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Abstract: The spatial distribution of tumor infiltrating lymphocytes (TILs) defines several histolog-
ically and clinically distinct immune subtypes—desert (no TILs), excluded (TILs in stroma), and
inflamed (TILs in tumor parenchyma). To date, robust classification of immune subtypes still requires
deeper experimental evidence across various cancer types. Here, we aimed to investigate, define, and
validate the immune subtypes in melanoma by coupling transcriptional and histological assessments
of the lymphocyte distribution in tumor parenchyma and stroma. We used the transcriptomic data
from The Cancer Genome Atlas melanoma dataset to screen for the desert, excluded, and inflamed im-
mune subtypes. We defined subtype-specific genes and used them to construct a subtype assignment
algorithm. We validated the two-step algorithm in the qPCR data of real-world melanoma tumors
with histologically defined immune subtypes. The accuracy of a classifier encompassing expression
data of seven genes (immune response-related: CD2, CD53, IRF1, and CD8B; and stroma-related:
COL5A2, TNFAIP6, and INHBA) in a validation cohort reached 79%. Our findings suggest that
melanoma tumors can be classified into transcriptionally and histologically distinct desert, excluded,
and inflamed subtypes. Gene expression-based algorithms can assist physicians and pathologists as
biomarkers in the rapid assessment of a tumor immune microenvironment while serving as a tool for
clinical decision making.

Keywords: melanoma; tumor-infiltrating lymphocytes; biomarkers; immune subtypes; desert; ex-
cluded; inflamed; gene expression; tumor microenvironment; classifier; TCGA

1. Introduction

Emerging cancer immunology discoveries reshaped the way we perceive tumors
through the point of view of the host’s immune system. The proactive antitumor immune
response, manifested by the functional antigen recognition and infiltration of tumor tis-
sue by activated T cells is often counterbalanced by the quick adaptation of the tumor
microenvironment (TME) [1]. Although the dynamics of cancer-immunity interactions
unveil another level of complexity on top of these two already elaborate subjects [2,3],
some principal phenomena were successfully translated into clinical cancer management
at the diagnostic (e.g., Immunoscore [4]), monitoring (e.g., baseline local and circulating
biomarkers [5]), and, in particular, therapeutic (e.g., immunotherapy application [6]) levels.

However, the efficacy of immunotherapy is often hampered due to the lack of a per-
sonalized approach and limited understanding of the tissue-specific immune contexture [7].
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The heterogeneity of responses encourages the development of large-scale molecular data-
based algorithms that would allow for the identification of target patient populations for
personalized immunotherapy solutions [8,9]. With the accumulation of big data input,
efforts are being made to extract clinically relevant information from large datasets and
repositories [10]. Nevertheless, the need for a clear and easy TME classification remains.

One of the proposed tumor immune subtyping strategies, distinguishing desert, ex-
cluded, and inflamed subtypes, emerged from observing distinct tumor histological pat-
terns and responses to a checkpoint blockade [11–13]. This classification system considers
the presence and location of tumor-infiltrating leukocytes (TILs). Desert tumors are poorly
immune-infiltrated and lack the pre-existing antitumor immunity (no TILs). Excluded
tumors have a dense extracellular matrix and retain TILs in the reactive stroma. Inflamed
tumors are characterized by considerable infiltration of TILs, often not properly functioning.
Although universal in nature and potentially compliant as an immunotherapy biomarker,
this subtyping system still needs more evidence to reach consensus in the academic and
clinical network.

We have previously identified a gene signature for immune subtyping of high-grade
serous ovarian cancer [14]. In this study, we took advantage of the clinical and RNA-Seq
data of the cutaneous melanoma dataset deposited in The Cancer Genome Atlas (TCGA)
and explored the immune desert, excluded, and inflamed subtype-specific transcriptional
patterns. We extracted the top differentially expressed genes and constructed a seven-gene
classifier for assigning the patients into immune subtypes. The performance of the classifier
was validated in a real-world patient cohort and compared to histological tumor profiles.

2. Materials and Methods
2.1. Processing of TCGA Dataset and Gene List

The full clinical and level 3 RNA-Seq transcriptomic data of 480 available melanoma pa-
tients in the TCGA-SKCM database [15] were retrieved through cBioportal web API [16,17]
on 7 January 2022. Data were preprocessed to remove entries containing empty or duplicate
values, which resulted in withdrawing 20 clinical entries.

The immune response- and stroma-related genes were selected based on previously
published studies and profiling panels [18,19], resulting in a list of 1578 genes for further
analysis. After calculating the coefficient of variation for each selected gene expression
in the TCGA dataset, 201 genes with low dispersion (CV < 5%) and 3 genes with missing
values were eliminated from further analysis. No outliers were detected using hierarchical
clustering or principal component analysis. As a result, the final TCGA training dataset
consisted of 1372 gene expression scores from 460 patients with melanoma tumors.

2.2. In Silico Immune Subtyping

We next performed cluster analysis to explore the immune response-related transcrip-
tional patterns independent of their histological phenotype. The optimal number of clusters
was determined based on elbow (distortion) [20] and silhouette [21] methods using Python
package Yellowbrick v1.5 [22]. With regard to reports on tumor immune typing and im-
munotherapy biomarkers [14,18,23], we empirically selected forty genes from a 1372 gene
list to serve as the determinants for clustering the TCGA cohort into subtypes using k-
means [24] or a previously published predefined rule coefficient calculation algorithm [14]
that requires grouping the selected genes into angiogenesis, stroma, and immune response
categories, which are prominent in immune desert, exclusion, and inflammation states,
respectively. Only those clinical TCGA records that were assigned to the same immune
subtype group by both clustering methods were then selected for further differential gene
expression analysis and classifier modeling.

2.3. Differential Gene Expression Analysis and Building Subtyping Classifier

The normalized and filtered RSEM [25] read counts from TCGA were processed with
R package limma for differential gene expression analysis using linear regression model,
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which tests for gene expression dependence on immune subtype using formula ∼0 +
Subtype, where zero is the logistic regression intercept and allows for comparison between
different subtypes [26]. Contrasts created with such a formula can be adjusted to reflect
differences between immune subtypes. A design matrix consisting of patient identifiers,
assigned immune tumor subtypes, and contrasts was created. The design matrix and gene
expression estimates were analyzed with ImFi method in limma via weighted least squares
estimation. The obtained results were used to evaluate the expression of each gene in
different immune subtypes with contrasts.fit and eBayes methods. For each subtype, the top
10 genes with the most differential expression among all subtypes (lowest p-values) were
selected as representative genes for further construction of the subtyping classifier.

To address the different data acquisition methods in training TCGA dataset (RNA-Seq)
and real-world patient validation cohort (qPCR), we settled for the z-transformation of
gene expression data as a well-performing means for scoring samples against multiple
molecular signatures [26]. To improve the robustness and better control for outliers, we
calculated the modified z-scores utilizing the median and median absolute deviation [27].

We then combined several gene expression biomarkers to achieve the optimal power
to discriminate the melanoma immune phenotype. Using ROC analysis, the selected
top 10 subtype-representative genes were examined alone and in various combinations as
factors for subtype discrimination. Factors yielding the largest AUC, as well as sensitivity
and specificity, were selected and combined in a manual decision tree which reflects
the initial in silico subtyping results from Section 2.2 most accurately. The cutoff values
resulting in the highest Youden’s index (defined as sensitivity + specificity-1) [28] were
selected as thresholds to discriminate between subtypes.

2.4. Melanoma Patient Cohort

Ninety-six patients with confirmed melanoma diagnoses and no prior cancer or im-
mune disorder history were involved in this study. All subjects signed the informed
consent form before participation. The study was conducted in accordance with the Dec-
laration of Helsinki. The study protocol was approved by the Board of National Cancer
Institute (Vilnius, Lithuania) and Vilnius Regional Biomedical Research Ethics Committee
(approval no. 158200-18-1004-501). Patients were enrolled in the study during 2018–2020.
Patient follow-up continued until October 2023. Clinical data were obtained from medical
records. All patients underwent surgery and received standard-of-care treatment according
to the tumor stage. Specifically, patients diagnosed with stage II melanoma were placed
on monitoring only, with no active intervention initiated unless disease progression was
observed. Patients diagnosed with stage III-IV melanoma were stratified based on their
BRAF mutation statuses. Patients with BRAF positive mutation received treatment with
dabrafenib and trametinib, while those with BRAF wild type received checkpoint inhibitors.
For each patient, surgical specimens of primary tumors were collected, processed, fixed
in 10% neutral buffered formalin for 6–24 h and paraffin embedded in a MAGNUS Tissue
Processor (Milestone Medical, Ipswich, QLD, Australia).

2.5. Histopathological Assessment

Three-micrometer-thick tissue sections from FFPE blocks were routinely stained with
hematoxylin and eosin (H&E). The slides were scanned with the Aperio ScanScope XT
Slide Scanner (Aperio Technologies, Inc., Vista, CA, USA) and analyzed using Aperio
eSlideManager Version 12.4.3.8003 software by an experienced pathologist. The presence
of intraepithelial and stromal TILs was evaluated by a trained pathologist and quantified
according to the recommendations of [29,30]. Briefly, after selecting the areas within
tumor borders, the type of inflammatory infiltrate was determined. Only mononuclear
TIL infiltrate in tumor stroma and parenchyma was assessed, while necrotic areas also
containing granulocytes were not taken into account. For TILs, a cutoff of 10% was
adopted [31]. Tumors were defined as desert if less than 10% TILs could be detected
within tumor. If the level of TIL infiltration was more than 10%, tumors were further
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distinguished based on the localization of TILs—if lymphocytes could be found only in
stromal compartment but not the parenchyma, such tumors are classified as excluded. If
TILs are detected in both stroma and the parenchyma in direct contact with cancer cells,
tumors were considered to be inflamed (see pictures in Section 3.4).

2.6. qPCR for Gene Expression Analysis in Real-World Patient Cohort

Total RNA was extracted and purified from twenty-micrometer-thick tissue scrolls
from FFPE blocks with truXTRAC FFPE total NA Ultra Kit (Covaris, Wouburn, MA, USA)
according to manufacturer’s protocol using Adaptive Focused Acoustics ™ technology-
based Covaris M220 ultrasonicator (Covaris) and column-based purification. Five hundred
nanograms of purified RNA from each sample was reverse transcribed using Maxima First
Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to
manufacturer’s guidelines. qPCR was performed in triplicate in Azure Cielo 3 Real-Time
PCR System (Azure Biosystems, Dublin, CA, USA). In one reaction of ten microliters
volume, there was 5 µL of Maxima SYBR Green qPCR Master Mix 2X (Thermo Fisher Sci-
entific), 2.5 µL of the ten times diluted cDNA reaction product, and 2.5 µL of 0.8 µmol/mL
sequence-specific forward and reverse primer mix (sequences taken from PrimerBank [32]).
The reaction was started by incubating for 5 min at 95 ◦C, and 40 cycles of 10 s denaturing
at 95 ◦C followed by 30 s of annealing/extension at 60 ◦C. Threshold cycle values were ex-
tracted from Azure Cielo 3 Manager software (Azure Biosystems) using logistic regression.
Relative gene expression levels were calculated using the delta Ct relative quantitation
method [33] with Pfaffl correction for PCR efficiency [34]. RPL13A and GAPDH served as
reference genes. GE levels were normalized by calculating the modified z-scores.

2.7. Statistical Analysis

Data were analyzed and visualized using built-in features of GraphPad Prism 9
(GraphPad Software, version 9.1.1) and SPSS 25.0 (IBM) statistical software. Heatmaps
were generated with Morpheus (Broad Institute) software [35]. Clinical features were
compared using the χ2 test (categorical variables) and one-way ANOVA or Kruskal–Wallis
test (numeric variables). The Kaplan–Meier survival curves were analyzed with a log-rank
test. Odds ratios were derived from the univariate and multivariate Cox regression model
and compared using the Wald test. The ROC curves and AUC were derived from sensitivity
and specificity. Performance metrics and clinical utility were calculated and converted into
qualitative grades as suggested previously [36]. Where necessary, the false discovery rate
for multiple comparisons was controlled with a two-stage step-up method by Benjamini,
Krieger, and Yekutieli [37]. p < 0.05 was considered to indicate a statistically significant
difference.

3. Results
3.1. Immune Subtyping of the TCGA Cohort

The workflow of this study is shown in Figure 1. To inspect the immune microenvironment-
related transcriptional profiles, we first analyzed the TCGA SKCM dataset, which contains
clinical data of patients diagnosed with cutaneous melanoma as well as their bulk tumor
RNA-Seq data.

The presence of TILs in tumor parenchyma or stroma can influence the cellular and
molecular tissue characteristics and can therefore be reflected in the bulk transcriptomic
profile, as demonstrated previously [38,39]. For exploring the patterns in the training
TCGA dataset of 460 patients, we assembled a list of 1372 gene entries covering the cancer-
immunity cycle and, in particular, focusing on the immune response and stroma elements.

To decide on the optimal number of transcriptional clusters, we applied the k-means
algorithm to the full TCGA dataset with the number of clusters varying from 1 to 10. After
plotting the distortion (Figure 2A) and silhouette (Figure 2B), the k = 3 cluster number
returned the most favorable scores and was therefore selected as an optimal cluster number,
also supporting the initial three immune subtype hypothesis.
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an immune subtyping classifier. The classifier’s performance was validated in a 96 melanoma patient
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plot (B), reflecting the quality of fit cohesion and separation. (C) A heatmap presenting the ex-
pression of genes (rows) in 346 patients (columns). Modified Z-score transformed GE levels, de-
picted as bars of different color intensity, served as a basis for assembling tumors into inflamed
(176 patients), immune excluded (75 patients), and immune desert (95 patients) subtypes using the
predefined rules and k-means clustering. A—angiogenesis, IM—immune response, ST—stroma.
(D) Kaplan—Meier overall survival curves of TCGA melanoma patients grouped into three im-
mune subtypes. (E) Kaplan—Meier progression-free survival curves of TCGA melanoma patients
grouped into three immune subtypes. Survival curves were compared with the log-rank test. Group
abbreviations: DES—desert, INF—inflamed, EXC—excluded.

3.2. Clinical Features of the Immune Subtypes in the TCGA Cohort

Next, we examined the baseline clinical characteristics of TCGA SKCM patients within
the assigned immune subtype (Table 1).

Table 1. Baseline clinical characteristics of patients in TCGA dataset (N = 346).

Feature Desert Excluded Inflamed p-Value

N 95 75 176

Age, median (range) 58 (15–86) 62 (20–90) 56 (18–90) 0.031

BMI, median (range) 26.1 (17.8–42.5) 27.3 (17.6–55.5) 28.7 (18.3–49.1) 0.045

TMB mut/Mb, median (range) 12.3 (0.6–129.9) 16.4 (0.3–102.2) 25.2 (0.2–1060.3) 0.403

Stage 0.003
I 8 (9%) 10 (14%) 40 (25%)
II 41 (47%) 34 (48%) 46 (29%)
III 33 (38%) 23 (32%) 68 (42%)
IV 5 (6%) 4 (6%) 6 (4%)

28 undocumented

Clark level 0.402
1 2 (3%) 1 (2%) 2 (2%)
2 2 (3%) 1 (2%) 11 (10%)
3 9 (13%) 13 (22%) 36 (31%)
4 44 (62%) 35 (60%) 52 (45%)
5 14 (20%) 8 (14%) 14 (12%)

102 undocumented

Breslow in mm, median (range) 5.8 (0.0–75.0) 7.3 (0.5–29.0) 4.2 (0.0–74.0) 0.032

BRAF status <0.001
wild type 34 (72%) 14 (30%) 56 (47%)
mutated 13 (28%) 32 (70%) 63 (53%)

134 undocumented

NRAS status 0.049
wild type 25 (53%) 33 (72%) 87 (72%)
mutated 22 (47%) 13 (28%) 22 (28%)

134 undocumented

KIT status 0.010
wild type 42 (89%) 39 (85%) 116 (98%)
mutated 5 (11%) 7 (15%) 3 (2%)

134 undocumented

p-values were calculated using the χ2 test (categorical variables) and one-way ANOVA or Kruskal–Wallis test
(numeric variables). BMI—body mass index, TMB—tumor mutational burden.

The differences in TNM stage and Breslow depth highlighted the statistically signif-
icant trends of smaller values in inflamed tumors, which was taken into account during
multivariate Cox regression analysis for survival (Table 2).
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Table 2. Uni- and multivariate Cox regression analysis of the prognostic relevance of immune
subtypes in the TCGA patient cohort.

Group mOS, Months
(95% CI)

Estimated Survival, %
(95% CI)

Univariate Analysis Multivariate Analysis *
HR (95% CI) padj HR (95% CI) padj

OVERALL SURVIVAL
3 years 5 years

INF 162.0 (72.8–133.5) 82.7 (77.4–90.0) 73.4 (66.7–81.9) 1.00 (ref.) 1.00 (ref.)
EXC 61.2 (37.1–85.4) 72.4 (62.5–85.7) 50.1 (37.2–64.7) 1.81 (1.20–2.72) 0.004 1.62 (1.03–2.57) 0.036
DES 55.6 (23.1–87.9) 57.2 (46.5–69.7) 48.2 (36.7–60.8) 2.38 (1.60–3.41) 0.002 1.57 (0.97–2.55) 0.056

PROGRESSION-FREE SURVIVAL
3 years 5 years

INF 65.9 (47.6–84.3) 72.2 (64.0–78.8) 51.5 (42.2–60.0) 1.00 (ref.) 1.00 (ref.)
EXC 47.1 (32.8–61.5) 58.8 (44.4–60.6) 37.2 (23.5–50.9) 1.19 (0.81–1.72) 0.012 1.56 (1.02–2.38) 0.041
DES 35.0 (8.8–61.2) 46.4 (32.5–59.2) 37.2 (23.9–50.5) 1.68 (1.18–2.39) 0.377 1.13 (0.72–1.78) 0.586

* Multivariate Cox regression analysis accounting for tumor stage (p = 0.621), regional lymph nodes (p < 0.001),
metastasis (p = 0.735), Breslow depth (p = 0.006), and age (p = 0.009) in the survival context. p-values were
calculated using a two-sided Wald test and adjusted for multiple comparisons. INF—inflamed, EXC—excluded,
DES—desert, mOS—median overall survival, CI—confidence interval, HR—hazard ratio.

Interestingly, the distribution of oncogenic mutations in BRAF, NRAS, and KIT (usually
mutually exclusive) followed specific patterns. Alterations in BRAF and KIT were most
common in excluded tumors. The NRAS mutation was most frequently found in desert
tumors. Alterations in KIT were not found in inflamed tumors. Overall, nearly half of the
patients in the desert or inflamed groups were wild type for specific mutations, whereas
two-thirds of patients with excluded tumors had at least one oncogene mutated.

Although the gender composition among different subtype groups was the same, the
other sociodemographic variables (age and BMI) of patients differed.

No significant differences were observed when comparing the Clark level or tumor
mutational burden (TMB). Although high TMB in theory could be a prerequisite for TIL
attraction and formation of inflamed TME, the two-fold difference in medians of inflamed
versus desert tumors does not reach the statistical significance level.

We found a significant difference in overall survival among the patients bearing
different tumor subtypes (p < 0.0001) (Figure 2D). This was also true at each TNM stage
level. Patients from the inflamed group survived longest, with an mOS of 162 months
(Table 2), which is nearly threefold more than the mOS of excluded and desert subtypes.

Moreover, the inflamed subtype-bearing melanoma patients were more likely to
survive for 3 or 5 years. Among non-inflamed tumors, patients from the excluded group
have a better 3-year OS than the desert group; however, at the 5-year cutoff, the proportion
of patients at risk is the same (around 50%) in both desert and excluded groups. Cox
regression analysis confirmed that patients with non-inflamed tumors have higher risk
of death (for desert: unadjusted HR = 2.38, p = 0.002, adjusted HR = 1.57 p = 0.056; for
excluded: unadjusted HR = 1.81, p = 0.004, adjusted HR = 1.62, p = 0.036) when compared
to the inflamed subtype.

Progression-free survival was also different between the three subtypes (Figure 2E).
Patients with inflamed tumors had a mPFS of 66 months, which is almost two-fold longer in
comparison to patients from the desert group (mPFS = 35 months). Patients with excluded
tumors have s significantly higher risk of progression in comparison to inflamed tumors
(unadjusted HR = 1.19, p = 0.012, adjusted HR = 1.56, p = 0.041).

Taken together, the results of the clinical feature and survival analysis highlight the
prognostic significance of immune tumor subtyping and its potential clinical utility. These
findings encouraged us to develop a practical auxiliary tool for determining the tumor
immune subtype.
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3.3. Building the Immune Subtyping Classifier

For constructing a feasible classifier that is able to accurately distinguish desert, ex-
cluded and inflamed tumors, we decided to narrow down the GE signature by exploring
the subtype-specific genes. We applied the differential GE analysis algorithms to the
initial 1372 gene list in the TCGA cohort. For each immune subtype, the top 10 genes
discriminating the subtype from among the others were picked (Figure 3A).
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Figure 3. Development of gene expression score-based algorithm for immune subtyping.
(A) Heatmaps showing the modified z-score transformed expression of the top 10 differentially
expressed genes in each TCGA subtype cluster. (B) Performance of a four-element combination,
constructed as a modified z-score average of CD53, TNFAIP6, CD2, and IRF1 expression, was evalu-
ated by ROC analysis, and a cutoff of −0.44 was selected for distinguishing desert and non-desert
subtypes. (C) Performance of a four-element combination, constructed as a modified z-score sum
COL5A2 + INHBA − CD8B − IRF1, was evaluated by ROC analysis, and a cutoff of 0.13 was selected
for distinguishing excluded and inflamed subtypes. (D) Heatmaps presenting the expression of the
seven most representative genes alone or in a classifier (rows) in 346 TCGA pretreatment patients
(columns) with annotated or predicted clusters. (E) A sequence for gene expression score-based
immune subtyping of inflamed, excluded, and desert tumors. AUC—area under curve, DES—desert,
EXC—excluded, INF—inflamed.
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For excluded and inflamed tumors, these top differentially expressed genes repre-
sented the increased GE of stroma- or immune response-related related processes, respec-
tively. In contrast, for desert tumors, the top differentially expressed genes represented the
decreased GE of immune response-related pathways and were partially overlapping with
inflamed subtype-specific genes.

We next explored the discrimination performance of individual genes and their various
combinations using ROC analysis. We aimed at selecting a combination with the least
factors and maximal separation efficiency. However, these criteria were not satisfactorily
met with a single gene signature, as the investigated immune subtypes are defined not only
by the sole quantitative presence of TILs but also by their location in the tumor. Therefore,
we hypothesized that a two-step classifier would potentially perform better.

To test this hypothesis, we first decided to determine the presence/absence of TILs
to be able to discriminate between the desert and non-desert subtypes. A four-element
combination Score 1, constructed as a modified z-score average of desert subtype-specific
gene CD53, excluded subtype-specific gene TNFAIP6, and two inflamed subtype-specific
genes CD2 and IRF1:

Score 1 =
z(CD53) + z(TNFAIP6) + z(CD2) + z(IRF1)

4
(1)

yielding the highest attainable AUC = 0.976 (Figure 3B), and with a cutoff of −0.44, demon-
strated 96.0% (CI 92.8–97.8%) sensitivity and 90.5% (CI 83.0–94.9%) specificity. The overall
accuracy was 94.5% (excellent), the positive clinical utility index was 0.809 (good), and the
negative clinical utility index was 0.925 (excellent).

Next, to discriminate between excluded and inflamed tumors in the previously sorted
non-desert tumors, we built another four-element combination Score 2 by subtracting the
modified z-score sum of two inflamed subtype-specific genes CD8B and IRF1 from the
modified z-score sum of two excluded subtype-specific genes COL5A2 and INHBA:

Score 2 = z(COL5A2) + z(INHBA)− z(CD8B)− z(IRF1) (2)

This algorithm yielded an AUC = 0.923 (Figure 3C), and with a cutoff of 0.13, it
demonstrated 96.9% (CI 89.5–99.5%) sensitivity and 78.4% (CI 71.8–83.4%) specificity. The
overall accuracy was 80.4% (good), the positive clinical utility index was 0.550 (fair), and
the negative clinical utility index was 0.730 (good).

In total, seven genes involved in two sequential logical steps were combined into a
classifier. The clustering of 346 TCGA patients using seven genes, or a two-step classifier
resulted in the clearly distinct desert, excluded, and inflamed subtypes (Figure 3D). The
overall logic sequence of GE-based immune subtyping of ovarian tumors is summarized
in Figure 3E. The accuracy of separation in the TCGA cohort was 83.2% (good) (288 true
positives out of 346), with a positive clinical utility index of 0.587 (fair) and a negative
clinical utility index of 0.755 (good). The cutoffs are derived from mathematical operations
involving z-scores, where a negative value signifies score below the population median,
and a positive value indicates score above the median.

To examine the effect of a created classifier on survival prediction, we performed Cox
regression for OS, including other baseline clinical characteristics (Figure 4A).

To compute the exact hazard ratios, excluded and desert groups were pooled into
a single group of non-inflamed tumors, as there were no significant differences between
their Kaplan–Meier overall survival curves (p(adj) = 0.09). Immune subtypes were shown
to be associated with survival. Patients bearing non-inflamed tumors had worse prog-
noses, as indicated by both the univariate and multivariate Cox models (p = 0.001 and
p = 0.018, respectively). As predicted by the GE-based score, patients with inflamed tumors
(mOS = 161.7 months, 95% CI 104.9–219.1) survive significantly longer (p(log-rank) < 0.001)
than patients with non-inflamed tumors (mOS = 58.5 months, 95% CI 43.5–73.5).
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Figure 4. Overall survival analysis. Association of immune subtypes and baseline clinical charac-
teristics (A) or genes included in classifier construction (B) with overall survival. The forest plots
indicate the hazard ratios (HRs) and 95% confidence intervals (CIs) for each factor in a univariate and
multivariate setting. DES—desert, EXC—excluded, INF—inflamed.

Out of seven genes used for subtyping classifier construction, there were three reactive
stroma- and four immune response-related elements. All individual immunity-related
genes (CD2, CD8B, IRF1, CD53) were associated with better prognoses, as reflected in
the univariate Cox model (Figure 4B). When combined into a seven-gene classifier, only
IRF1 retained a significant level of association with OS (p = 0.027). Individual reactive
stroma-related genes (COL5A2, TNFAIP6, INHBA) were not associated with prognosis. In a
seven-gene classifier, COL5A2 was slightly associated with worse survival (p = 0.048).

The above results highlight the need for immune subtype-related treatment stratifica-
tion for melanoma to improve survival, especially for non-inflamed tumors.

3.4. Validation of the Immune Subtyping Classifier in a Real-World Patient Cohort

After developing a two-step gene signature-based algorithm for immune subtyping of
ovarian tumors in silico, we aimed to analyze its performance in a real-world patient cohort
consisting of 96 melanoma patients that underwent primary tumor resection at the National
Cancer Institute in Vilnius, Lithuania, in 2018–2020. Patients follow-up continued until October
2023. Due to the heterogeneous nature of our primary patient cohort, consisting of varying
disease stages and treatment modalities, statistical control for therapy was not feasible.

To determine the immune tumor subtype of the patient cohort, the H&E-stained tumor
tissue sections were evaluated by a pathologist for the presence of both intraepithelial
and stromal tumor-infiltrating lymphocytes (TILs) (Figure 5A), according to published
recommendations of several working groups [29,30]. Based on histological examination
of the primary tumor, patients were grouped into the respective immune subtype groups:
40% of patients were attributed to the immune desert group, 30% to the excluded, and 30%
to the inflamed group.

In parallel, we measured the relative GE of classifier genes COL5A2, INHBA, TNFAIP6,
IRF1, CD53, CD8, and CD2 in patient tumors using qPCR. We next applied our developed
two-step immune subtyping classifier using the modified z-scores of relative GE, which
resulted in classifying 43% of patients as the desert subtype, 25% as the excluded subtype,
and 32% as the inflamed group. The proportion of this distribution was different than in
the initial TCGA cohort (p = 0.023).

Classifier-based immune subtyping was compared with the histopathological eval-
uation. Running step 1 of the classifier (discriminating between desert and non-desert
patients) with the determined −0.44 cutoff resulted in AUC = 0.902, 84.5% (CI 73.1–91.6%)
sensitivity, and 86.8% (CI 72.7–94.3%) specificity (Figure 5B). The accuracy of this step was
88% (excellent).
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Figure 5. Immune subtyping of real-world patient cohort. (A). Tumors were classified as inflamed,
excluded, and desert by pathological examination of H&E-stained tumor sections. (B) Performance of
a four-element combination, constructed as a modified z-score average of CD53, TNFAIP6, CD2 and
IRF1 expression in discriminating desert and non-desert subtypes, was evaluated by ROC analysis at
a cutoff of −0.44. (C) Performance of a four-element combination constructed as a modified z-score
expression sum COL5A2 + INHBA − CD8B − IRF1 in discriminating excluded and inflamed subtypes
was evaluated by ROC analysis at a cutoff of 0.13. (D) Heatmaps present the expression of the seven
most representative genes alone or in a classifier (rows) in 96 real-world patients (columns) with
annotated or predicted clusters. Kaplan–Meier overall survival (E), progression-free survival (F), and
combined progression-free survival (G) curves of real-world ovarian cancer patients grouped into
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different immune subtypes based on the pathological evaluation. Survival curves were compared
with log-rank test. AUC—area under curve, INF—inflamed, EXC—excluded, DES—desert.

Applying step 2 of the classifier (discriminating between excluded and inflamed
tumors in the non-desert pool) with the determined 0.13 cutoff resulted in AUC = 0.835,
82.8% (CI 65.5–92.4%) sensitivity, and 82.8% (CI 65.5%#x2013;92.4%) specificity (Figure 5C).
The accuracy of this step was 78% (good).

Overall, clustering of the 96 melanoma patient cohort using a developed two-step
classifier resulted in 79% accuracy (good)—76 out of 96 tumors were assigned to the
same subtype group using both histopathological assessment and the GE-based classifier
(Figure 5D).

The survival trends of immune subtype groups in the melanoma patient cohort cannot
be directly compared with those of the TCGA cohort due to at least a four-fold longer follow-
up time for the latter. For the overall survival of the melanoma patient cohort, the median
cannot be determined yet (Figure 5E). As for progression-free survival, the median time to
progression in desert subtype-bearing patients was 12 months, in excluded subtype-bearing
patients, 29 months, and in the inflamed group, the median was not reached yet. The PFS
differs significantly (p = 0.0031) (Figure 5F). When we combined the desert and excluded
tumors into a single non-inflamed category, a separation of PFS curve months was observed
(p = 0.012) (Figure 5G), supporting the prognostic significance of immune subtyping.

We also examined the baseline clinical characteristics of the 96 melanoma patient
cohort with regard to the assigned immune subtype (Table 3).

Table 3. Baseline clinical characteristics of National Cancer Institute melanoma cohort (N = 96).

Feature Desert Excluded Inflamed p-Value

N 38 29 29

Age, median (range) 72 (36–88) 65 (32–92) 69 (30–88) 0.456

Stage 0.985
I 2 (5%) 1 (3%) 2 (7%)
II 19 (50%) 17 (59%) 14 (48%)
III 16 (42%) 10 (35%) 12 (41%)
IV 1 (3%) 1 (3%) 1 (3%)

28 undocumented

Clark level 0.378
3 9 (24%) 13 (46%) 11 (41%)
4 22 (60%) 14 (50%) 14 (52%)
5 6 (16%) 1 (4%) 2 (7%)

4 undocumented

Breslow depth 0.300
1–4 mm 15 (41%) 13 (50%) 17 (63%)
>4 mm 22 (59%) 13 (50%) 10 (37%)

6 undocumented

BRAF status 0.067
wild-type 28 (74%) 14 (48%) 15 (52%)
mutated 10 (26%) 15 (52%) 14 (48%)

p-values were calculated using the χ2 test (categorical variables) and one-way ANOVA (age).

We did not observe significant differences when comparing patient age, tumor stage
(including all TNM elements), Clark level, and Breslow depth. The BRAF alteration
pattern was similar to the TCGA cohort—the frequency of BRAF mutations in desert
group was nearly two-fold lower than in the inflamed and excluded groups, where half or
more patients had tumors with altered BRAF. However, the differences among real-world
melanoma cohort subtypes did not reach the statistical significance level (p = 0.067).



Biomolecules 2024, 14, 171 13 of 18

To sum up, both histopathological assessment of TILs in H&E-stained tumor sections,
as well as a GE-based classifier successfully distinguish desert, excluded, and inflamed
subtypes among melanoma samples with 79% overlap. A seven-gene-based classifier as a
biomarker could assist the biomedical community by accurately translating qPCR results
into clinically relevant immune subtype information.

4. Discussion

The recent shift in the cancer-immunity paradigm [2,40] convinced the scientific com-
munity that the information stored within the immune TME is remarkably valuable and
targetable and promoted an ambitious leap in immunotherapy. However, the heterogeneous
treatment outcomes once again reminded us how complex and adaptable the nature of the
immune system is. A seminal review by Hegde and Chen, consolidating the major challenges
of current cancer immunotherapy, spotlighted the understanding of organ-specific immune
contexture and maximizing treatment personalization through composite biomarkers as being
among the key critical questions [7]. With our study, we addressed both issues by hypoth-
esizing that desert, excluded, and inflamed immune subtypes can be defined in melanoma
tumors and immune subtyping can serve as a source of personalized biomarkers. We believed
that our findings could contribute to the arising consensus on the significance of intraep-
ithelial/stromal TILs and their application in clinical practice. We took an approach to first
analyze TCGA data and filter out the subtype-specific genes for subsequent validation in the
clinical melanoma cohort and matching with the histological assessment.

One of the primary outcomes of our study was the recognition of desert, excluded,
and inflamed immune melanoma subtypes both transcriptionally in silico, as well as tran-
scriptionally and histologically ex vivo. Different approaches to melanoma subtyping
were already reported [41,42], although they were generally based on genomics or cancer
cell histology. Wide exploratory studies addressing the immune aspects of melanoma
TME were mostly solely computational [43–45], yet often meticulous and conclusive. The
conventional and more supervised approaches, like ours, taking advantage of publicly
available transcriptomic datasets also existed [46,47]; however, they usually carried dif-
ferent subtype annotations for what we believe could be recognized as immune desert,
excluded, and inflamed tumors based on their biological information. Reports adopting the
desert, excluded, inflamed nomenclature in melanoma were only histology based [48–50].
In this setting, our findings combining transcriptome and histology data, although with
their own limitations, carry an element of novelty and contribute to the understanding of
the tissue-specific immune contexture in melanoma. Our definition of desert, excluded,
and inflamed immune subtypes is aligned with related reports on other cancer types, such
as ovarian [14,51,52], lung [53–55], head and neck, [52,56,57] breast [55,58], bladder [52,53],
gastric [52], colorectal [52], hepatocellular [59], pancreatic [60], and renal cancer [61], and
contributes to developing agreement on universal immune contexture elements among
different cancer localizations.

It is worth mentioning that nearly half of the studies employing the desert, excluded,
inflamed nomenclature (as cited in the previous paragraph) also relate the immune sub-
types with response to a checkpoint blockade, emphasizing their emerging significance as
predictive biomarkers. In our study, we highlighted the prognostic significance of immune
subtyping. The association of inflamed tumors with longer overall survival is widely
reported and reviewed [62,63], suggesting inflammation as a very generalized biomarker
in cancer. Nevertheless, the frequently used term ‘inflamed’ or ‘hot’ tumor conceals a need
for treatment personalization through composite biomarkers [7]. On the other hand, the
number of papers reporting survival-associated gene signatures is growing exponentially:
the PubMed search for “immune AND gene signature AND prognosis AND cancer” re-
turns more than 6500 entries, out of which 80% were published in the last 3 years. Testing,
validation, and reproduction of a large number of potential candidates to translate any
biologically meaningful biomarkers into a clinical application remain to be addressed with
computational AI algorithms.
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Our study is not an exception—we constructed the immune subtyping classifier
based on the expression of seven genes. Four of them—CD2, CD8B, CD53, and IRF1—are
associated with the immune response. CD8 is a marker for cytotoxic T cells that execute
direct killing of tumor cells when accurately primed with an antigen and activated [64].
CD2 participates in the formation of the immunological synapse between T cells and
antigen-presenting cells [65]. Tetraspanin CD53 on the T cell membrane is important
for T cell-mediated immunity and its deficiency results in impaired TCR signaling and
proliferation [66]. IRF1 regulates the development of Th1 and Tr1 lymphocytes [67] and
programs cDC1 dendritic cells to drive antitumor immunity [68]. CD2, CD8, and CD53
are mentioned together in a leukocyte infiltration score predicting melanoma patient
prognosis [69]. SOX10-IRF4-IRF1 axis serves as a potential target to immunologically
warm-up melanoma with a “cold” TME [70].

Three other genes—COL5A2, INHBA, and TNFAIP6—represent the reactive stroma
compartment in our classifier. None of these genes were previously reported to be as-
sociated with melanoma. Inhibin β-a, encoded with INHBA, is a member of the TGFβ
superfamily and is a marker of reduced survival and poor prognosis in cervical cancer [71].
In our melanoma cohort, we did not observe an association with survival. However, the
tumor stroma and extracellular matrix can contribute to retaining otherwise primed and
functional T cells and impairing the antitumoral immune response [72]. This phenomenon
is not widely reviewed in melanoma, leaving space for further investigation. Interestingly,
we have previously reported CD2 and COL5A2 in a single gene signature for immune
subtyping of desert, excluded, and inflamed ovarian tumors [14], suggesting that underly-
ing biological mechanisms behind immune TME formation can be at least in part shared
among tumors in different organs.

We also report the different distributions of major oncogenic melanoma alterations
(BRAF, NRAS, KIT) among different immune subtype groups. The NRAS mutation was
more frequent in the immune desert subtype. The BRAF mutation was more characteris-
tic of excluded and inflamed subtypes, as confirmed in both TCGA and patient cohorts.
Almost none of the inflamed tumors had alterations in KIT. Although the underlying
biological meaning and significance of this phenomena are not clear, it might affect combi-
national treatment (targeted therapy + immunotherapy) decisions [73,74]. For example, in
colorectal cancer, the distinct pattern of immune TME in BRAF-mutated tumors suggested
the rationale for using checkpoint inhibitors in this subgroup of patients [75].

The paradigm of the desert, immune, and inflamed immune subtypes does not rule
out other possible molecular or cellular tumor classification systems, but rather informs
about the presence or absence of TILs within different tumor compartments and gives
a hint about the character of prevalent immune TME. The supervised discrimination of
merely three immune subtypes in our and other studies is to some extent simplified and
biased due to its hypothesis-driven nature. Our study design was also inclined to look for
distinct transcriptomic profiles, and we discarded a substantial proportion of TCGA entries
due to discrepant results using different clustering algorithms. Nevertheless, this approach
allowed us to define subtype-specific genes and translate them into a real-world cohort,
where we reached 79% overlap between histological assessment and qPCR analysis

While utilizing gene expression values as biomarkers presents some inherent limi-
tations (context dependence, dynamic nature, and complexity of interpretation), normal-
ization strategies help to minimize these challenges. We employed the modified z-score,
which is more robust and less affected by a sample size than a standard z-score, yet still
can be easily combined to better reflect the respective pathway activity [76]. The combined
z-score is also acknowledged as one of several reliable methodologies for scoring individual
samples and integrating new patients post classifier development [26]. Looking ahead, the
integration of machine learning holds promise in further refining the utilization of gene
expression values as reliable biomarkers.

We believe that despite the acknowledged limitations, our findings could advance the
research in the immune TME and immunotherapy biomarker field. One of the key strengths
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of our research lies in its robust methodology and validation in real-world melanoma tumors,
which demonstrated a commendable accuracy of 79%. Moreover, our findings have practical
implications for personalized medicine approaches in melanoma treatment. By stratifying
patients based on immune subtypes, we may be able to tailor therapeutic interventions
more effectively. Our results underscore the potential of gene expression-based algorithms
as important tools for evaluating the tumor immune microenvironment in clinical practice.
Future research could focus on refining our algorithm and validating it on a larger scale to
determine its clinical utility and performance in immunotherapy-treated patients.

5. Conclusions

Immune tumor subtyping into the desert, excluded, and inflamed groups can provide
valuable clues about the prevalent immune TME. We created and validated a simple
classifier for reliable immune tumor subtyping with the input of qPCR-derived relative
expression levels of seven genes, representing the balance between immune response and
reactive stroma in the TME. This tool could serve as an auxiliary means to conveniently
obtain clinically relevant information.
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J.G. (Jolita Gibavičienė), V.M., N.R., E.P. and E.Ž.; software, I.K., K.S. and E.Ž.; validation, O.K., L.S.,
J.M., V.M. and N.D.; formal analysis, A.M., I.K., O.K., L.S., J.M., J.G. (Justina Gaiževska), N.R. and
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