourth, the retained genes were subjected to a machine learning-based integration
workflow and protein–protein interaction (PPI) network selection. Fifth, hub genes per-
formed with robust diagnostic in the training and test cohorts were generated. Hub genes’
expression and correlation patterns were evaluated in the training and test cohorts. Sixth,
sc-RNA seq analysis was conducted on GSE121893 to uncover the cell-specific expression
patterns of hub genes. Seventh, together with gene set variation analysis (GSVA), gene set
enrichment analysis (GSEA), transcription factor (TF) prediction, and single-sample gene
set enrichment analysis (ssGSEA), we systemically identified the pathways co-regulated by
hub genes involved in HF. Then, we used the ssGSEA approach to quantify the infiltration
levels of immune cells in HF to screen crucial immune cell types highly correlated to the
hub genes. Eighth, the therapeutic drugs targeting hub genes and TFs were verified using
molecular docking. Finally, quantitative reverse transcription PCR (RT-qPCR) was utilized
to explore the relative mRNA expression levels of hub genes in plasma collected from
patients with HF, thereby developing plasma biomarkers with HF. Based on large-scale
genome-wide association studies (GWASs), a two-sample Mendelian randomization (MR)
analysis was further performed to investigate the causal effect of hub genes on the risk of
HF. The overall study flow chart is shown in Figure S1.

2. Materials and Methods
2.1. Gathering and Processing of Gene Expression Profiling Datasets

Three gene expression profiles (GSE141910, GSE57338, GSE42955, GSE135055) of left
ventricles derived from HF patients were retrieved from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 30 November 2022).
GSE141910 was the training group in this study, which included 200 HF and 166 non-HF
(control) samples [20]. We removed the batch effect of GSE57338 and GSE42955 and merged
them into the test group using the “combat” algorithm of the R packages “sva” (version
3.44.0), containing 201 HF and 141 non-HF (control) samples [21,22]. The removal of batch
effect on GSE57338 and GSE42955 was evaluated via the principal component analysis
(PCA) plot, as shown in Figure S2. Furthermore, we selected GSE135055 (21 HF and 9 con-
trol samples) as an external validation group [23]. We then performed log transformation
on the gene expression profiles and utilized the function “normalizeBetweenArrays” of
the R package “limma” (version 3.52.2) to execute data normalization [24]. The detailed
information on these enrolled datasets is summarized in Table 1. Moreover, the clinical
characteristics included in the datasets can be found in Tables S1–S4.

https://www.ncbi.nlm.nih.gov/geo/
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Table 1. Information of HF-related datasets enrolled in study.

Accession Sample Source Sequencing Type Control
Samples

HF
Samples

Dataset
Usage

GSE141910 left ventricle RNA-seq 166 200 Training dataset
GSE57338 left ventricle Array 136 177 Testing dataset
GSE42955 left ventricle near the apex Array 5 24 Testing dataset
GSE135055 left ventricle RNA-seq 9 21 External validation dataset

2.2. Partial Least Squares Discriminant Analysis, DEGs Identification, and KEGG Pathway
Enrichment Analysis

To evaluate the separation between control and HF groups, partial least squares
discriminant analysis (PLS-DA) was performed using the R package “mixOmics” (version
6.20.0) [25]. The DEGs between the HF group and the control group (HF versus control)
were identified by the R package “limma” [24]. The cut-off criteria of DEGs were set as
|log2Fold Change (log2FC)| > 1 and adjusted p-value < 0.05 [26]. Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis was then conducted on
DEGs through the R package “clusterProfiler” (version 4.7.1) [27]. The enrichment KEGG
pathway showed with q value < 0.05 was considered statistically significant.

2.3. Weighted Gene Co-Expression Network Analysis on DEGs

The R package “WGCNA” (version 1.71) was utilized to construct a weighted gene
co-expression network on DEGs, which was suitable for further screening functional
gene modules highly associated with HF [28]. The soft threshold power (β = 1~20) was
first determined to establish a scale-free topology. The weighted adjacency matrix was
then generated and transformed into a topological overlap matrix (TOM). Moreover, the
dissTOM was obtained for hierarchical clustering, and the dynamic tree-cutting method
was adopted to screen various modules clustered on gene similarity. Here, the parameters
“minModuleSize” and “MEDissThres” were set to 60 and 0.3, respectively. Subsequently,
we related the recognized modules to two traits (control and HF). Genes in the module that
displayed high relevance with HF were selected for further analysis.

2.4. Multiscale Embedded Gene Co-Expression Network Analysis on DEGs

The R package “MEGENA” (version 1.3.7) was performed to identify gene co-expression
networks on DEGs by Planar Filtered Networks (PFNs) construction, thus dissecting into
multiscale gene modular structures in HF [29]. The input parameters were set to default.
First, we obtained a fast PFN via calculating, filtering, and clustering correlations between
each gene pair based on the DEG expression profiles of HF. Multiscale clustering analysis
(MCA) was then conducted on PFN, and sub-modules were identified from the connected
components of the initial PFN as the parent modules. Next, we implemented multiscale
hub analysis to detect key hubs of individual modules. The identified modules with large
gene sizes were retained for later selection.

2.5. DO, GO, and KEGG Enrichment Analyses on Crucial Gene Modules

Taking the intersection between the significantly co-expressed gene modules identified
by WCGNA and MEGENA, we obtained overlapping genes for functional and pathway
annotation. Annotation of human diseases, biological functions, and signaling pathways
could reflect whether the overlapping genes in these identified modules are directly en-
riched in HF-related terms [30], contributing to our understanding of these genes’ role
in HF. Accordingly, we systemically performed Human Disease Ontology (DO), Gene
Ontology (GO), and KEGG enrichment analyses on these overlapping genes using the
R packages “clusterProfiler” and “DOSE” (version 3.24.2) [27,31]. A q value < 0.05 was
considered the cut-off criterion for identifying significant enrichment terms.
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2.6. Feature Selection via Machine Learning-Based Integration

The overlapping genes co-identified via WGCNA and MEGENA were subjected to a
machine learning-based integration pipeline [32]. A total of 12 machine learning models
for integration included least absolute shrinkage and selection operator (Lasso), Ridge,
elastic network (Enet), stepwise multiple generalized linear model (Stepglm), support
vector machine (SVM), generalized linear model by likelihood-based boosting (glmBoost),
linear discriminant analysis (LDA), partial least squares regression for generalized linear
models (plsRglm), Random Forest (RF), gradient boosting machine (GBM), eXtreme Gradi-
ent Boosting (XGBoost), and naïve Bayes. Herein, the machine learning-based integration
pipeline applied one algorithm for feature selection and another for constructing an inte-
grative classification prediction model under the 10-fold cross-validation (CV), generating
113 algorithm combinations in this study. The execution of the machine learning-based
integration pipeline involves the following procedures. (1) We first performed Z-score
transformation on the expression profiles of training and testing cohorts, which could
enhance comparability between diverse cohorts and accelerate running speed. (2) In our in-
tegrative ML-based framework, four algorithms with feature selection capability (Lasso, RF,
Stepglm, glmBoost) were initially conducted to narrow down the genes. Then, we adopted
eight other algorithms (Ridge, Enet, SVM, LDA, plsRglm, GBM, XGBoost, NaiveBayes) to
fit prediction models based on the genes selected via the four algorithms, respectively. In
total, 113 model combinations were used to tune hyperparameters and fit models under a
10-fold CV framework. (3) All model combinations were subsequently tested in training
and testing cohorts. For the performance evaluation of each model, the AUC score across
these cohorts was computed. The model with the highest average AUC within the training
and testing cohorts was regarded as optimal. Feature genes were subsequently obtained
via the best-performing model.

2.7. Construction of Protein-Protein Interaction Network

Leveraging the feature genes generated from machine learning-based integration, a
protein–protein interaction (PPI) network was constructed using the Search Tool of the Re-
trieval of Interacting Genes (STRING) database and then visualized by Cytoscape software
(version 3.9.1) [33,34]. We further screened out the top 20 genes with higher connectives
in the PPI network using five ranking algorithms of Cytoscape plug-in cytoHubba, re-
spectively. The Degree, Maximum Neighborhood Component (MNC), Maximal Clique
Centrality (MCC), Edge Percolated Component (EPC), and Density of Maximum Neighbor-
hood Component (DMNC) algorithms were used to screen genes in the PPI network [35].
We noted the intersected genes co-selected in five algorithms as pivotal genes of HF for
further selection and assessment.

2.8. Diagnostic Abilities, Expression Levels, and Correlation Pattern of Hub Genes

To investigate the diagnostic performances of pivotal genes in HF, we calculated the
AUC score of receiver operating characteristic curve (ROC) analysis using the R package
“pROC” (version 1.18.0) to measure the classification accuracy of the HF group and control
group [36]. Genes performed with an AUC higher than 0.85 distinguishing HF from control
in both the training and test cohorts were considered hub genes, potentially serving as
biomarkers of HF diagnosis. We then utilized the R package “glmnet” (version 4.1-4) to
construct logistic regression models to evaluate the joint diagnostic abilities of hub genes
in the training and test cohorts. To compare the diagnostic abilities of our identified hub
genes with clinical biomarkers, we retrieved a panel of current HF biomarkers, including
myocardial stress/injury-related (BNP, NT-proBNP, TnT, TnI), neurohormone-related (MR-
proADM, AVP, Peptide), myocardial remodeling-related (sST2, Gal-3, MMP, GDF-15),
inflammatory-related (CRP, IL-6, TNF-α, PCT), and renal function injury-related (Cys
C, NGAL) biomarkers. Comparison of the predictive power of hub genes and current
biomarkers was then assessed via AUC score within the training and testing cohorts. Using
the R package “ggpubr” (version 0.4.0), the significant over-expression pattern of hub genes
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in HF compared to the control was shown in the violin plot and verified in the test cohort.
Correlation analyses between hub genes in the training and test cohorts were performed
and visualized using the R package “PerformanceAnalytics” (version 2.0.4).

2.9. Single-Cell RNA-seq Data Processing

To explore the specific cell expression patterns of hub genes in HF, we obtained
one scRNA-seq dataset (GSE121893) derived from six patients with HF [37], including
1682 cardiomyocytes (CMs) and 2539 non-cardiomyocytes (NCMs). The R package “Seurat”
(version 4.1.1) was implemented to process and analyze single-cell RNA-seq datasets [38].
First, we conducted quality control and normalization of the data. Cells with unique feature
counts less than 200 and mitochondrial proportions larger than 5% were eliminated in
further analysis. The “Log normalize” function was then employed to normalize the filtered
data. Second, we obtained the top 2000 highly variable genes identified by the function
“FindVariableFeatures” and scaled the data as the pre-processing procedure of subsequent
dimensional reduction. Third, we performed principal component analysis (PCA) on the
scaled data with the top 2000 highly variable genes as input. Combining the JackStraw
and Elbow plots, we determined the optimal components (1 to 15) to cluster cells. Fourth,
the Uniform Manifold Approximation and Projection (UMAP) algorithm was executed
to display the cell clusters. We then assigned five cell types (CM, cardiomyocyte; EC,
endothelial cell; FB, fibroblast; SMC, smooth muscle cell; MP, macrophage) to the identified
clusters according to the expression distributions of gene markers. The markers of five cell
populations were listed: CM (TNNT2, MYH7, MYOM1, ACTN2), EC (VWF, ENG, RGCC,
EMCN), FB (FN1, VIM, DCN, VCAN), SMC (ACTA2, MYLK, MYL6, MYL9), and MP (CCR2
negative, CD74, ITGAM, MRC1) [37]. We also used the R package “AUCell” (version 1.22.0)
to calculate the AUCell scores of the specific gene markers for each cell to reflect the marker
activities within the five cell populations [39]. The R package “Nebulosa” (version 1.6.0), a
novel gene expression signal recovering approach on weighted kernel density estimation,
was utilized to uncover the expression distributions of hub genes in the five annotated cell
populations [40].

2.10. GSVA and GSEA of Hub Genes

Herein, we integrated gene set variation analysis (GSVA) and gene set enrichment
analysis (GSEA) to investigate the underlying pathways of each hub gene in HF. The
reference gene sets of GSEVA and GSEA were the KEGG subset of canonical pathways
collected from the Human Molecular Signatures Database (MSigDB) (http://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp, accessed on 30 November 2022) [41]. We first
performed GSVA on the expression profiles of HF leveraging the R package “GSVA” (ver-
sion 1.44.2) [42]. Then, the R package “limma” was conducted to compare the GSVA scores
of pathways between the low-expression and high-expression groups according to the
medium value of the hub gene. p value < 0.05 and |t| > 2 were considered as cut-off
criteria for identifying the significant activated (t > 2) or suppressed (t < 2) pathways [43].
Meanwhile, GSEA was conducted for each hub gene based on the expression profiles of
HF using the R package “clusterProfiler” [27,43]. The GSEA pathways with |normalized
enrichment score (NES)| > 1, p value < 0.05, and false discovery rate (FDR) < 0.25 were
regarded as statistically significant enrichment [44]. NES larger than 1 and lower than
1 indicated the activation and suppression of the enriched pathway, respectively. The
statistically significant overlap between the GSEA and GSVA on each hub gene was iden-
tified as the common pathways (activated or suppressed) co-regulated by hub genes in
HF. Moreover, the R package “CBNplot” (version 0.99.2) was employed to construct and
visualize the gene regulatory network (GRN) via Bayesian network (BN) inference from
expression profiles and enrichment analysis [45].

http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
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2.11. Expression Levels of Predicted TFs and Their Interaction with Hub Gene-Related Pathways

To gain insight into the upstream mechanism regulating hub genes, we acquired the
TRRUST v2 database (www.grnpedia.org/trrust, accessed on 23 March 2023) to search for
underlying transcription factors (TFs) interacting with hub genes [46]. The top 10 predicted
TFs with higher-ranked sentences in the database were retained. TFs that were up-regulated
in HF may actively target hub genes. Next, we performed a correlation analysis between
the key TFs and hub genes. Additionally, single-sample gene set enrichment analysis
(ssGSEA) was employed using the R packages “GSVA” and “GSEABase” (version 1.58.0) to
quantify the enrichment levels of the pathways related to hub genes in HF samples [42,47].
Subsequently, we conducted a correlation analysis between the key TF expressions and
pathway enrichment levels.

2.12. Evaluation of Immune Cell Characteristics in HF via ssGSEA and Identifying Immune Cell
Types Highly Correlated with Hub Genes

To explore whether the immune landscapes were altered in HF, we employed the
ssGSEA algorithm to quantify the infiltration levels of 28 immune cell types based on gene
expression profiles [48,49]. Using ssGSEA by interrogating the expression levels of reported
specific genes of adaptive and innate immune cell types, we computed the infiltration levels
of 28 immune cell types per sample. Next, we integrated Lasso and RF algorithms to obtain
key immune cell types from 28 immune cell types [50]. Lasso and RF were constructed
under 10-fold cross-validation, and the setting parameters of RF were 800 decision trees.
Using the R package “glmnet”, a Lasso regression model was established under the optimal
penalization coefficient (λ), and immune cell types with regression coefficients larger than
zero were retained [51]. The R package “randomForest” (version 4.6-7) was utilized to
construct an RF classifier using 586 decision trees that was performed with a minimum
classification error rate, and immune cell types with mean decrease Gini scores larger than
five were screened [52]. Taking the intersection between Lasso and RF, we identified a final
set of key immune cell types in HF. Subsequently, we assessed the correlation patterns
between hub genes and key immune cell types that were significantly up-regulated in HF
compared to control.

2.13. Molecular Docking of Predictive Drugs Targeting Hub Genes and TFs

First, candidate small-molecule agents with targets (hub genes or key TFs) were
predicted using the Drug Signatures Database (DSigDB) [53]. Molecular docking, a com-
putational approach for exploring the interaction between receptors and ligands, was
executed to evaluate the binding affinities of the selected candidate drugs to their tar-
gets [54]. AutoDock Vina (version 1.1.2) was used to perform molecular docking analy-
sis [55]. Second, the 2D structures of molecule ligands (candidate drugs) were downloaded
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 26 March
2023) in SDF formats. The ChemBio3D was performed to minimize energy on molecule
ligands and export their 3D structures. AutoDock Vina then converted the molecule ligands
(mol2 format) into PDBQT format for further docking analysis. Third, the 3D structures
of protein receptors (hub genes and key TFs) were passed through the Protein Data Bank
(PDB) (https://www.rcsb.org/, accessed on 26 March 2023). We used the PyMOL (version
2.4.0) to remove water molecules and ligands from proteins. The protein receptors (PDB
format) were imported into the AutoDock Vina and exported in the PDBQT format after
polar hydrogenation and docking site setting. Herein, the parameters of the docking site,
including X-Y-Z coordinates and grid size, were adjusted to include the active pocket that
completely binds molecule ligands. Finally, AutoDock Vina was executed to dock the
molecule ligand and protein receptors 20 times. Confident docking results with the lowest
binding affinity and Root Mean Squared Error (RMSE) lower than 2 Å were retained and
subsequently visualized by PyMOL.

www.grnpedia.org/trrust
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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2.14. Quantitative Reverse Transcription PCR

To investigate whether the hub genes could serve as plasma biomarkers of HF, we
collected the whole blood specimens stored in ethylenediaminetetraacetic acid (EDTA)
tubes, derived from three HF patients and three non-HF controls in the Shanghai Sixth
People’s Hospital Affiliated to the Shanghai Jiao Tong University School of Medicine (Lin-
gang). The detailed information of patients, including gender, age, disease diagnosis,
HF grade, HF type, ejection fraction (EF), and NT-proBNP concertation, are shown in
Table S5. The types of HF of the three patients include congestive heart failure and ischemic
heart failure. Whole blood was first centrifuged at 3500 relative centrifugal force (RCF)
for 10 min at room temperature, and plasma was separated. RNA was extracted from the
collected plasma using a BIOG cfRNA Easy Kit (Changzhou Baidai, Changzhou, China).
Subsequently, we utilized the PrimeScript RT Reagent Kit with a gDNA Eraser Kit (Takara,
Kusatsu, Japan) to reverse transcribe RNA into cDNA. Quantitative reverse transcription
PCR (qRT-PCR) analysis was performed on cDNA using the AceQ Universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China). The relative expression of hub genes was calculated
by the 2-DDCt method adjusted to β-actin. The primer sequences of four hub genes and
β-actin are shown in Table S6.

2.15. Two-Sample Mendel Randomization Analysis

We sought to explore the causal effect of plasma OGN (exposure) on HF (outcome)
using a two-sample Mendel Randomization (MR) analysis. Herein, we used the R
package “TwoSampleMR” (version 0.5.7) to analyze. The exposure data (plasma OGN;
ID: PRJEB15197) from 35,559 Icelanders and outcome data (HF, ID: ebi-a-GCST009541)
from 47,309 Europeans with HF reported were retrieved from the deCODE genetics
(https://www.decode.com/summarydata/, accessed on 27 December 2023) and the
IEU Open GWAS data source (https://gwas.mrcieu.ac.uk/, accessed on 27 December
2023), respectively. Single-Nucleotide Polymorphisms (SNPs) used as instrumental
variables (IVs) in MR analysis should be subject to three assumptions [56]: (1) SNPs
are closely related to exposure; (2) SNPs are independent of cofounders of exposure
and outcome; (3) SNPs only affect the outcome through exposure. Accordingly, the
function “extract_instruments” was utilized to retain the SNPs that were significantly
associated with OGN (p-value < 5 × 10−6) but not with HF (p-value > 0.05) [57]. SNPs
with linkage disequilibrium (LD) R2 larger than 0.01 within a cropping range of 5000 Kb
were excluded [57]. Next, the function “harmonise_data” was leveraged to harmonize
the exposure and outcome data. Two-sample MR analysis was subsequently performed
via the function “mr”. Five default methods were adopted: MR Egger, Weighted
median, Inverse variance weighted (IVW), Simple mode, and Weighted mode. The
R package “forestploter” (version 1.1.1) [58] was employed to generate a forest plot
showing the Wald ratio-estimated odds ratio (OR) of OGN on HF. The IVW approach,
with the highest statistical power [56,57], was selected to illustrate the association
between the level of plasma OGN and the risk of AMI. We employed heterogeneity,
horizontal pleiotropy, and leave-one-out tests as sensitivity analysis as well as serving
as a reliability evaluation of MR analysis.

2.16. Statistical Analysis

Statistical analysis was performed using R programming (version 4.2.2). A Wilcoxon
rank-sum test was used to analyze the two groups’ differential expression levels of hub
genes. We performed Pearson’s correlation analysis on expression levels of hub genes.
Spearman’s correlation analysis was conducted to explore the relationship between infiltra-
tions of immune cell types and expressions of hub genes. Spearman’s correlation analysis
was also utilized to assess the interaction between expressions of TFs and ssGSEA scores of
pathways. The results of qRT-PCR were presented as mean ± standard error (SD), and an
unpaired t-test was carried out to compare the mean expressions of hub genes between HF
and control. p value < 0.05 was considered statistically significant.

https://www.decode.com/summarydata/
https://gwas.mrcieu.ac.uk/
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3. Results
3.1. DEGs Mainly Participated in the Extracellular Matrix and Immune-Related Pathways in HF

To investigate the differences between HF and control groups, we performed PLS-
DA on the expression profile of the training cohort. Figure 1A shows a distinct sample
separation between HF and control groups, which could be used for DEG analysis. We
then identified 926 DEGs (HF group versus control group) with log2FC larger than 1 and
adjusted p value lower than 0.05, including 648 up-regulated DEGs and 278 down-regulated
DEGs (Figure 1B). Detailed information on these 926 DEGs can be found in Table S7. KEGG
enrichment analysis was then performed to understand better the potential functions of
these selected DEGs. The significantly enriched pathways of up-regulated and down-
regulated DEGs are shown in Figure 1C (left panel), respectively. The up-regulated DEGs
were mainly involved in cytokine–cytokine receptor interaction, cell adhesion molecules,
the T cell receptor signaling pathway, and ECM–receptor interaction. Interestingly, these
enrichment pathways were largely related to the extracellular matrix (ECM) or immune-
related functions, suggesting their crucial roles positively participated in HF. The down-
regulated DEGs mainly participated in complement and coagulation cascades and the
phagosome, which indicated that coagulation functions were abnormally altered in HF.
We also observed the distinct expression patterns of DEGs in the clustering heatmap in
Figure 1C (right panel), which illustrates that the DEGs could clearly distinguish the
samples as HF from the control.

3.2. Two Crucial Modules Strongly Related to HF Were Identified by WGCNA on DEGs

To understand the gene expression network in HF, we performed WGCNA to es-
tablish a weighted gene co-expression network based on the expression profiles of the
identified 926 DEGs. First, a similarity matrix was generated by calculating gene pairwise
correlation. We then evaluated soft threshold power (β) between 1 and 20 to construct a
scale-free network. Second, the similarity matrix was converted into an adjacent matrix
via the optimal β achieving 2 (Figure S3A). Furthermore, a negative correlation (R2 = 0.83,
slope = 1.6) between log10(k) and log10 (p(k)) was observed in Figure S3B, indicating
that the transformed adjacent matrix was close to a scale-free network for further analysis.
Third, the topological overlap matrix (TOM) was generated using the adjacent matrix for
dynamic tree-clustering on genes (Figure S3C), thus identifying gene modules with HF.
Genes recognized in each WGCNA-identified module can be found in Table S8. The cor-
relation between identified gene modules and two traits (HF and control) was calculated.
As shown in Figure 2A, the ME turquoise and ME blue modules showed significantly
positive correlations to HF (R > 0.7, p < 0.05). We also observed the significantly distinct
distribution of gene significance (GS) across modules (p < 0.05, Figure S3D). Fourth, we
performed intramodular analysis and found significantly positive correlations between
module membership (MM) and gene significance (GS) in the ME turquoise (R = 0.55,
p < 0.05) (Figure 2B) and ME blue modules (R = 0.86, p < 0.05) (Figure 2C). Finally, we
considered the genes in the ME turquoise module (n = 356) and ME blue module (n = 298)
as HF-related genes for later analysis.
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Figure 1. Identification of DEGs of HF from the training cohort with n = 366 (200 HF and 166 non-HF
controls) and KEGG enrichment analysis. (A) The plot of PLS-DA scores using two components
shows the distinct separation between the HF and control groups. (B) The Volcano plot of DEGs with
a significant change in |log2FC| > 1 and FDR < 0.05. The red and blue dots represent up-regulated
and down-regulated DEGs, respectively. (C) The clustering heatmap of DEGs among the HF group
and control group. Left panel annotation: The significant KEGG enrichment pathways of up- and
down-regulated DEGs (all q < 0.05).
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Figure 2. Crucial modules identified WGCNA and MEGENA from the training cohort with n = 366
(200 HF and 166 non-HF controls). (A) The heatmap showed the relationship between five WGCNA-
identified modules and two traits (HF and control). Each cell includes the correlation coefficient and
p value. (B) Scatterplots of high correlations between GS versus MM for HF in blue module from
WGCNA. (C) Scatterplots of high correlations between GS versus MM for HF in turquoise modules
from WGCNA. (D) The gene co-expression network of HF via MEGENA. Node stands for distinct
modules, and the sizes of node and label are proportional to gene numbers. The two modules with
the largest genes in the network are shown: c1_2 and c1_6 (highlighted in red boxes). (E) Intergenic
connectivity of genes in c1_2 module. (F) Intergenic connectivity of genes in c1_6 module.

3.3. Two Largest Crucial Modules of HF Were Identified by MEGENA on DEGs

To gain insight into a more biologically meaningful gene expression network in HF, we
implemented MEGENA on the expression profiles of the 926 DEGs to establish a multiscale
gene co-expression network. We first calculated and filtered the correlations between each
gene pairwise of 926 DEGs. Subsequently, a fast PFN was calculated to filter and retain
the significant correlation pairs. We then performed MCA on splitting PFN to identify sub-
modules (summarized in Table S9). As shown in Figure 2D, 48 significant gene modules
were identified (module significance p < 0.05), of which the c1_2 was the largest module of
288 genes, which was followed by the c1_6 module containing 276 genes. Moreover, we
displayed the subnetworks of the c1_2 and c1_6 modules. As shown in Figure 2E,F, the
c1_2 and c1_6 modules comprised six and eight child modules, respectively.

3.4. A Large Set of Overlaps between Crucial Modules Showed Close Associations with HF-Related
Biological Functions and Pathways

Comparing the two significantly positive gene modules of WCGNA with the
two significantly large gene modules of MEGENA, we obtained two large sets of in-
tersections between these identified modules. As shown in Figure 3A, 248 genes were
overlapping between the ME turquoise of WGCNA and the c1_6 module of MEGENA. We
also observed that 234 genes intersected between ME blue of WGCNA and the c1_2 module
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of MEGENA. Enrichment analysis contributes to understanding whether the preservation
of these modules between WGNCA and MEGENA could comprehensively represent the
biological significance of HF. Subsequently, we conducted DO, GO, and KEGG enrichment
analyses on the two sets of overlapping genes co-identified by WCGNA and MEGENA.
DO enrichment analysis showed that the 234 genes largely participated in hematopoietic
system disease, nutrition disease, autosomal recessive disease, overnutrition, and obesity
(Figure 3B). GO enrichment analyses demonstrated that the 234 genes were highly asso-
ciated with ECM, such as extracellular matrix structural constituent, collagen-containing
extracellular matrix, and extracellular structure organization (Figure 3B). Furthermore,
KEGG enrichment analysis revealed that 234 genes primarily participated in morphine
addiction, Cushing syndrome, and phagosome (Figure 3B). DO enrichment analysis sug-
gested that 248 genes were enriched in cardiac abnormality-related disorders, such as
congestive heart failure, congenital heart disease, heart septal defect, and atrial heart septal
defect (Figure 3C). It was also shown that 248 genes were mainly related to ECM-related
functions, such as extracellular matrix structural constituent, collagen-containing extra-
cellular matrix, and extracellular matrix organization. Notably, several pathways have
been proven significant to HF progression, such as the cGMP-PKG signaling pathway [59],
the cAMP signaling pathway [60], the Hippo signaling pathway [61], adrenergic signaling
in cardiomyocytes [62], and the TGF-beta signaling pathway [63], were observed in the
KEGG enrichment of 248 genes (Figure 3C). Taken together, we noticed that compared with
234 genes, 248 genes were enriched in more biological functions or pathways associated
with HF, which was used as a gene set for further feature selection.

3.5. Machine Learning-Based Integration and PPI Network Analysis Screened 10 Pivotal Genes of HF

The expression profiles of 248 genes were subjected to the machine learning-based
integration pipeline to filter pivotal genes of HF. Herein, we developed 113 predictive
classification models fitted on the training and test cohorts via the CV framework. As
shown in Figure 4A, the Enet (alpha = 0.1) with the highest mean AUC scores (0.971)
performed within the training and test cohorts was considered the optimal classification
model. Therefore, we obtained a set of 134 feature genes via the Enet (alpha = 0.1). To
investigate the gene functional association, we subsequently constructed a 134 genes-
dominant PPI network (Figure 4B). The genes showed interactions were retained in the
network, and non-interactive genes were eliminated. Using the cytoHubba, we carried out
the Degree, MNC, MCC, EPC, and DMNC algorithms to identify the network’s top 20 genes
with higher connectives (Figure S4). Finally, we obtained an interactive genes-dominant
PPI network and identified 10 pivotal genes (KIT, SLC6A1, SLC6A4, COL14A1, MME, OGN,
SFRP4, CD1C, MFAP4, HTR2B) overlapping between the five algorithms (Figure 4C).

3.6. COL14A1, OGN, MFAP4, and SFRP4 Were Hub Genes as Candidate Diagnostic Biomarkers
of HF

To assess the diagnostic abilities of 10 pivotal genes, we conducted ROC curve analysis
in the training and test cohorts. The results demonstrated that COL14A1, OGN, MFAP4, and
SFRP4 achieved AUC scores all larger than 0.85 in the training cohort (Figures 5A and S5A)
and test cohort (Figures 5D and S5B), suggesting the high sensitivity and specificity that dis-
tinguish HF from control. Accordingly, COL14A1, OGN, MFAP4, and SFRP4 were considered
hub genes of HF that could serve as underlying diagnostic biomarkers of HF. Additionally,
combining four hub genes largely elevates the diagnostic performances within the training
cohort (AUC = 0.988, Figure S5C) and test cohort (AUC = 0.935, Figure S5D). The diagnos-
tic accuracy, correlations, and expression patterns of COL14A1, OGN, MFAP4, and SFRP4
were further assessed within two datasets (GSE57338 and GSE42955) from the test cohort
(Figure S6). Despite the different sample sources from the two datasets, robust diagnostic
powers and elevated expressions of these genes were again verified, particularly OGN (all
AUC > 0.9, Figure S6C,G). We subsequently compared the diagnostic performance of these
four hub genes with current HF biomarkers, including myocardial stress/injury-related (model
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1; BNP, NT-proBNP, TnT, TnI), neurohormone-related (model 2; MR-proADM, AVP, Peptide),
myocardial remodeling-related (model 3; sST2, Gal-3, MMP, GDF-15), inflammatory-related
(model 4; CRP, IL-6, TNF-α, PCT), and renal function injury-related (model 5; Cys C, NGAL)
biomarkers. Importantly, the AUC scores of the four genes’ combinations ranked first within
the training cohort and test cohort (Figure S7), suggesting the superior prediction ability of
our identified hub genes. The significant up-regulation patterns of four hub genes in HF were
observed in the training cohort (p < 0.001, Figure 5B) and test cohort (p < 0.001, Figure 5E).
Moreover, correlation analysis further revealed the close relationships between the expression
levels of four hub genes. As shown in Figure 5C, COL14A1 was significantly closely related
to OGN, SFRP4, and MFAP4 (R > 0.6, p < 0.001). Additionally, SFRP4 highly correlated to
MFAP4 (R = 0.62, p < 0.001). The close expression correlation patterns of four hub genes were
consistently verified in the test cohort (Figure 5F).
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Figure 3. Overlap between crucial modules of WGCNA and MEGENA from the training cohort with
n = 366 (200 HF and 166 non-HF controls). (A) The Upset plot and Venn plot show two large sets of
overlapping (indicated by red and blue triangles) between 4 selected modules, including 2 crucial
modules of WGCNA and 2 crucial modules of MEGENA. (B) DO, GO, and KEGG enrichment analysis
of shared genes between the blue module and c1_2 module. (C) DO, GO, and KEGG enrichment
analysis of shared genes between the turquoise module and c1_6 module.
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of four hub genes in the training cohort. (B) Expression levels of four hub genes in HF compared
to the control group in the training cohort. (C) Correlation heatmap of four hub genes expressed in
HF in the training cohort. Red line indicates the fitted curve. (D) ROC curves of four hub genes in
the test cohort. (E) Expression levels of four hub genes in HF compared to the control group in the
test cohort. (F) Correlation heatmap of four hub genes expressed in HF in the test cohort. Red line
(Figure 5C,F) indicates the fitted curve. ***, p < 0.001.
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3.7. Distinct Cell-Specific Expression Patterns of Hub Genes in HF via scRNA-seq Analysis

To further explore the cell-specific expression of four hub genes in HF, we first con-
ducted scRNA-seq analysis on GSE121893 to identify and characterize the cell populations
in HF. The pre-processing procedure of scRNA-seq analysis, including quality control, data
normalization, and dimensional reduction, is shown in Figure S8. Subsequently, the cells
derived from six patients with HF were clustered into seven distinct clusters via the UMAP
algorithm (Figure 6A). We then classified the seven clusters into five main cell types in HF
(Figure 6B), including CMs, ECs, FBs, SMCs, and MPs, leveraging their specific molecular
features (Figure 6C). Interestingly, we annotated clusters 4 and 6 as MPs, whereas distinct
expression patterns of these clusters were observed. Cluster 4 is reflected with a higher
CD74, ITGAM, and MRC1 expression. However, their relatively lower expression was
shown in cluster 6, suggesting that two cardiac MP populations are separately activated
in the early stage and late stage. As depicted in Figure S9, we also evaluated the AUCell
scores of the molecular features in the cell population, which notably differentiated five cell
types. Next, we investigated the cell-specific expression patterns of four hub genes. The
violin plots demonstrated that OGN and SFRP4 were highly expressed in FBs (Figure 6D).
However, the expression patterns of COL14A1 and MFAP4 showed no apparent differ-
ences among the five cell groups. Accordingly, the Nebulosa approach was implemented
to recover the expression sparsity of hub genes from noisy signals in UMAP space. As
shown in Figure 6E, we observed the clear expression patterns of four hub genes in five
cell populations, in which OGN and SFRP4 were mainly enriched in FBs, COL14A1 in ECs,
and MFAP4 in CMs. Collectively, we uncovered the specific cellular compositions and
expression patterns of hub genes in the context of HF.
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Figure 6. ScRNA-seq analysis uncovered the cell-specific expression patterns of hub genes in HF.
(A) UMAP clustering of 4221 cells isolated from hearts under HF condition. (B) Annotation on
clusters using specific gene markers of CM, EC, FB, SMC, and MP. (C) Seven clusters were annotated
as five cell populations (CM, EC, FB, SMC, and MP). Dotted box indicates markers of five cell types.
(D) Expression levels of hub genes in five cell populations. (E) Density estimation of hub genes in
five cell populations. CM, cardiomyocyte; EC, endothelial cell; FB, fibroblast; SMC, smooth muscle
cell; MP, macrophage.
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3.8. GSVA and GSEA Revealed the Activated and Suppressed Pathways Co-Regulated by Hub
Genes in HF

To reveal the underlying pathways co-regulated by four hub genes, we performed
GSVA and GSEA using 186 annotated KEGG pathways on the expression profiles of HF.
First, we implemented GSVA on the training cohort and compared the GSVA scores of
pathways between the low expression and high expression of each hub gene, respec-
tively. The significantly activated pathways (t > 2, p < 0.05) and suppressed pathways
(t < 2, p < 0.05) via GSVA were shown in Figure 7A–D and Figure S10A–D. Second, GSEA
was performed on each gene within the training and test cohorts. As shown in Figure 7E–H,
we observed that the chemokine signaling pathway, intestinal immune network for IgA pro-
duction, cell adhesion molecules, cytokine–cytokine receptor interaction, and neuroactive
ligand receptor interaction were significantly activated (NES > 1, p < 0.05, FDR < 0.25) in
the training cohort. And oxidative phosphorylation was significantly inactivated (NES < 1,
p < 0.05, FDR < 0.25) in the training cohort. These six significant GSEA-enriched pathways
of hub genes in the training cohort were also validated in the test cohort (Figure S10). Third,
we took the intersection between GSVA and GSEA of each hub gene (Figure S11). After
comprehensively comparing the results from GSVA and GSEA, we suggested that cell adhe-
sion molecules, the chemokine signaling pathway, cytokine–cytokine receptor interaction,
and oxidative phosphorylation might be downstream mechanisms co-regulated by four
hub genes in HF progression. Additionally, we implemented GSVA and GSEA analyses of
these shared mechanisms in HF compared to control cases. Importantly, the evident activa-
tion of cell adhesion molecules, the chemokine signaling pathway, and cytokine–cytokine
receptor interaction was observed in HF, but oxidative phosphorylation was inhibited
(Figure S12). We subsequently conducted BN inference on the pathways mentioned above,
and the predicted GRNs were visualized in Figure S13. The four hub genes showed higher
expressions, more edges, and strengths in GRNs, suggesting their critical roles in regulating
these pathways.

3.9. BNC2 and MEOX2 Were TFs Actively Targeting Hub Genes

On the basis of the TRRUST v2 database, we enrolled the top 10 TFs (OSR1, PRDM6,
AEBP1, TBX18, MEOX2, BNC2, HEYL, TCF21, PRRX2, and PGR) targeting hub genes
(Table S10). A total of six TFs (AEBP1, TCF21, PRRX2, PRDM6, BNC2, and MEOX2) that
increased in HF within the training and test cohorts (Figures S14 and S15) were regarded
as key TFs that were activated in HF progression. The regulatory network involving four
hub genes and six key TFs is shown in Figure 8A. Notably, BNC2 and MEOX2 showed
regulatory interactions with four hub genes. The clustering heatmap then demonstrated
the differential expression patterns of six key TFs and four hub genes in the HF and control
groups (Figure 8B), in which the expressions of AEBP1, TCF21, and PRRX2 were similar
to those of SFRP4 and MFAP4. PRDM6, BNC2, and MEOX2 showed expression patterns
similar to those of COL14A1 and OGN. Figure 8C further showed the correlation patterns
of 10 key TFs and four hub genes in HF, in which BNC2 and MEOX2 were significantly cor-
related to hub genes. We then quantified the enrichment levels of cell adhesion molecules,
the chemokine signaling pathway, cytokine–cytokine receptor interaction, and oxidative
phosphorylation in the HF group using ssGSEA. To evaluate whether the TFs could actively
or negatively affect the hub genes-regulated pathways, we further related the expressions of
key TFs to the ssGSEA enrichment scores of pathways. Figure 8D illustrates the significant
positive relationships between two TFs (BNC2, MEOX2) and three pathways (including
cell adhesion molecules, the chemokine signaling pathway, and cytokine–cytokine receptor
interaction). However, oxidative phosphorylation was negatively correlated to BNC2 and
MEOX2, which indicated that these TFs inhibited oxidative phosphorylation. Notably,
PPRX2 exhibited a distinct correlation pattern compared to other key TFs, which was
positively correlated with oxidative phosphorylation but negatively related to cell adhesion
molecules, the chemokine signaling pathway, and cytokine–cytokine receptor interaction,
suggesting that PPRX2 might be a TF that suppressed hub genes in HF.
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Figure 7. GSVA and GSEA of low and high expressions of hub genes involved in HF. (A) GSVA of
COL14A1. (B) GSVA of MFAP4. (C) GSVA of OGN. (D) GSVA of SFRP4. (E) Selected top KEGG terms
using GSEA of COL14A1. (F) Selected top KEGG terms using GSEA of MFAP4. (G) Selected top
KEGG terms using GSEA of OGN. (H) Selected top KEGG terms using GSEA of SFRP4. Dotted line
(A–D) suggests that the t value is greater than or less than 2.
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3.10. Elevated Infiltration Levels of Effector Memory CD4+ T Cells Were Highly Related to
Hub Genes

In the previous analysis, we observed that the expressions of hub genes may co-
regulate two significantly activated immune-related pathways in HF, including the
chemokine signaling pathway and cytokine–cytokine receptor interaction. Accordingly, we
wondered whether the immune landscape altered and could further exert certain functions
in HF. First, we performed ssGSEA to quantify the infiltration levels of 28 immune cell types
between the HF and control groups within the training and test cohorts. We then carried
out Lasso and RF to perform feature selection on the infiltration profiles of 28 immune
cell types to identify the key types, respectively. Under the optimal λ (0.001797875), Lasso
obtained 23 key immune cell types (Table S11) with regression coefficients larger than
zero (Figure 9A,B). RF constructed with 586 decision trees retained 15 immune cell types
(Table S12) with a mean decrease in Gini larger than zero (Figure 9C). A set of 14 immune
cell types (activated CD4+ T cell, activated CD8+ T cell, activated dendritic cell, CD56dim
natural killer cell, MDSC, macrophage, natural killer T cell, natural killer cell, neutrophil,
Type 17 T helper cell, Type 2 T helper cell, effector memory CD4+ T cell, memory B cell,
central memory CD8+ T cell) overlapping between Lasso and RF was considered to contain
the key immune cell types of HF. Within the training and test cohorts, we demonstrated the
elevated infiltrations of activated CD8+ T cells, Type 2 T helper cells, and effector memory
CD4+ T cells in HF (Figure 9D,F). We also noticed that the infiltrations of natural killer cells
and effector memory CD4+ T cells positively related to expressions of hub genes in the
training and test cohorts (Figure 9E,G). Effector memory CD4+ T cells showed significantly
up-regulated infiltrations and positive correlations with hub genes in HF, suggesting its
crucial role involved in immune-related pathways regulated by hub genes.
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coefficient (λ) under 10-fold cross-validation. (C) The effect of tree number on error variation of RF.
Green and red stand for the error rate of the control and HF groups, respectively, and black represents
the overall error rate. (D) Integration of Lasso and RF identified 14 key immune infiltration cells of
HF. (E) Comparisons of 14 key immune infiltration cells between the HF and control groups in the
training cohort. (F) Correlation analysis among 14 key immune infiltration cells and hub genes in the
training cohort. (G) Comparisons of 14 key immune infiltration cells between the HF and control
groups in the test cohort. (H) Correlation analysis among 14 key immune infiltration cells and hub
genes in the test cohort. Effector memory CD4+ T cells are highlighted in the red frame, indicating
that the infiltration of effector memory CD4+ T cells elevates in HF and is positively correlated to
hub genes. ns, not statistically significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.11. Small-Molecule Agents Targeting Active TFs and Hub Genes Could Serve as Candidate
Drugs for Alleviating HF

A set of 78 small-molecule agents potentially targeting two key TFs or four hub
genes was identified via the Enrichr database by accessing DSigDB (Table S13). We then
identified captopril (targeting BNC2), aldosterone (targeting MEOX2), cyclopenthiazide
(targeting MEOX2), estradiol (targeting COL14A1), tolazoline (targeting COL14A1), and
genistein (targeting SFRP4) previously have been reported to treat or alleviate HF [64–69],
as candidate therapeutic agents for HF. Notably, captopril and cyclopenthiazide belong to
Angiotensin-Converting Enzyme Inhibitors (ACEIs) and thiazide diuretics, which have
been put into clinical treatment of HF. Moreover, the therapeutic value of aldosterone
antagonists in curving HF has been underscored recently. Given the protective effects
of estrogens and phytoestrogens for alleviating HF, studies from animal models have
demonstrated that genistein and estradiol could attenuate pathological hypertension in the
progression of HF, suggesting their HF-related preventative roles. AutoDock Vina software
(version 1.1.2) was subsequently performed to dock the six selected small-molecule agents
with their targeted TFs (BNC2, MEOX2) or hub genes (COL14A1, SFRP4). Furthermore, we
visualized the docking models with the lowest binding affinity and Root Mean Squared
Error (RMSE) lower than 2 Å through PyMOL (Figure S16). The formation of hydrogen
bonds that small-molecule agents bind to the amino acids of TFs or hub genes was also
analyzed (Table 2, Figure S16), thus revealing the specific affinity patterns.

Table 2. Molecular docking results of drugs with targets.

Drugs Targets Affinity (kcal/mol) Bond Protein’s Residues

Captopril BNC2 −3.9 H-bond GLN-199

Aldosterone MEOX2 −7.1 H-bond GLU-203
LYS-241

Cyclopenthiazide MEOX2 −5.7 H-bond THR-192
ASN-237

Estradiol COL14A1 −8.2 H-bond ARG-171
VAL-930

Tolazoline COL14A1 −5.9 H-bond ASP-1148

Genistein SFRP4 −3.8 H-bond GLU-127
ARG-262

3.12. Plasma OGN Elevated in HF with Robust Diagnostic Value and Positive Causal Correlation
to HF Risk

To study whether the four hub genes could serve as plasma biomarkers for diagnosing
HF, we conducted qRT-PCR analysis on plasma collected from three HF patients and three
non-HF controls. As shown in Figure 10A, OGN was highly expressed in HF, elevating
about 1.5 times compared to the control. Additionally, OGN demonstrated an extremely
robust diagnostic value (AUC = 1) in distinguishing HF from control (Figure 10B). A positive
correlation between OGN and NT-proBNP (R = 0.95, p = 0.0036) is shown in Figure 10C.
Leveraging GSE135055 as an external validation cohort, we noted that in comparison with
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the control, the expressions of plasma OGN in patients with HF also significantly increased
(Figure 10D). Moreover, the robust diagnostic power of OGN was again demonstrated
(AUC = 0.852, Figure 10E). Meanwhile, no significant relationship between OGN and EF
was observed (p = 0.83, Figure 10F). Figure 10G further showed the expression patterns of
OGN among diverse groups of clinical characteristics, including HF type, gender, smoking
history, hypertension, and age. Interestingly, we found that the expression of OGN may not
fluctuate through these clinical factors (all p > 0.05), which were subsequently validated in
the training and test cohorts (Figure S17). To investigate the potential of plasma OGN as a
diagnostic biomarker benefiting from genetic variation, we performed a two-sample MR
analysis based on large-scale GWAS data. We initially integrated the exposure data (plasma
OGN) and outcome data (HF risk) to filter the overlapping significant SNPs. Following the
three basic assumptions of the two-sample MR approach, we selected 25 significant SNPs
as strong IVs to implement the analysis. As depicted in Figure 10H, we related the effect
sizes of SNPs on plasma OGN and SNPs on HF, and there was an overall positive fitted
relationship, suggesting the direct casual association between plasma OGN and HF. The
forest plot and funnel plot of each SNP on HF can be found in Figure S18A,B, respectively.
Using the IVW approach, which showed the highest statistical effectiveness among the five
MR methods, we demonstrated that plasma OGN was positively correlated to the risk of
HF with an estimated OR of 1.12805 (95% CI: 1.05431–1.20694, p < 0.05, Figure 10I). The
positive causal relationship between plasma OGN and HF was also estimated via the other
four MR approaches (Figure 10H), showing a consistent directional change (all OR > 1).
Thus, we herein speculated that a higher concentration of plasma OGN corresponds to
an increased risk of HF. To guarantee the reliability of this result, we conducted a series
of sensitivity tests (heterogeneity, horizontal pleiotropy, and leave-one-out analyses). No
heterogeneity and horizontal pleiotropy were observed (all p > 0.05, Table S14). In the
leave-one-out analysis, the step-by-step removal of each SNP was not recognized to greatly
influence the result (all SNP > 0, Figure S18C), indicating all incorporated SNPs achieved
significant causality rather than the occurrence of a dominate SNP. In a word, these data
suggested the great potential of OGN as a plasma biomarker for HF diagnosis and the
evaluation of HF progression.
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Figure 10. Evaluation of plasma OGN as a promising diagnostic biomarker of HF. (A) The qPCR-
detected mRNA expression level of OGN (normalized by β-actin) in plasma of HF patients compared
to control cases. (B) ROC curve of OGN. (C) Correlation between expressions of OGN and NT-proBNP.
(D) The expressions of OGN in HF patients compared to control cases in GSE135055. (E) ROC curve of
OGN in GSE135055. (F) Correlation between expressions of OGN and EF in GSE135055. (G) Heatmap
displaying the expression patterns of OGN in groups of different clinical characteristics in GSE135055.
(H) A scatterplot shows the positive association between the SNP effect on plasma OGN (x-axis) and
HF (y-axis). (I) Forest plot indicating the estimated OR effects and p values generated from using
five approaches on assessing the causal effect of plasma OGN on the risk of AMI. The size of red box
indicates standard error. *, p < 0.05; **, p < 0.01.

4. Discussion

HF remains high in incidence and mortality worldwide, and a novel approach is
urgently needed to improve this situation. In the past few decades, HF has been proven
to be a heterogeneous and progressive clinical syndrome that is reflected in its complex
pathophysiology [6].

Herein, we performed a comprehensive bioinformatics analysis on bulk RNA-seq and
sc-RNA seq datasets from HF patients and non-HF controls. We briefly outlined our main
findings shown in a schematic diagram (Figure 11). First, we identified 926 distinct DEGs
(HF versus control), including 648 up-regulated genes and 278 down-regulated genes in HF.
The KEGG pathway enrichment analysis then showed that DEGs were mainly involved in
ECM and immune-related pathways (cytokine–cytokine receptor interaction, cell adhesion
molecules, the T cell receptor signaling pathway, ECM–receptor interaction, complement
and coagulation cascades). Impaired signaling through corresponding cytokine receptors
accelerates myocardial apoptosis and tissue damage after acute cardiac stress, suggesting
an adverse role of cytokine–cytokine receptor interactions in HF [70]. Furthermore, cell
adhesion molecules play a crucial role in modulating cardiac inflammation and patho-
logical cardiac remodeling by facilitating the recruitment of T-cells to the left ventricle,
ultimately contributing to cardiac dysfunction of HF [71]. Excessive extracellular matrix re-
modeling has extensively been known to precipitate HF. Coagulation proteases orchestrate
clotting-independent activation of protease-activated receptors (PARs) to modulate TGF-β1
signaling, influencing cardiac fibrosis in HF [72]. Notably, a large body of evidence has
demonstrated the abnormal ECM and immune-related functions or mechanisms altered in
HF development and progression.



Biomolecules 2024, 14, 179 24 of 33

Biomolecules 2024, 14, x FOR PEER REVIEW 27 of 36 
 

0.1) model with the highest AUC values in the training and test cohorts. Together with the 
PPI network establishment and five ranking algorithms of Degree, MNC, MCC, EPC, and 
DMNC, we further obtained 10 pivotal genes, including KIT, SLC6A1, SLC6A4, COL14A1, 
MME, OGN, SFRP4, CD1C, MFAP4, HTR2B. Most of these pivotal genes’ activations have 
been reported to contribute to HF, as summarized in Table S15. ROC curve analysis then 
identified four key genes (COL14A1, OGN, SFRP4, MFAP4) performed with robust AUC 
scores (AUC > 0.85) in both the training and test cohorts. The up-regulation patterns of 
four key genes in HF and their positive correlation patterns were observed within the 
training and test cohorts. Leveraging sc-RNA seq analysis, we uncovered the cellular com-
position of failed hearts, mainly including cardiomyocytes, endothelial cells, fibroblasts, 
smooth muscle cells, and macrophages. Moreover, distinct cell-specific expression pat-
terns were revealed in which OGN and SFRP4 were mainly expressed in cardiac fibro-
blasts, COL14A1 was mainly expressed in cardiac endothelial cells, and MFAP4 was ex-
pressed in cardiomyocytes. 

 
Figure 11. Schematic diagram illustrating the speculative pathogenic mechanisms of four hub genes 
that participated in HF. 

Of these four key genes, Collagen Type XIV Alpha 1 Chain (COL14A1) has previously 
been reported to affect arterial remodeling [75] and showed up-regulation mRNA and 
protein levels in the ischemic heart of HF patients [76]. Col14a1 deficiency would contrib-
ute to defective ventricular morphogenesis and chaotic collagen fibril organization in 
mice, thereby indicating its maintenance of structural integrity during early heart devel-
opment [77]. Given the specific expression pattern of COL14A1 in endothelial cells uncov-
ered by sc-RNA analysis, we speculate that the close association of COL14A1-activated 
endothelial cells and dysfunction in collagen constituents contributes to myocardial hy-
pertrophy of HF progression. Osteoglycin (OGN), which encoded a class III small leucine-

Figure 11. Schematic diagram illustrating the speculative pathogenic mechanisms of four hub genes
that participated in HF.

Gene co-expression analysis is commonly used to identify gene modules linked to
disease traits [73]. Next, we performed WGCNA and MEGENA gene co-expression anal-
yses on DEGs. Leveraging the gene–pairwise correlation and agglomerative clustering,
WGCNA allows the assignment of each gene to certain modules, which helps recognize
the modules highly correlated to disease traits. We initially identified two crucial mod-
ules from WGCNA, including ME turquoise and ME blue modules. Of note, these two
modules all displayed significant strong correlations to HF (R > 0.7, p < 0.05), and genes
recognized in these modules showed positive associations between GS and MM. These
results suggest that these two modules exhibited a strong linkage with HF, which could
be used as functional gene sets of HF. Contrary to the traditional clustering by WGCNA,
MEGENA is implemented based on divisive hierarchical clustering [74]. Therefore, more
compact and functionally coherent modules could be screened out through MEGENA,
and we recognized two large gene modules from MEGENA, including c1_2 and c1_6
modules. WGCNA and MEGENA could complement each other [74] and comprehensively
capture gene modules strongly related to HF rather than rely on a single method. Four gene
modules were obtained, including two WGCNA-identified gene modules (ME turquoise
and ME blue modules) and two MEGENA-identified gene modules (c1_2 and c1_6 mod-
ules). More interestingly, we obtained two large intersections between the four identified
gene modules, which were 248 genes shared by the ME turquoise and c1_6 modules and
234 genes common to the ME blue and c1_2 modules. Although WGCNA and MEGENA
successfully seized these two preserved co-expression gene patterns associated with HF,
their biological significance of HF remained uncertain. Therefore, we implemented en-
richment analysis to annotate human disease, gene functions, and pathways to determine
whether the HF-related terms are over-enriched or under-enriched in the two overlapping
gene sets. Here, we selected gene sets with more HF-representative terms to guarantee
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the algorithmic and biological capture of HF characteristics. The DO, GO, and KEGG
enrichment analyses demonstrated that 248 genes were mainly involved in diverse car-
diovascular disorders and HF-related biological functions or pathways. In comparison,
fewer HF-related enriched terms were shown in 234 genes. Consequently, we retained
248 genes and performed feature selection via a machine learning-based integration pipeline
under the LOOCV framework. A total of 134 feature genes were selected using the Enet
(alpha = 0.1) model with the highest AUC values in the training and test cohorts. Together
with the PPI network establishment and five ranking algorithms of Degree, MNC, MCC,
EPC, and DMNC, we further obtained 10 pivotal genes, including KIT, SLC6A1, SLC6A4,
COL14A1, MME, OGN, SFRP4, CD1C, MFAP4, HTR2B. Most of these pivotal genes’ acti-
vations have been reported to contribute to HF, as summarized in Table S15. ROC curve
analysis then identified four key genes (COL14A1, OGN, SFRP4, MFAP4) performed with
robust AUC scores (AUC > 0.85) in both the training and test cohorts. The up-regulation
patterns of four key genes in HF and their positive correlation patterns were observed
within the training and test cohorts. Leveraging sc-RNA seq analysis, we uncovered the
cellular composition of failed hearts, mainly including cardiomyocytes, endothelial cells,
fibroblasts, smooth muscle cells, and macrophages. Moreover, distinct cell-specific expres-
sion patterns were revealed in which OGN and SFRP4 were mainly expressed in cardiac
fibroblasts, COL14A1 was mainly expressed in cardiac endothelial cells, and MFAP4 was
expressed in cardiomyocytes.

Of these four key genes, Collagen Type XIV Alpha 1 Chain (COL14A1) has previ-
ously been reported to affect arterial remodeling [75] and showed up-regulation mRNA
and protein levels in the ischemic heart of HF patients [76]. Col14a1 deficiency would
contribute to defective ventricular morphogenesis and chaotic collagen fibril organiza-
tion in mice, thereby indicating its maintenance of structural integrity during early heart
development [77]. Given the specific expression pattern of COL14A1 in endothelial cells un-
covered by sc-RNA analysis, we speculate that the close association of COL14A1-activated
endothelial cells and dysfunction in collagen constituents contributes to myocardial hyper-
trophy of HF progression. Osteoglycin (OGN), which encoded a class III small leucine-rich
proteoglycan (SLRP) member, was first discovered to act as a key regulator in rat left
ventricular mass (LVM) through modulating the TGF-β pathway [78]. It was also proposed
that OGN might be involved in the regulation of cardiac dysfunction and adverse remod-
eling after myocardial infarction in HF [79]. Moreover, OGN was reported to modulate
fibrosis and inflammation, resulting in diastolic dysfunction shown in hypertensive heart
disease [80]. More recently, Fang et al. have revealed the specific mechanism of Ogn in
myocarditis mice by which its silencing suppressed the Wnt signaling pathway, thus in-
hibiting myocardial fibrosis proliferation [81]. The close linkage between activated cardiac
fibroblast and adverse outcomes following HF (fibrosis, remodeling, and dysfunction) has
been extensively expounded [82]. Therefore, it is reasonable to deduce the expression of
OGN active in cardiac fibroblasts in the context of HF, leading to myocardial fibrosis and
remodeling post-HF. Microfibril-associated glycoprotein 4 (MFAP4) has been proven to
regulate calcium-dependent cell adhesion or intercellular interactions, leading to inflamma-
tion and fibrosis, which was previously verified to engage in remodeling-related diseases
such as liver fibrosis, atherosclerosis, and arterial injury stimulated remodeling [83,84].
Apart from the close association between MFAP4 and remodeling-related disorders, it
was also shown that MFAP4 could also serve as a candidate biomarker for cardiovascular
diseases such as HF [84]. For instance, clinical cohort-based research demonstrated that the
protein levels of MFAP4 were significantly increased in serum derived from HF patients
compared to control cases [85]. Mechanistically, Mfap4 deletion could attenuate cardiac
fibrosis and ventricular arrhythmias, suggesting its potential as a therapeutic target in HF
prevention [86]. Additionally, Dorn et al. showed that Mfap4 knockout affected pressure
overload-induced cardiac remodeling, leading to elevated cardiac hypertrophy and exacer-
bating cardiac function [87]. According to our previous analysis, MFAP4 was identified to
be specifically expressed in cardiomyocytes, which largely implies its significant activation
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in directly exacerbating hypertrophy of cardiomyocytes in the condition of HF. Secreted
frizzled-related protein 4 (SFRP4) has been reported to be expressed in human ventricular
myocardium and correlates with apoptosis-related gene expression [88]. Zeng et al. showed
that the increased Sfrp4 in mice myocardial infarction model and knockout of Sfrp4 could
protect against myocardial ischemia and reperfusion injury through attenuating apoptosis
of cardiomyocytes [89]. Additionally, evidence from the rat heart ischemic model showed
that Sfrp4 recombinant protein injection could exert a cardio-protective effect and improve
the cardiac function of the ischemic heart, which suggested the therapeutic potential of
SFRP4 in humans [90]. Regarding the evident expression of SFRP4 in cardiac fibroblasts
of failed hearts, we mechanically speculated that elevated SFRP4 affects myocardial fi-
brosis and remodeling post-HF. Ji et al. found that plasma SFRP4 concentrations were
increased in patients with coronary artery disease (CAD) and acted as an independent
factor [91]. Altogether, findings from prior experimental and clinical evidence have indi-
cated the great potential of four hub genes in developing ECM fibrotic, immune, or cardiac
remodeling-related biomarkers and therapeutic molecular targets of HF.

Subsequently, we integrated GSVA and GSEA algorithms to explore the shared path-
ways regulated by the four hub genes in HF. Three significantly activated pathways (in-
cluding cell adhesion molecules, the chemokine signaling pathway, and cytokine–cytokine
receptor interaction) were co-identified through the combination of GSVA and GSEA. In
contrast, oxidative phosphorylation was identified as a common suppressed pathway.
Notably, the induction of ECM remodeling, inflammatory cytokines, and chemokines
have been proven to contribute to the pathogenesis of HF, such as adverse remodeling,
myocardial injury, myocardial fibrosis, and dysfunction [70,71,92,93]. Moreover, it was
shown that impaired mitochondrial respiratory and decreased oxidative phosphorylation
were detected in the hearts of HF patients [94]. More strikingly, we observed the same
phenomenon through GSVA and GSEA algorithms: cell adhesion molecules, chemokine
signaling pathway, and cytokine–cytokine receptor interaction were active, whereas oxida-
tive phosphorylation was inhibited in HF compared to control. We noticed that four hub
genes participated in diverse pathogenic pathways involving ECM, immune factors, and
oxidative phosphorylation, suggesting the pathophysiologic heterogeneity of HF. Given
the close interplays between these pathogenic pathways in HF progression, we specu-
lated that the continuous induction of chemokines or cytokines stimulated the formation
of inflammatory conditions in HF that promoted ECM deposition and impaired oxida-
tive phosphorylation capability, thereby exerting an adverse effect on cardiac function
(Figure 11). Regarding the upstream regulatory mechanism that could activate the tran-
scription of hub genes, the transcription factors were predicted using the TRRUST v2
database. After systemically exploring the correlation patterns between the up-regulated
TFs in HF and the hub gene-regulated pathogenic pathways, we identified BNC2 and
MEOX2 as upstream regulators to activate the transcription of hub genes and drive the
pathogenic pathways. Basonuclin 2 (BNC2), a zinc finger TF, was recently identified as a
core TF essential for myofibroblastic activation in fibrosis, causing ECM deposition during
fibrogenesis [95]. Mesenchyme Homeobox 2 (MEOX2) has previously been reported to
regulate the proliferation, differentiation, and migration of vascular endothelial cells and
cardiomyocytes [96,97]. BNC2 and MEOX2 are closely linked with cardiac functions and
may contribute to HF-related pathogenic pathways, which could be confident upstream
regulators during HF progression. Taken together, we uncovered a comprehensive mecha-
nism of hub genes involved in HF, which was a compact regulatory interaction of TFs–hub
genes–pathways: The up-regulations of TFs (BNC2 and MEOX2) activate the transcriptions
of four hub genes (COL14A1, OGN, MFAP4, SFRP4) and subsequently drive the activation
or suppression of downstream signaling pathways (Figure 11). The interplays between
activated pathways related to immune factors and ECM and the suppressed oxidative phos-
phorylation pathway may further cause abnormal cardiac functions, thereby promoting
the development and progression of HF.
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Given that the immunity-related pathways involving chemokine and cytokine were
observed in hub genes, we wondered which main type of immune cell altered in HF could
regulate or participate in these pathways. Leveraging the ssGSEA algorithm, we quantified
the infiltration levels of 28 types of immune cells based on the gene expression profiles.
Combining with Lasso and RF models, we then obtained a total of 14 key immune cell types
with HF (activated CD4+ T cell, activated CD8+ T cell, activated dendritic cell, CD56dim
natural killer cell, MDSC, macrophage, natural killer T cell, natural killer cell, neutrophil,
Type 17 T helper cell, Type 2 T helper cell, effector memory CD4+ T cell, memory B cell,
and central memory CD8+ T cell). Together with expression and correlation analyses on
the training and test cohorts, we finally suggested effector memory CD4+ T cell, which
demonstrated both increased infiltrations in HF and positive relationships with hub genes,
as an essential immune cell type that participated in the chemokine signaling pathway
and cytokine–cytokine receptor interaction with hub genes. Preliminary evidence has
shown that the infiltrations of effector memory CD4+ T cells caused cardiac fibroblast
activation and subsequent fibrosis, influencing pressure-overload-induced HF [98]. This
result motivated us to consider that the elevated infiltrations of effector memory CD4+
T cells could activate the chemokine signaling pathway and cytokine–cytokine receptor
interaction—potentially by the recruitment of chemokines and cytokines.

Considering that four hub genes (COL14A1, OGN, MFAP4, and SFRP4) and two
key TFs (BNC2 and MEOX2) may serve as potential therapeutic targets of HF, several
small-molecule agents targeting hub genes were predicted. Then, molecular docking
showed that the close binding patterns between ligands (small-molecule agents) and
receptors (hub genes or TFs), including captopril-targeting BNC2, aldosterone-targeting
MEOX2, cyclopenthiazide-targeting MEOX2, estradiol-targeting COL14A1, tolazoline-
targeting COL14A1, and genistein-targeting SFRP4. We noticed that the estimated RMSE
from the docked model was lower than 2 Å, indicating the high credibility of molecular
docking. Furthermore, we collected the high-quality structures of receptors and ligands,
which largely guarantee the accuracy of molecular docking. Using the molecular docking
technique, we illustrated the treatment potential of these TFs and genes. Although the
effectiveness of these molecules as drug targets in curing HF was demonstrated from an
in-silico perspective, further animal studies and clinical trials are needed. Notably, these
small-molecule agents were previously reported to cure or alleviate HF symptoms [64–69].
Therefore, the identified small-molecule agents may reverse the over-expression levels of
two hub genes (COL14A1, SFRP4) and two TFs (BNC2, MEOX2) in HF, thus inhibiting the
regulatory network of TFs–hub genes–pathways and then alleviating HF progression.

In the previous analysis, we illustrated the great potential of four hub genes as molec-
ular diagnostic biomarkers and therapeutic targets for HF. To further investigate whether
the four hub genes could serve as extra plasma biomarkers of HF for clinic applications,
we collected six whole blood samples derived from three HF patients and three control
cases. Then, the qRT-PCR results showed that OGN was highly expressed in the plasma
of HF patients compared to the control cases. Additionally, OGN demonstrated robust
diagnostic accuracy in HF recognition and a significantly positive correlation to NT-proBNP
concentration. The elevated pattern and robust diagnostic power of plasma OGN were
subsequently verified in an external cohort, including 21 HF and nine control cases. Some
clinical factors, particularly gender and age, have been reported to cause differences in
the detection of HF biomarkers [99]. For instance, gender-related differences in Cardiac
Troponin (cTn) values have been evident in patients with HF [100] with higher values com-
monly shown in males. However, most clinicians barely consider these factors when using
these biomarkers [100]. Thus, more effort should be put into investigating the interference
on diagnostic values of biomarkers, considering the underlying differences brought by the
confounding factors. Herein, we deduced that the successful clinically used biomarker
should be stably detectable for reflecting disease rather than being disturbed via different
characteristics of patients. Accordingly, we wondered whether the expression levels of
OGN varied in different clinical characteristics, mainly including HF type, gender, and age.
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Notably, no significant expressions of OGN differed in groups of these clinical factors. This
result suggests that OGN may serve as a stable biomarker for HF detection with limited
affection brought by the confounding factors such as gender and age. Given the promising
application of plasma OGN in discerning HF, we also studied the causal association of
plasma OGN and the risk of HF from the genetic insight using GWAS datasets. We used the
SNPs as IVs for a two-sample MR study based on the exposure (plasma OGN) and outcome
(HF) GWAS data. As a result, we found that plasma OGN was significantly causally related
to the increased risk of HF with an overall OR estimated larger than one measured by
five MR approaches. Strikingly, the genetic variant in OGN was proven to promote HF
occurrence on the large-scale GWAS data, which largely sustained the great potential of
OGN as an HF biomarker. Thus, these results demonstrated that OGN could serve as a
plasma detective biomarker that is more indicative of HF patients and HF progression.

Nevertheless, some limitations remain in our present study. First, these findings
were mainly generated from an in silico analysis of transcriptional datasets and a need
for in-vitro confirmative studies. We are pushing ahead with a larger-scale investigation
by integrating more in silico and in vitro datasets related to HF. However, it remained an
effective means to rapidly explore the candidate diagnostic biomarkers and underlying
pathogenic mechanisms of HF, thus providing meaningful and constructive references for
understanding HF. Second, we detected the up-regulated OGN expressions in the plasma
of three HF patients compared to three control cases. The sample sizes were relatively
limited. Further validation should be conducted within a prospective and larger multi-
center collaboration, which guarantees the credibility of OGN in diagnostic applications.
Given our understanding of the biomarkers-regulated pathogenic mechanisms in HF, more
in-depth molecular studies, such as genetic knockout and pharmacological exploration on
cell or animal models, are needed to substantiate our work.

5. Conclusions

Four hub genes (COL14A1, OGN, MFAP4, and SFRP4) were identified as candidate
molecular biomarkers for the diagnosis of HF. Subsequently, the pathogenic mechanisms
of hub genes were expounded. The up-regulation of two key TFs (BNC2 and MEOX2)
prompted the expression of hub genes and further activated several ECM and immune-
related signaling pathways, including cell adhesion molecules, the chemokine signaling
pathway, and cytokine–cytokine receptor interaction while inhibiting the oxidative phos-
phorylation pathway. Moreover, elevated infiltrations of effector memory CD4+ T cells
in HF were closely related to the expressions of hub genes. They may contribute to ac-
tivating the chemokine signaling pathway and cytokine–cytokine receptor interaction,
leading to the inflammatory condition of HF. Six small-molecule agents, including capto-
pril, aldosterone antagonist, cyclopenthiazide, estradiol, tolazoline, and genistein, were
predicted in silico to exhibit interactions with two key TFs (BNC2 and MEOX2) and two
hub genes (COL14A1 and SFRP4). These agents could be developed into therapeutic
drugs to treat HF by curbing the up-regulation of these TFs or hub genes. Finally, our
in vitro study on clinical specimens suggested that OGN could serve as a plasma diagnostic
biomarker of HF with robust diagnostic accuracy and positive correlation with NT–proBNP
concentration. Two-sample MR analysis further demonstrated the positive causal associa-
tion between plasma OGN and the increased risk of HF. Altogether, our study proposes
OGN as a candidate diagnostic biomarker of HF and provides novel insight into the
pathogenesis of HF.
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