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Abstract: The spatial distribution of tumor infiltrating lymphocytes (TILs) defines several histolog-
ically and clinically distinct immune subtypes—desert (no TILs), excluded (TILs in stroma), and 
inflamed (TILs in tumor parenchyma). To date, robust classification of immune subtypes still re-
quires deeper experimental evidence across various cancer types. Here, we aimed to investigate, 
define, and validate the immune subtypes in melanoma by coupling transcriptional and histological 
assessments of the lymphocyte distribution in tumor parenchyma and stroma. We used the tran-
scriptomic data from The Cancer Genome Atlas melanoma dataset to screen for the desert, excluded, 
and inflamed immune subtypes. We defined subtype-specific genes and used them to construct a 
subtype assignment algorithm. We validated the two-step algorithm in the qPCR data of real-world 
melanoma tumors with histologically defined immune subtypes. The accuracy of a classifier encom-
passing expression data of seven genes (immune response-related: CD2, CD53, IRF1, and CD8B; and 
stroma-related: COL5A2, TNFAIP6, and INHBA) in a validation cohort reached 79%. Our findings 
suggest that melanoma tumors can be classified into transcriptionally and histologically distinct 
desert, excluded, and inflamed subtypes. Gene expression-based algorithms can assist physicians 
and pathologists as biomarkers in the rapid assessment of a tumor immune microenvironment 
while serving as a tool for clinical decision making. 

Keywords: melanoma; tumor-infiltrating lymphocytes; biomarkers; immune subtypes; desert;  
excluded; inflamed; gene expression; tumor microenvironment; classifier; TCGA 
 

1. Introduction 
Emerging cancer immunology discoveries reshaped the way we perceive tumors 

through the point of view of the host’s immune system. The proactive antitumor immune 
response, manifested by the functional antigen recognition and infiltration of tumor tissue 
by activated T cells is often counterbalanced by the quick adaptation of the tumor micro-
environment (TME) [1]. Although the dynamics of cancer-immunity interactions unveil 
another level of complexity on top of these two already elaborate subjects [2,3], some prin-
cipal phenomena were successfully translated into clinical cancer management at the 
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diagnostic (e.g., Immunoscore [4]), monitoring (e.g., baseline local and circulating bi-
omarkers [5]), and, in particular, therapeutic (e.g., immunotherapy application [6]) levels. 

However, the efficacy of immunotherapy is often hampered due to the lack of a per-
sonali�ed approach and limited understanding of the tissue-specific immune contexture 
[7]. The heterogeneity of responses encourages the development of large-scale molecular 
data-based algorithms that would allow for the identification of target patient populations 
for personali�ed immunotherapy solutions [8,9]. With the accumulation of big data input, 
efforts are being made to extract clinically relevant information from large datasets and 
repositories [10]. Nevertheless, the need for a clear and easy TME classification remains. 

One of the proposed tumor immune subtyping strategies, distinguishing desert, ex-
cluded, and inflamed subtypes, emerged from observing distinct tumor histological pat-
terns and responses to a checkpoint blockade [11–13]. This classification system considers 
the presence and location of tumor-infiltrating leukocytes (TILs). Desert tumors are poorly 
immune-infiltrated and lack the pre-existing antitumor immunity (no TILs). Excluded tu-
mors have a dense extracellular matrix and retain TILs in the reactive stroma. Inflamed 
tumors are characteri�ed by considerable infiltration of TILs, often not properly function-
ing. Although universal in nature and potentially compliant as an immunotherapy bi-
omarker, this subtyping system still needs more evidence to reach consensus in the aca-
demic and clinical network. 

We have previously identified a gene signature for immune subtyping of high-grade 
serous ovarian cancer [14]. In this study, we took advantage of the clinical and RNA-Seq 
data of the cutaneous melanoma dataset deposited in The Cancer Genome Atlas (TCGA) 
and explored the immune desert, excluded, and inflamed subtype-specific transcriptional 
patterns. We extracted the top differentially expressed genes and constructed a seven-gene 
classifier for assigning the patients into immune subtypes. The performance of the classi-
fier was validated in a real-world patient cohort and compared to histological tumor pro-
files. 

2. Materials and Methods 
2.1. Processing of TCGA Dataset and Gene List 

The full clinical and level 3 RNA-Seq transcriptomic data of 480 available melanoma 
patients in the TCGA-SKCM database [15] were retrieved through cBioportal web API 
[16,17] on 7 January 2022. Data were preprocessed to remove entries containing empty or 
duplicate values, which resulted in withdrawing 20 clinical entries. 

The immune response- and stroma-related genes were selected based on previously 
published studies and profiling panels [18,19], resulting in a list of 1578 genes for further 
analysis. After calculating the coefficient of variation for each selected gene expression in 
the TCGA dataset, 201 genes with low dispersion (CV < 5%) and 3 genes with missing 
values were eliminated from further analysis. No outliers were detected using hierarchical 
clustering or principal component analysis. As a result, the final TCGA training dataset 
consisted of 1372 gene expression scores from 460 patients with melanoma tumors. 

2.2. In Silico Immune Subtyping 
We next performed cluster analysis to explore the immune response-related tran-

scriptional patterns independent of their histological phenotype. The optimal number of 
clusters was determined based on elbow (distortion) [20] and silhouette [21] methods us-
ing Python package Yellowbrick [22]. With regard to reports on tumor immune typing and 
immunotherapy biomarkers [14,18,23], we empirically selected forty genes from a 1372 
gene list to serve as the determinants for clustering the TCGA cohort into subtypes using 
k-means [24] or a previously published predefined rule coefficient calculation algorithm 
[14] that requires grouping the selected genes into angiogenesis, stroma, and immune re-
sponse categories, which are prominent in immune desert, exclusion, and inflammation 
states, respectively. Only those clinical TCGA records that were assigned to the same 
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immune subtype group by both clustering methods were then selected for further differ-
ential gene expression analysis and classifier modeling. 

2.3. Differential Gene Expression Analysis and Building Subtyping Classifier 
The normali�ed and filtered RSEM [25] read counts from TCGA were processed with 

R package limma for differential gene expression analysis using linear regression model, 
which tests for gene expression dependence on immune subtype using formula ∼0 + Sub-
type, where �ero is the logistic regression intercept and allows for comparison between 
different subtypes [26]. Contrasts created with such a formula can be adjusted to reflect 
differences between immune subtypes. A design matrix consisting of patient identifiers, 
assigned immune tumor subtypes, and contrasts was created. The design matrix and gene 
expression estimates were analy�ed with ImFi method in limma via weighted least squares 
estimation. The obtained results were used to evaluate the expression of each gene in dif-
ferent immune subtypes with contrasts.fit and eBayes methods. For each subtype, the top 
10 genes with the most differential expression among all subtypes (lowest p-values) were 
selected as representative genes for further construction of the subtyping classifier. 

To address the different data acquisition methods in training TCGA dataset (RNA-
Seq) and real-world patient validation cohort (qPCR), we settled for the �-transformation 
of gene expression data as a well-performing means for scoring samples against multiple 
molecular signatures [26]. To improve the robustness and better control for outliers, we 
calculated the modified �-scores utili�ing the median and median absolute deviation [27]. 

We then combined several gene expression biomarkers to achieve the optimal power 
to discriminate the melanoma immune phenotype. Using ROC analysis, the selected top 
10 subtype-representative genes were examined alone and in various combinations as fac-
tors for subtype discrimination. Factors yielding the largest AUC, as well as sensitivity 
and specificity, were selected and combined in a manual decision tree which reflects the 
initial in silico subtyping results from Section 2.2 most accurately. The cutoff values re-
sulting in the highest Youden’s index (defined as sensitivity + specificity-1) [28] were se-
lected as thresholds to discriminate between subtypes. 

2.4. Melanoma Patient Cohort 
Ninety-six patients with confirmed melanoma diagnoses and no prior cancer or im-

mune disorder history were involved in this study. All subjects signed the informed con-
sent form before participation. The study was conducted in accordance with the Declara-
tion of Helsinki. The study protocol was approved by the Board of National Cancer Insti-
tute (Vilnius, Lithuania) and Vilnius Regional Biomedical Research Ethics Committee (ap-
proval no. 158200-18-1004-501). Patients were enrolled in the study during 2018–2020. Pa-
tient follow-up continued until October 2023. Clinical data were obtained from medical 
records. All patients underwent surgery and received standard-of-care treatment accord-
ing to the tumor stage. Specifically, patients diagnosed with stage II melanoma were 
placed on monitoring only, with no active intervention initiated unless disease progres-
sion was observed. Patients diagnosed with stage III-IV melanoma were stratified based 
on their BRAF mutation statuses. Patients with BRAF positive mutation received treat-
ment with dabrafenib and trametinib, while those with BRAF wild type received check-
point inhibitors. For each patient, surgical specimens of primary tumors were collected, 
processed, fixed in 10% neutral buffered formalin for 6–24 h and paraffin embedded in a 
MAGNUS Tissue Processor (Milestone). 
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2.5. Histopathological Assessment 
Three-micrometer-thick tissue sections from FFPE blocks were routinely stained with 

hematoxylin and eosin (H&E). The slides were scanned with the Aperio ScanScope XT Slide 
Scanner and analy�ed using Aperio eSlideManager Version 12.4.3.8003 software by an ex-
perienced pathologist. The presence of intraepithelial and stromal TILs was evaluated by a 
trained pathologist and quantified according to the recommendations of [29,30]. Briefly, af-
ter selecting the areas within tumor borders, the type of inflammatory infiltrate was deter-
mined. Only mononuclear TIL infiltrate in tumor stroma and parenchyma was assessed, 
while necrotic areas also containing granulocytes were not taken into account. For TILs, a 
cutoff of 10% was adopted [31]. Tumors were defined as desert if less than 10% TILs could 
be detected within tumor. If the level of TIL infiltration was more than 10%, tumors were 
further distinguished based on the locali�ation of TILs—if lymphocytes could be found only 
in stromal compartment but not the parenchyma, such tumors are classified as excluded. If 
TILs are detected in both stroma and the parenchyma in direct contact with cancer cells, 
tumors were considered to be inflamed (see pictures in Section 3.4). 

2.6. qPCR for Gene Expression Analysis in Real-World Patient Cohort 
Total RNA was extracted and purified from twenty-micrometer-thick tissue scrolls 

from FFPE blocks with truXTRAC FFPE total NA Ultra Kit (Covaris, Wouburn, MA, USA) 
according to manufacturer’s protocol using Adaptive Focused Acoustics ™ technology-
based Covaris M220 ultrasonicator (Covaris) and column-based purification. Five hundred 
nanograms of purified RNA from each sample was reverse transcribed using Maxima First 
Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to 
manufacturer’s guidelines. qPCR was performed in triplicate in A�ure Cielo 3 Real-Time 
PCR System (A�ure Biosystems, Dublin, CA, USA). In one reaction of ten microliters vol-
ume, there was 5 µL of Maxima SYBR Green qPCR Master Mix 2X (Thermo Fisher Scien-
tific), 2.5 µL of the ten times diluted cDNA reaction product, and 2.5 µL of 0.8 µmol/mL 
sequence-specific forward and reverse primer mix (sequences taken from PrimerBank [32]). 
The reaction was started by incubating for 5 min at 95 °C, and 40 cycles of 10 s denaturing 
at 95 °C followed by 30 s of annealing/extension at 60 °C. Threshold cycle values were ex-
tracted from A�ure Cielo Manager software (A�ure Biosystems) using logistic regression. 
Relative gene expression levels were calculated using the delta Ct relative quantitation 
method [33] with Pfaffl correction for PCR efficiency [34]. RPL13A and GAPDH served as 
reference genes. GE levels were normali�ed by calculating the modified �-scores. 

2.7. Statistical Analysis 
Data were analy�ed and visuali�ed using built-in features of GraphPad Prism 9 

(GraphPad Software, version 9.1.1) and SPSS 25.0 (IBM) statistical software. Heatmaps 
were generated with Morpheus (Broad Institute) software [35]. Clinical features were 
compared using the χ2 test (categorical variables) and one-way ANOVA or Kruskal–Wal-
lis test (numeric variables). The Kaplan–Meier survival curves were analy�ed with a log-
rank test. Odds ratios were derived from the univariate and multivariate Cox regression 
model and compared using the Wald test. The ROC curves and AUC were derived from 
sensitivity and specificity. Performance metrics and clinical utility were calculated and 
converted into qualitative grades as suggested previously [36]. Where necessary, the false 
discovery rate for multiple comparisons was controlled with a two-stage step-up method 
by Benjamini, Krieger, and Yekutieli [37]. p < 0.05 was considered to indicate a statistically 
significant difference. 

3. Results 
3.1. Immune Subtyping of the TCGA Cohort 

The workflow of this study is shown in Figure 1. To inspect the immune microenvi-
ronment-related transcriptional profiles, we first analy�ed the TCGA SKCM dataset, 
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which contains clinical data of patients diagnosed with cutaneous melanoma as well as 
their bulk tumor RNA-Seq data. 

 
Figure 1. Study design and analysis workflow. Clinical and tumor transcriptome data of 480 skin 
cutaneous melanoma (SKCM) patients were retrieved from The Cancer Genome Atlas (TCGA) da-
tabase through cBioportal. From an extensive list of 1372 genes coding for immune response and 
stroma elements, we selected forty genes of interest, which served as a basis for defining subtype-
specific transcriptomic profiles and assigning tumors into distinct immune subtypes. Differential 
gene expression (GE) and survival analysis revealed subtype representative genes, which we further 
used to build an immune subtyping classifier. The classifier’s performance was validated in a 96 
melanoma patient cohort from the National Cancer Institute, Lithuania (NCI LT), and compared 
with tumor histological and GE profiles. qPCR—quantitative polymerase chain reaction, H&E—
hematoxylin–eosin staining. 

The presence of TILs in tumor parenchyma or stroma can influence the cellular and 
molecular tissue characteristics and can therefore be reflected in the bulk transcriptomic 
profile, as demonstrated previously [38,39]. For exploring the patterns in the training 
TCGA dataset of 460 patients, we assembled a list of 1372 gene entries covering the cancer-
immunity cycle and, in particular, focusing on the immune response and stroma elements. 

To decide on the optimal number of transcriptional clusters, we applied the k-means 
algorithm to the full TCGA dataset with the number of clusters varying from 1 to 10. After 
plotting the distortion (Figure 2A) and silhouette (Figure 2B), the k = 3 cluster number 
returned the most favorable scores and was therefore selected as an optimal cluster num-
ber, also supporting the initial three immune subtype hypothesis. 

To highlight the fundamental TME differences among immune subtypes, we ex-
ploited a reported signature [14,23] of forty genes codings for relevant elements of angio-
genesis, immune response, and reactive stroma. We performed cluster analysis using both 
k-means and previously developed rules-based clustering for immune subtyping [14]. 
Transcriptional profiles of 346 TCGA-SKCM melanoma samples that were assigned into 
the same immune subtype by both k-means and predefined rule clustering methods 
demonstrated particular subtype-specific trends, as shown in a heatmap of gene expres-
sion (GE) (Figure 2C): desert tumors (51%) bear low GE of both immune- and stroma-
related genes; excluded tumors (21%) are characteri�ed by high GE of stroma- and angio-
genesis-related genes; inflamed tumors (27%) have distinctly high GE of immune-related 
genes, while their stroma- and angiogenesis-related GEs are rather heterogeneous. 
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Figure 2. Subtype discovery in TCGA dataset. An optimal number of clusters (k = 3) was deter-
mined from an elbow graph (A), where distortion for each k was plotted against cluster number, 
and silhouette plot (B), reflecting the quality of fit cohesion and separation. (C) A heatmap present-
ing the expression of genes (rows) in 346 patients (columns). Modified Z-score transformed GE lev-
els, depicted as bars of different color intensity, served as a basis for assembling tumors into in-
flamed (176 patients), immune excluded (75 patients), and immune desert (95 patients) subtypes 
using the predefined rules and k-means clustering. A—angiogenesis, IM—immune response, ST—
stroma. (D) Kaplan—Meier overall survival curves of TCGA melanoma patients grouped into three 
immune subtypes. (E) Kaplan—Meier progression-free survival curves of TCGA melanoma patients 
grouped into three immune subtypes. Survival curves were compared with the log-rank test. Group 
abbreviations: DES—desert, INF—inflamed, EXC—excluded. 

The above findings suggest that three distinct immune subtypes can be identified 
within melanoma tumors. The cluster annotation from Figure 2C served for further sub-
type characteri�ation using survival and differential GE analysis. 
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3.2. Clinical Features of the Immune Subtypes in the TCGA Cohort 
Next, we examined the baseline clinical characteristics of TCGA SKCM patients 

within the assigned immune subtype (Table 1). 

Table 1. Baseline clinical characteristics of patients in TCGA dataset (N = 346). 

Feature Desert Excluded Inflamed p-Value 
N 95 75 176  

Age, median (range) 58 (15–86) 62 (20–90) 56 (18–90) 0.031 
BMI, median (range) 26.1 (17.8–42.5) 27.3 (17.6–55.5) 28.7 (18.3–49.1) 0.045 

TMB mut/Mb, median (range) 12.3 (0.6–129.9) 16.4 (0.3–102.2) 25.2 (0.2–1060.3) 0.403 
Stage    0.003 

I 8 (9%) 10 (14%) 40 (25%)  
II 41 (47%) 34 (48%) 46 (29%)  

III 33 (38%) 23 (32%) 68 (42%)  

IV 5 (6%) 4 (6%) 6 (4%)  

28 undocumented 
Clark level    0.402 

1 2 (3%) 1 (2%) 2 (2%)  

2 2 (3%) 1 (2%) 11 (10%)  
3 9 (13%) 13 (22%) 36 (31%)  
4 44 (62%) 35 (60%) 52 (45%)  
5 14 (20%) 8 (14%) 14 (12%)  

102 undocumented 
Breslow in mm, median (range) 5.8 (0.0–75.0) 7.3 (0.5–29.0) 4.2 (0.0–74.0) 0.032 

BRAF status    <0.001 
wild type 34 (72%) 14 (30%) 56 (47%)  
mutated 13 (28%) 32 (70%) 63 (53%)  

134 undocumented 
NRAS status    0.049 

wild type 25 (53%) 33 (72%) 87 (72%)  
mutated 22 (47%) 13 (28%) 22 (28%)  

134 undocumented 
KIT status    0.010 
wild type 42 (89%) 39 (85%) 116 (98%)  

mutated 5 (11%) 7 (15%) 3 (2%)  

134 undocumented 
p-values were calculated using the χ2 test (categorical variables) and one-way ANOVA or Kruskal–
Wallis test (numeric variables). BMI—body mass index, TMB—tumor mutational burden. 

The differences in TNM stage and Breslow depth highlighted the statistically signif-
icant trends of smaller values in inflamed tumors, which was taken into account during 
multivariate Cox regression analysis for survival (Table 2). 

Interestingly, the distribution of oncogenic mutations in BRAF, NRAS, and KIT (usu-
ally mutually exclusive) followed specific patterns. Alterations in BRAF and KIT were 
most common in excluded tumors. The NRAS mutation was most frequently found in 
desert tumors. Alterations in KIT were not found in inflamed tumors. Overall, nearly half 
of the patients in the desert or inflamed groups were wild type for specific mutations, 
whereas two-thirds of patients with excluded tumors had at least one oncogene mutated. 

Although the gender composition among different subtype groups was the same, the 
other sociodemographic variables (age and BMI) of patients differed. 
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No significant differences were observed when comparing the Clark level or tumor 
mutational burden (TMB). Although high TMB in theory could be a prerequisite for TIL 
attraction and formation of inflamed TME, the two-fold difference in medians of inflamed 
versus desert tumors does not reach the statistical significance level. 

We found a significant difference in overall survival among the patients bearing differ-
ent tumor subtypes (p < 0.0001) (Figure 2D). This was also true at each TNM stage level (data 
not shown). Patients from the inflamed group survived longest, with an mOS of 162 months 
(Table 2), which is nearly threefold more than the mOS of excluded and desert subtypes. 

Table 2. Uni- and multivariate Cox regression analysis of the prognostic relevance of immune sub-
types in the TCGA patient cohort. 

Group 
mOS, Months 

(95% CI) 
Estimated Survival, %  

(95% CI) 
Univariate Analysis Multivariate Analysis * 
HR (95% CI) padj HR (95% CI) padj 

OVERALL SURVIVAL 
 3 years 5 years  

INF 162.0 (72.8–133.5) 82.7 (77.4–90.0) 73.4 (66.7–81.9) 1.00 (ref.)  1.00 (ref.)  

EXC 61.2 (37.1–85.4) 72.4 (62.5–85.7) 50.1 (37.2–64.7) 1.81 (1.20–2.72) 0.004 1.62 (1.03–2.57) 0.036 
DES 55.6 (23.1–87.9) 57.2 (46.5–69.7) 48.2 (36.7–60.8) 2.38 (1.60–3.41) 0.002 1.57 (0.97–2.55) 0.056 

PROGRESSION-FREE SURVIVAL 
 3 years 5 years  

INF 65.9 (47.6–84.3) 72.2 (64.0–78.8) 51.5 (42.2–60.0) 1.00 (ref.)  1.00 (ref.)  

EXC 47.1 (32.8–61.5) 58.8 (44.4–60.6) 37.2 (23.5–50.9) 1.19 (0.81–1.72) 0.012 1.56 (1.02–2.38) 0.041 
DES 35.0 (8.8–61.2) 46.4 (32.5–59.2) 37.2 (23.9–50.5) 1.68 (1.18–2.39) 0.377 1.13 (0.72–1.78) 0.586 

* Multivariate Cox regression analysis accounting for tumor stage (p = 0.621), regional lymph nodes 
(p < 0.001), metastasis (p = 0.735), Breslow depth (p = 0.006), and age (p = 0.009) in the survival context. 
p-values were calculated using a two-sided Wald test and adjusted for multiple comparisons. INF—
inflamed, EXC—excluded, DES—desert, mOS—median overall survival, CI—confidence interval, 
HR—ha�ard ratio. 

Moreover, the inflamed subtype-bearing melanoma patients were more likely to sur-
vive for 3 or 5 years. Among non-inflamed tumors, patients from the excluded group have 
a better 3-year OS than the desert group; however, at the 5-year cutoff, the proportion of 
patients at risk is the same (around 50%) in both desert and excluded groups. Cox regres-
sion analysis confirmed that patients with non-inflamed tumors have higher risk of death 
(for desert: unadjusted HR = 2.38, p = 0.002, adjusted HR = 1.57 p = 0.056; for excluded: 
unadjusted HR = 1.81, p = 0.004, adjusted HR = 1.62, p = 0.036) when compared to the 
inflamed subtype. 

Progression-free survival was also different between the three subtypes (Figure 2E). 
Patients with inflamed tumors had a mPFS of 66 months, which is almost two-fold longer 
in comparison to patients from the desert group (mPFS = 35 months). Patients with ex-
cluded tumors have s significantly higher risk of progression in comparison to inflamed 
tumors (unadjusted HR = 1.19, p = 0.012, adjusted HR = 1.56, p = 0.041). 

Taken together, the results of the clinical feature and survival analysis highlight the 
prognostic significance of immune tumor subtyping and its potential clinical utility. These 
findings encouraged us to develop a practical auxiliary tool for determining the tumor 
immune subtype. 

3.3. Building the Immune Subtyping Classifier 
For constructing a feasible classifier that is able to accurately distinguish desert, ex-

cluded and inflamed tumors, we decided to narrow down the GE signature by exploring 
the subtype-specific genes. We applied the differential GE analysis algorithms to the initial 
1372 gene list in the TCGA cohort. For each immune subtype, the top 10 genes discrimi-
nating the subtype from among the others were picked (Figure 3A). 
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Figure 3. Development of gene expression score-based algorithm for immune subtyping. (A) 
Heatmaps showing the modified �-score transformed expression of the top 10 differentially ex-
pressed genes in each TCGA subtype cluster. (B) Performance of a four-element combination, con-
structed as a modified �-score average of CD53, TNFAIP6, CD2, and IRF1 expression, was evaluated 
by ROC analysis, and a cutoff of —0.44 was selected for distinguishing desert and non-desert sub-
types. (C) Performance of a four-element combination, constructed as a modified �-score sum 
COL5A2+INHBA—CD8B—IRF1, was evaluated by ROC analysis, and a cutoff of 0.13 was selected 
for distinguishing excluded and inflamed subtypes. (D) Heatmaps presenting the expression of the 
seven most representative genes alone or in a classifier (rows) in 346 TCGA pretreatment patients 
(columns) with annotated or predicted clusters. (E) A sequence for gene expression score-based im-
mune subtyping of inflamed, excluded, and desert tumors. AUC—area under curve, DES—desert, 
EXC—excluded, INF—inflamed. 

For excluded and inflamed tumors, these top differentially expressed genes repre-
sented the increased GE of stroma- or immune response-related related processes, respec-
tively. In contrast, for desert tumors, the top differentially expressed genes represented 
the decreased GE of immune response-related pathways and were partially overlapping 
with inflamed subtype-specific genes. 

We next explored the discrimination performance of individual genes and their var-
ious combinations using ROC analysis. We aimed at selecting a combination with the least 
factors and maximal separation efficiency. However, these criteria were not satisfactorily 



Biomolecules 2024, 14, 171 10 of 20 
 

met with a single gene signature, as the investigated immune subtypes are defined not 
only by the sole quantitative presence of TILs but also by their location in the tumor. 
Therefore, we hypothesi�ed that a two-step classifier would potentially perform better. 

To test this hypothesis, we first decided to determine the presence/absence of TILs to 
be able to discriminate between the desert and non-desert subtypes. A four-element com-
bination Score 1, constructed as a modified �-score average of desert subtype-specific gene 
CD53, excluded subtype-specific gene TNFAIP6, and two inflamed subtype-specific genes 
CD2 and IRF1:  Score 1 = z(𝐶𝐷53) + z(𝑇𝑁𝐹𝐴𝐼𝑃6) + z(𝐶𝐷2) + z(𝐼𝑅𝐹1)4  (1) 

yielding the highest attainable AUC = 0.976 (Figure 3B), and with a cutoff of −0.44, demon-
strated 96.0% (CI 92.8%–97.8%) sensitivity and 90.5% (CI 83.0%–94.9%) specificity. The 
overall accuracy was 94.5% (excellent), the positive clinical utility index was 0.809 (good), 
and the negative clinical utility index was 0.925 (excellent). 

Next, to discriminate between excluded and inflamed tumors in the previously 
sorted non-desert tumors, we built another four-element combination Score 2 by subtract-
ing the modified �-score sum of two inflamed subtype-specific genes CD8B and IRF1 from 
the modified �-score sum of two excluded subtype-specific genes COL5A2 and INHBA: Score 2 =  𝑧(𝐶𝑂𝐿5𝐴2) + z(𝐼𝑁𝐻𝐵𝐴) − z(𝐶𝐷8𝐵) − z(𝐼𝑅𝐹1) (2) 

This algorithm yielded an AUC = 0.923 (Figure 3C), and with a cutoff of 0.13, it 
demonstrated 96.9% (CI 89.5%–99.5%) sensitivity and 78.4% (CI 71.8%–83.4%) specificity. 
The overall accuracy was 80.4% (good), the positive clinical utility index was 0.550 (fair), 
and the negative clinical utility index was 0.730 (good). 

In total, seven genes involved in two sequential logical steps were combined into a 
classifier. The clustering of 346 TCGA patients using seven genes, or a two-step classifier 
resulted in the clearly distinct desert, excluded, and inflamed subtypes (Figure 3D). The 
overall logic sequence of GE-based immune subtyping of ovarian tumors is summari�ed 
in Figure 3E. The accuracy of separation in the TCGA cohort was 83.2% (good) (288 true 
positives out of 346), with a positive clinical utility index of 0.587 (fair) and a negative 
clinical utility index of 0.755 (good). The cutoffs are derived from mathematical operations 
involving �-scores, where a negative value signifies score below the population median, 
and a positive value indicates score above the median. 

To examine the effect of a created classifier on survival prediction, we performed Cox 
regression for OS, including other baseline clinical characteristics (Figure 4A). 

 
Figure 4. Overall survival analysis. Association of immune subtypes and baseline clinical charac-
teristics (A) or genes included in classifier construction (B) with overall survival. The forest plots 
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indicate the ha�ard ratios (HRs) and 95% confidence intervals (CIs) for each factor in a univariate 
and multivariate setting. DES—desert, EXC—excluded, INF—inflamed. 

To compute the exact ha�ard ratios, excluded and desert groups were pooled into a 
single group of non-inflamed tumors, as there were no significant differences between 
their Kaplan–Meier overall survival curves (p(adj) = 0.09). Immune subtypes were shown 
to be associated with survival. Patients bearing non-inflamed tumors had worse progno-
ses, as indicated by both the univariate and multivariate Cox models (p = 0.001 and p = 
0.018, respectively). As predicted by the GE-based score, patients with inflamed tumors 
(mOS = 161.7 months, 95% CI 104.9–219.1) survive significantly longer (p(log-rank) < 0.001) 
than patients with non-inflamed tumors (mOS = 58.5 months, 95% CI 43.5–73.5). 

Out of seven genes used for subtyping classifier construction, there were three reac-
tive stroma- and four immune response-related elements. All individual immunity-re-
lated genes (CD2, CD8B, IRF1, CD53) were associated with better prognoses, as reflected 
in the univariate Cox model (Figure 4B). When combined into a seven-gene classifier, only 
IRF1 retained a significant level of association with OS (p = 0.027). Individual reactive 
stroma-related genes (COL5A2, TNFAIP6, INHBA) were not associated with prognosis. In 
a seven-gene classifier, COL5A2 was slightly associated with worse survival (p = 0.048). 

The above results highlight the need for immune subtype-related treatment stratifi-
cation for melanoma to improve survival, especially for non-inflamed tumors. 

3.4. Validation of the Immune Subtyping Classifier in a Real-World Patient Cohort 
After developing a two-step gene signature-based algorithm for immune subtyping 

of ovarian tumors in silico, we aimed to analy�e its performance in a real-world patient 
cohort consisting of 96 melanoma patients that underwent primary tumor resection at the 
National Cancer Institute in Vilnius, Lithuania, in 2018–2020. Patients follow-up contin-
ued until October 2023. Due to the heterogeneous nature of our primary patient cohort, 
consisting of varying disease stages and treatment modalities, statistical control for ther-
apy was not feasible. 

To determine the immune tumor subtype of the patient cohort, the H&E-stained tu-
mor tissue sections were evaluated by a pathologist for the presence of both intraepithelial 
and stromal tumor-infiltrating lymphocytes (TILs) (Figure 5A), according to published 
recommendations of several working groups [29,30]. Based on histological examination 
of the primary tumor, patients were grouped into the respective immune subtype groups: 
40% of patients were attributed to the immune desert group, 30% to the excluded, and 
30% to the inflamed group. 
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Figure 5. Immune subtyping of real-world patient cohort. (A). Tumors were classified as inflamed, 
excluded, and desert by pathological examination of H&E-stained tumor sections. (B) Performance of 
a four-element combination, constructed as a modified �-score average of CD53, TNFAIP6, CD2 and 
IRF1 expression in discriminating desert and non-desert subtypes, was evaluated by ROC analysis at 
a cutoff of −0.44. (C) Performance of a four-element combination constructed as a modified �-score 
expression sum COL5A2+INHBA-CD8B-IRF1 in discriminating excluded and inflamed subtypes was 
evaluated by ROC analysis at a cutoff of 0.13. (D) Heatmaps present the expression of the seven most 
representative genes alone or in a classifier (rows) in 96 real-world patients (columns) with annotated 
or predicted clusters. Kaplan–Meier overall survival (E), progression-free survival (F), and combined 
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progression-free survival (G) curves of real-world ovarian cancer patients grouped into different im-
mune subtypes based on the pathological evaluation. Survival curves were compared with log-rank 
test. AUC—area under curve, INF—inflamed, EXC—excluded, DES—desert. 

In parallel, we measured the relative GE of classifier genes COL5A2, INHBA, 
TNFAIP6, IRF1, CD53, CD8, and CD2 in patient tumors using qPCR. We next applied our 
developed two-step immune subtyping classifier using the modified �-scores of relative 
GE, which resulted in classifying 43% of patients as the desert subtype, 25% as the ex-
cluded subtype, and 32% as the inflamed group. The proportion of this distribution was 
different than in the initial TCGA cohort (p = 0.023). 

Classifier-based immune subtyping was compared with the histopathological evalu-
ation. Running step 1 of the classifier (discriminating between desert and non-desert pa-
tients) with the determined −0.44 cutoff resulted in AUC = 0.902, 84.5% (CI 73.1%–91.6%) 
sensitivity, and 86.8% (CI 72.7%–94.3%) specificity (Figure 5B). The accuracy of this step 
was 88% (excellent). 

Applying step 2 of the classifier (discriminating between excluded and inflamed tu-
mors in the non-desert pool) with the determined 0.13 cutoff resulted in AUC = 0.835, 
82.8% (CI 65.5%–92.4%) sensitivity, and 82.8% (CI 65.5%–92.4%) specificity (Figure 5C). 
The accuracy of this step was 78% (good). 

Overall, clustering of the 96 melanoma patient cohort using a developed two-step clas-
sifier resulted in 79% accuracy (good)—76 out of 96 tumors were assigned to the same sub-
type group using both histopathological assessment and the GE-based classifier (Figure 5D). 

The survival trends of immune subtype groups in the melanoma patient cohort can-
not be directly compared with those of the TCGA cohort due to at least a four-fold longer 
follow-up time for the latter. For the overall survival of the melanoma patient cohort, the 
median cannot be determined yet (Figure 5E). As for progression-free survival, the me-
dian time to progression in desert subtype-bearing patients was 12 months, in excluded 
subtype-bearing patients, 29 months, and in the inflamed group, the median was not 
reached yet. The PFS differs significantly (p = 0.0031) (Figure 5F). When we combined the 
desert and excluded tumors into a single non-inflamed category, a separation of PFS curve 
months was observed (p = 0.012) (Figure 5G), supporting the  prognostic significance of 
immune subtyping. 

We also examined the baseline clinical characteristics of the 96 melanoma patient co-
hort with regard to the assigned immune subtype (Table 3). 

We did not observe significant differences when comparing patient age, tumor stage 
(including all TNM elements, not shown), Clark level, and Breslow depth. The BRAF alter-
ation pattern was similar to the TCGA cohort—the frequency of BRAF mutations in desert 
group was nearly two-fold lower than in the inflamed and excluded groups, where half or 
more patients had tumors with altered BRAF. However, the differences among real-world 
melanoma cohort subtypes did not reach the statistical significance level (p = 0.067). 

To sum up, both histopathological assessment of TILs in H&E-stained tumor sec-
tions, as well as a GE-based classifier successfully distinguish desert, excluded, and in-
flamed subtypes among melanoma samples with 79% overlap. A seven-gene-based clas-
sifier as a biomarker could assist the biomedical community by accurately translating 
qPCR results into clinically relevant immune subtype information. 

Table 3. Baseline clinical characteristics of National Cancer Institute melanoma cohort (N = 96). 

Feature Desert Excluded Inflamed p Value 
N 38 29 29  

Age, median (range) 72 (36–88) 65 (32–92) 69 (30–88) 0.456 
Stage    0.985 

I 2 (5%) 1 (3%) 2 (7%)  
II 19 (50%) 17 (59%) 14 (48%)  
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III 16 (42%) 10 (35%) 12 (41%)  

IV 1 (3%) 1 (3%) 1 (3%)  

28 undocumented 
Clark level    0.378 

3 9 (24%) 13 (46%) 11 (41%)  
4 22 (60%) 14 (50%) 14 (52%)  
5 6 (16%) 1 (4%) 2 (7%)  

4 undocumented 
Breslow depth    0.300 

1–4 mm 15 (41%) 13 (50%) 17 (63%)  
>4 mm 22 (59%) 13 (50%) 10 (37%)  

6 undocumented 
BRAF status    0.067 

wild-type 28 (74%) 14 (48%) 15 (52%)  
mutated 10 (26%) 15 (52%) 14 (48%)  

p-values were calculated using the χ2 test (categorical variables) and one-way ANOVA (age). 

4. Discussion 
The recent shift in the cancer-immunity paradigm [2,40] convinced the scientific com-

munity that the information stored within the immune TME is remarkably valuable and 
targetable and promoted an ambitious leap in immunotherapy. However, the heteroge-
neous treatment outcomes once again reminded us how complex and adaptable the na-
ture of the immune system is. A seminal review by Hegde and Chen, consolidating the 
major challenges of current cancer immunotherapy, spotlighted the understanding of or-
gan-specific immune contexture and maximi�ing treatment personali�ation through com-
posite biomarkers as being among the key critical questions [7]. With our study, we ad-
dressed both issues by hypothesi�ing that desert, excluded, and inflamed immune sub-
types can be defined in melanoma tumors and immune subtyping can serve as a source 
of personali�ed biomarkers. We believed that our findings could contribute to the arising 
consensus on the significance of intraepithelial/stromal TILs and their application in clin-
ical practice. We took an approach to first analy�e TCGA data and filter out the subtype-
specific genes for subsequent validation in the clinical melanoma cohort and matching 
with the histological assessment. 

One of the primary outcomes of our study was the recognition of desert, excluded, 
and inflamed immune melanoma subtypes both transcriptionally in silico, as well as tran-
scriptionally and histologically ex vivo. Different approaches to melanoma subtyping 
were already reported [41,42], although they were generally based on genomics or cancer 
cell histology. Wide exploratory studies addressing the immune aspects of melanoma 
TME were mostly solely computational [43–45], yet often meticulous and conclusive. The 
conventional and more supervised approaches, like ours, taking advantage of publicly 
available transcriptomic datasets also existed [46,47]; however, they usually carried dif-
ferent subtype annotations for what we believe could be recogni�ed as immune desert, 
excluded, and inflamed tumors based on their biological information. Reports adopting 
the desert, excluded, inflamed nomenclature in melanoma were only histology based [48–
50]. In this setting, our findings combining transcriptome and histology data, although 
with their own limitations, carry an element of novelty and contribute to the understand-
ing of the tissue-specific immune contexture in melanoma. Our definition of desert, ex-
cluded, and inflamed immune subtypes is aligned with related reports on other cancer 
types, such as ovarian [14,51,52], lung [53–55], head and neck, [52,56,57] breast [55,58], 
bladder [52,53], gastric [52], colorectal [52], hepatocellular [59], pancreatic [60], and renal 
cancer [61], and contributes to developing agreement on universal immune contexture 
elements among different cancer locali�ations. 
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It is worth mentioning that nearly half of the studies employing the desert, excluded, 
inflamed nomenclature (as cited in the previous paragraph) also relate the immune sub-
types with response to a checkpoint blockade, emphasi�ing their emerging significance as 
predictive biomarkers. In our study, we highlighted the prognostic significance of im-
mune subtyping. The association of inflamed tumors with longer overall survival is 
widely reported and reviewed [62,63], suggesting inflammation as a very generali�ed bi-
omarker in cancer. Nevertheless, the frequently used term ‘inflamed’ or ‘hot’ tumor con-
ceals a need for treatment personali�ation through composite biomarkers [7]. On the other 
hand, the number of papers reporting survival-associated gene signatures is growing ex-
ponentially: the PubMed search for “immune AND gene signature AND prognosis AND 
cancer” returns more than 6500 entries, out of which 80% were published in the last 3 
years. Testing, validation, and reproduction of a large number of potential candidates to 
translate any biologically meaningful biomarkers into a clinical application remain to be 
addressed with computational AI algorithms. 

Our study is not an exception—we constructed the immune subtyping classifier 
based on the expression of seven genes. Four of them—CD2, CD8B, CD53, and IRF1—are 
associated with the immune response. CD8 is a marker for cytotoxic T cells that execute 
direct killing of tumor cells when accurately primed with an antigen and activated [64]. 
CD2 participates in the formation of the immunological synapse between T cells and an-
tigen-presenting cells [65]. Tetraspanin CD53 on the T cell membrane is important for T 
cell-mediated immunity and its deficiency results in impaired TCR signaling and prolif-
eration [66]. IRF1 regulates the development of Th1 and Tr1 lymphocytes [67] and pro-
grams cDC1 dendritic cells to drive antitumor immunity [68]. CD2, CD8, and CD53 are 
mentioned together in a leukocyte infiltration score predicting melanoma patient progno-
sis [69]. SOX10-IRF4-IRF1 axis serves as a potential target to immunologically warm-up 
melanoma with a “cold” TME [70]. 

Three other genes—COL5A2, INHBA, and TNFAIP6—represent the reactive stroma 
compartment in our classifier. None of these genes were previously reported to be associ-
ated with melanoma. Inhibin β-a, encoded with INHBA, is a member of the TGFβ super-
family and is a marker of reduced survival and poor prognosis in cervical cancer [71]. In 
our melanoma cohort, we did not observe an association with survival. However, the tu-
mor stroma and extracellular matrix can contribute to retaining otherwise primed and 
functional T cells and impairing the antitumoral immune response [72]. This phenomenon 
is not widely reviewed in melanoma, leaving space for further investigation. Interestingly, 
we have previously reported CD2 and COL5A2 in a single gene signature for immune 
subtyping of desert, excluded, and inflamed ovarian tumors [14], suggesting that under-
lying biological mechanisms behind immune TME formation can be at least in part shared 
among tumors in different organs. 

We also report the different distributions of major oncogenic melanoma alterations 
(BRAF, NRAS, KIT) among different immune subtype groups. The NRAS mutation was 
more frequent in the immune desert subtype. The BRAF mutation was more characteristic 
of excluded and inflamed subtypes, as confirmed in both TCGA and patient cohorts. Al-
most none of the inflamed tumors had alterations in KIT. Although the underlying bio-
logical meaning and significance of this phenomena are not clear, it might affect combina-
tional treatment (targeted therapy + immunotherapy) decisions [73,74]. For example, in 
colorectal cancer, the distinct pattern of immune TME in BRAF-mutated tumors suggested 
the rationale for using checkpoint inhibitors in this subgroup of patients [75]. 

The paradigm of the desert, immune, and inflamed immune subtypes does not rule out 
other possible molecular or cellular tumor classification systems, but rather informs about 
the presence or absence of TILs within different tumor compartments and gives a hint about 
the character of prevalent immune TME. The supervised discrimination of merely three im-
mune subtypes in our and other studies is to some extent simplified and biased due to its 
hypothesis-driven nature. Our study design was also inclined to look for distinct tran-
scriptomic profiles, and we discarded a substantial proportion of TCGA entries due to 
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discrepant results using different clustering algorithms. Nevertheless, this approach al-
lowed us to define subtype-specific genes and translate them into a real-world cohort, where 
we reached 79% overlap between histological assessment and qPCR analysis 

While utili�ing gene expression values as biomarkers presents some inherent limita-
tions (context dependence, dynamic nature, and complexity of interpretation), normali�a-
tion strategies help to minimi�e these challenges. We employed the modified �-score, 
which is more robust and less affected by a sample si�e than a standard �-score, yet still 
can be easily combined to better reflect the respective pathway activity [76]. The combined 
�-score is also acknowledged as one of several reliable methodologies for scoring individ-
ual samples and integrating new patients post classifier development [26]. Looking ahead, 
the integration of machine learning holds promise in further refining the utili�ation of 
gene expression values as reliable biomarkers. 

We believe that despite the acknowledged limitations, our findings could advance 
the research in the immune TME and immunotherapy biomarker field. One of the key 
strengths of our research lies in its robust methodology and validation in real-world mel-
anoma tumors, which demonstrated a commendable accuracy of 79%. Moreover, our find-
ings have practical implications for personali�ed medicine approaches in melanoma treat-
ment. By stratifying patients based on immune subtypes, we may be able to tailor thera-
peutic interventions more effectively. Our results underscore the potential of gene expres-
sion-based algorithms as important tools for evaluating the tumor immune microenviron-
ment in clinical practice. Future research could focus on refining our algorithm and vali-
dating it on a larger scale to determine its clinical utility and performance in immunother-
apy-treated patients. 

5. Conclusions 
Immune tumor subtyping into the desert, excluded, and inflamed groups can pro-

vide valuable clues about the prevalent immune TME. We created and validated a simple 
classifier for reliable immune tumor subtyping with the input of qPCR-derived relative 
expression levels of seven genes, representing the balance between immune response and 
reactive stroma in the TME. This tool could serve as an auxiliary means to conveniently 
obtain clinically relevant information. 
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