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Abstract: Despite collective efforts to understand the complex regulation of reproductive traits, no
causative genes and/or mutations have been reported yet. By integrating genomics and transcrip-
tomics data, potential regulatory mechanisms may be unveiled, providing opportunities to dissect
the genetic factors governing fertility. Herein, we identified regulatory variants from RNA-Seq data
associated with gene expression regulation in the uterine luminal epithelial cells of beef cows. We
identified 4676 cis and 7682 trans eQTLs (expression quantitative trait loci) affecting the expression of
1120 and 2503 genes, respectively (FDR < 0.05). These variants affected the expression of transcription
factor coding genes (71 cis and 193 trans eQTLs) and genes previously reported as differentially
expressed between pregnant and nonpregnant cows. Functional over-representation analysis high-
lighted pathways related to metabolism, immune response, and hormone signaling (estrogen and
GnRH) affected by eQTL-regulated genes (p-value ≤ 0.01). Furthermore, eQTLs were enriched
in QTL regions for 13 reproduction-related traits from the CattleQTLdb (FDR ≤ 0.05). Our study
provides novel insights into the genetic basis of reproductive processes in cattle. The underlying
causal mechanisms modulating the expression of uterine genes warrant further investigation.

Keywords: cow fertility; eQTL; gene expression; regulatory variants; reproduction

1. Introduction

Female fertility and reproductive success are the main drivers of economic efficiency
in cattle operations. While management practices and the adoption of new reproductive
technologies have addressed the declining trend in fertility, its genetic progress has been
limited [1]. There is significant genetic variation associated with fertility traits; however,
their improvement has been challenging due to their complex and multifactorial nature [2,3].
To address this challenge, efforts from breeding programs worldwide have focused on
identifying novel fertility phenotypes [4,5]. Similarly, the emergence of next-generation
sequencing technologies and genomic selection have opened new avenues to increase
reproductive efficiency [2].

Genome-wide association studies have been extensively used to dissect the complex
genetic basis of cow fertility [6–8]. Although promising candidate genes have been re-
ported, most variants identified have a small effect size [6] and are located in noncoding
regions [9,10]. Recently, new approaches have focused on functional information from
reproductive-related tissues [11]. Ross et al. [12] reported extensive gene expression vari-
ation in candidate genes across 11 tissues in Brahman cattle. Similarly, changes in the
expression profile of uterine tissue were associated with differences in fertility status and
reproductive success in cows [8,13,14]. Such changes are related to the morphological and
functional programming of the endometrium to support the attachment of the concep-
tus [14,15]. Signaling pathways involved with tissue remodeling, the immune system, and
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inflammatory response were shared across studies investigating fertility [14–16]. Yet, there
is limited overlapping of candidate genes among them [17].

Considering the complex regulatory mechanisms underlying fertility, further advances
will rely on holistic approaches to identify key genomic factors and their causal relation-
ships [17,18]. Among these approaches, expression quantitative trait loci (eQTL) effectively
integrate genetic variants controlling gene expression genome-wide. Expression QTL stud-
ies have been reported for several complex traits; however, only a few of them have focused
on fertility in cattle. Kadarmideen and Mazzoni [19] reported eQTLs affecting genes in
the bovine follicular cells and the endometrium of dairy cows. The eQTL-modulated
genes were associated with the quality of in vitro-produced embryos and endometrial
receptivity [19]. Berg et al. [6] reported eQTLs underlying the expression of genes from
white blood cells associated with the calving interval in dairy cows. Forutan et al. [10]
identified putatively functional genes affecting cattle fertility by integrating genome-wide
association results and eQTLs for whole blood from female Brahman cattle. Despite these
findings, we still have a limited understanding of the single-nucleotide polymorphisms
(SNPs) regulating the genes involved with fertility-related traits.

Here, we used a genomics–transcriptomics approach to identify the regulatory vari-
ants associated with pregnancy status and gene expression regulation in beef cows. We
hypothesized that genetic variants modulate the gene expression of uterine luminal epithe-
lial cells, affecting the biological processes and pathways underlying reproduction. To test
our hypothesis, we first identified SNPs affecting the expression of genes from the uterine
luminal epithelial cells. Next, we investigated if the SNPs were associated with pregnancy
outcomes, affecting differentially expressed genes, and/or harbored in known QTL regions
for reproduction traits. Lastly, we identified enriched pathways and biological processes
that underlie the eQTL-modulated genes.

2. Materials and Methods

We used RNA-Seq data from the GEO database (accession number GSE171577, Bio-
Project PRJNA720121). The experiment was performed, and results were published by
Martins et al. [14]. A summary of the approach used in the current study is shown in
Figure 1.
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Figure 1. Experimental design and data integration outline to dissect the eQTLs from the uterine
luminal epithelial cells of beef cows. * Experimental project and ** differentially expressed genes
were performed, and previously published by Martins et al. [14]. P: pregnant; NP: nonpregnant;
QC: quality control; QTL: quantitative trait loci.

Martins et al. [14] investigated the uterine luminal epithelial profile of 43 multiparous
Angus–Brahman cows. Briefly, uterine luminal epithelial cells were collected from estrous-
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synchronized recipient cows three days before embryo transfer (ET) using a cytological
brush. The average body weight and age of the recipient cows were 556.8 ± 9 kg and
6.7 ± 0.3 years, respectively. Cows were kept grazing and supplemented with hay, con-
centrate, and minerals. Pregnancy was diagnosed on day 30 after ET (25 pregnant—P;
and 18 nonpregnant—NP) through transrectal ultrasonography. Further details on the
experimental design and procedures were described elsewhere [14].

2.1. Data Collection, Quality Control, and RNA-Seq Mapping

The data were downloaded from the GEO database using the SRA-Explorer web
tool v.1.0 [20] and processed using a custom-built bioinformatics pipeline, as previously
described [21]. First, FastQC v0.11.9 [22] and MultiQC v1.11 [23] software were used for
the quality control (QC) and aggregation of results, respectively. Next, we performed a
two-pass alignment using the STAR aligner v2.7.5 [24]. The Bos taurus genome ARS-UCD
1.2 was used as the reference based on the assembly and annotation files from the Ensembl
database (release 104). Additionally, we used the quantMode GeneCounts flag from STAR
for counting the mapped reads and outSAMtype BAM SortedByCoordinate to sort the .bam
file. Raw counts were transformed to counts per million (CPM) using the edgeR package
v3.40.2 [25]. Then, non- or low-expressed genes (CPM < 0.5 in 50% of the samples) were
filtered out. The remaining genes were transformed to log2CPM and normalized following
the TMM method (trimmed mean of M values) on edgeR.

2.2. RNA-Seq Variant Calling and Quality Control

RNA-Seq variants were identified following the Genome Analysis Toolkit (GATK,
v. 4.1.9.0) software and best practices for RNA-seq data [26–28]. We used the Ensembl
B. taurus dbSNP (release 96) as known variants for recalibration. Genetic variants for
each sample were identified and recorded in Individual Genomic VCF (GVCF) files using
the HaplotypeCaller algorithm. The files were then merged, and all samples were jointly
genotyped. Only biallelic SNPs were kept for further analysis. We used vcftools v0.1.17 [29]
for stringent quality control, following the GATK hard-filtering recommendations: the
variant quality score (QUAL) ≥ 30 and total depth of coverage (DP) > 10. Additionally,
variants with a call rate < 95%, a minor allele frequency (MAF) < 5%, and located in sexual
chromosomes were filtered out. A single VCF file with 43 samples and all genotypes was
generated and used for further analysis.

We used a principal component analysis (PCA) based on the variance-standardized
relationship matrix from PLINK (v1.90b6.2) to investigate population stratification. Consid-
ering that no population stratification was observed, we performed SNP pruning (tag SNP)
based on linkage disequilibrium (LD) thresholds as a second quality-assurance step. This
procedure removed the SNPs with similar effects, so those remaining SNPs represented the
LD block. The parameters used for the LD pruning were as follows: r2 = 0.8, a window size
of 100 SNPs, and a window offset every 10 SNPs at each step.

2.3. Variant Functional Prediction

To compute the functional effects of the genomic variants, we used the Ensembl
Variant Effect Predictor (VEP) software v.101 [30]. Upstream and downstream annotations
for the variants were assigned within 5 kb. Furthermore, the SIFT (sorting intolerant from
tolerant) score within the VEP was used to predict the effects of the amino acid changes in
the protein function.

2.4. The eQTL Mapping and Annotation

To identify the SNPs associated with the expression levels of the genes in the uterine
luminal epithelial cells, we performed an integrative analysis using MatrixEQTL v2.1.1 [31].
To this end, we performed a linear association between each SNP (tag SNP) and each
gene, assuming an additive effect [31]. We included the block as a covariate in the model,
representing the round (n = 2) of the ET trial [14]. We performed two separate tests for
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each gene–SNP to identify cis (SNPs within 1 Mb upstream or downstream of the gene)
and trans eQTLs (SNPs within more than 1 Mb of the associated gene) [31]. The p-values
were adjusted by computing the false discovery rate (FDR) using the Benjamini–Hochberg
procedure [32]. The eQTLs with an FDR < 0.05 were considered significant. The SNPs were
mapped to the B. taurus genome ARS-UCD1.2, and gene annotations were retrieved from
the Ensembl database using BiomaRt v2.54.1 [33].

Expression QTLs can also affect gene expression by regulating transcription factors
(TFs). Thus, we investigated if the genes encoding TFs were affected by the eQTLs. To this
end, we downloaded 1396 TFs from the Animal Transcription Factor Database v3.0 [34] and
overlapped them with the list of cis and trans eQTLs. Additionally, we investigated if the
genes and TF-coding genes were differentially expressed in the uterine luminal epithelial
cells. Therefore, we retrieved the list of differentially expressed genes (DEGs, n = 317)
associated with pregnancy outcomes reported by Martins et al. [14]. Lastly, we searched for
regions in the genome over-represented by DEGs. We used the ShinyGO v.077 web tool
to scan the B. taurus genome (window size = 6 Mb). We performed a hypergeometric test
within each window to determine if the number of genes was significantly over-represented
(FDR ≤ 0.05).

2.5. SNP Trait Association and Cattle QTLdb Over-Representation Analyses

The SNPs identified as eQTLs were retrieved and used for a trait association analysis.
Each SNP was associated with the pregnancy status using a logistic regression model on
PLINK, including the block (two rounds of ET) as a covariate. We used logistic regression
due to the binary nature of the pregnancy outcome (NP or P). This strategy allows us to
predict the log odds ratio associated with each additional copy of the minor allele to be
associated with the pregnancy status.

To investigate if the eQTLs were overlapping with known quantitative trait loci (QTLs),
we used the GALLO R-package v.1.3 [35]. Known QTLs were downloaded from the Animal
Genome cattle QTLdb database (release 49) [36]. Next, the eQTLs were annotated using the
find_genes_qtls_around_markers function from GALLO. Separate analyses were performed
for cis and trans eQTLs. The QTL windows were defined as 1 Mb intervals (500 Kb upstream
and 500 Kb downstream) [35]. Lastly, we performed a chromosome-based QTL enrichment
analysis and retrieved the significant results associated with QTL_type = = “Reproduction”.
The p-values were adjusted to multiple testing corrections based on the FDR, and significant
results were taken when the FDR ≤ 0.05.

2.6. Functional Over-Representation Analysis

To identify the biological processes and pathways underlying the genes affected by the
eQTLs, we performed a functional over-representation analysis (ORA) using the InnateDB
v.5.4 [37] and WebGestalt v.0.46 [38] tools. We examined the genes regulated by cis and trans
eQTLs separately. Common genes targeted by both cis and trans eQTLs were analyzed as
well. The over-representation analysis was performed using a hypergeometric test, and
significant results were retrieved considering a p-value ≤ 0.01. Furthermore, we analyzed
the DEG list and identified pathways harboring eQTL-affected genes.

3. Results

Here, we performed an eQTL mapping analysis to identify regulatory variants as-
sociated with gene expression regulation in beef cows. We used public RNA-Seq data to
characterize the variants (SNPs) from the uterine luminal epithelial cells of cows retrospec-
tively classified as pregnant or nonpregnant. Using this approach, we:

1. Identified the SNPs affecting the expression of genes from the uterine luminal epithe-
lial cells;

2. Investigated if the SNPs were associated with pregnancy outcomes, affected differentially
expressed genes, and/or were harbored in known QTL regions for reproduction traits;
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3. Identified over-represented pathways and biological processes that underlie eQTL-
modulated genes.

3.1. Variant Calling Analysis Retrieved 203,404 Unique SNPs

From the 43 samples analyzed here, we retrieved, on average, 22.14 million reads
(ranging from 17.3 to 29.8 M per sample) uniquely mapped to the B. taurus reference genome
(Supplementary Table S1). We filtered out low- or nonexpressed genes and normalized the
read counts through CPM and log2 transformation. A total of 15,029 genes were expressed
in uterine epithelial cells based on our QC criteria (see Materials and Methods, Section 2.1)
and used for further analysis. The RNA-Seq variant calling based on the GATK pipeline
resulted in 4,859,784 SNPs. After filtering (see Materials and Methods, Section 2.2), 203,404
unique variants were kept for further analysis.

We used the Ensembl VEP analysis to predict the functional consequences of the
detected SNPs. We identified 16,926 (8.3%) novel variants out of the 203,404 SNPs tested,
overlapping 15,055 genes on the reference genome. This analysis revealed that most
variants were in Chr 19, 18, and 3 (12,297, 11,733, and 11,547 SNPs, respectively). The most
severe consequences predicted by the VEP showed that the variants were mainly harbored
downstream (44,161 SNPs) or on 3′-untranslated regions (UTR—39,958 SNPs). Furthermore,
we identified 37,794 missense variants. We used the SIFT score to predict the effects of the
amino acid changes on the protein function. Although most mutations were classified as
tolerated (70.6%), we found 12.6% with a deleterious effect. Supplementary Table S2 shows
the results from the VEP and SIF analyses. The distribution and consequences of these
variants are reported in Supplementary Tables S3 and S4.

3.2. Cis and Trans eQTLs Affected the Expression of 3157 Genes

To understand the effects of the variants on gene abundance, we integrated the expres-
sion data from uterine luminal epithelial cells to the SNPs detected from the RNA-Seq of
43 cows. To reduce the false discovery rate, we performed SNP pruning based on the LD.
The eQTLs for 15,029 genes and 10,879 LD-pruned SNPs (tag SNPs) were identified by a lin-
ear model using the MatrixEQTL R-package. Figure 2 shows the distribution of the eQTLs
across the genome. We identified 4676 cis eQTLs (SNPs within 1 Mb of the associated gene)
corresponding to 3989 unique SNPs affecting the expression of 1120 genes (Supplementary
Table S3) (FDR ≤ 0.05). Chromosomes 23, 18, and 19 harbored the most cis-acting SNPs
(347, 339, and 295, respectively) (Figure 2B). The top-five targeted genes included ENSB-
TAG00000053827, ENSBTAG00000016148, AIFM3, TMEM69, and ENSBTAG00000026758,
affected by 93, 65, 61, 51, and 48 SNPs, respectively. Among the cis-regulated genes, we
identified 71 coding TF genes modulated by at least one SNP (ranging from 1 to 35 SNPs).
Additionally, the TFs from the zf-C2H2 family were redundantly regulated, including
ZNF420, ZNF623, and ZNF775, modulated by 35, 22, and 19 cis eQTLs.

Regarding the SNPs within more than 1 Mb of the associated gene or in other chromo-
somes, we identified 14,680 trans eQTLs corresponding to 7682 unique SNPs affecting the
expression of 2503 genes (Supplementary Table S4) (FDR ≤ 0.05). Chromosomes 19, 18, and
25 harbored the most trans-acting SNPs (507, 496, and 457, respectively) (Figure 2C). The
top-five targeted genes included ENSBTAG00000007816, PPP1R3D, ENSBTAG00000052527,
ENSBTAG00000027075, and ENSBTAG00000048353, affected by 195, 192, 178, 171, and
151 eQTLs, respectively. The trans eQTLs affected the expression of 193 TFs from 42 fami-
lies. Like the cis eQTLs, most of the TFs were from the zf-C2H2 family (73 genes), followed
by bHLH (10) and ZBTB (10). The top-five TFs included ZNF420, ENSBTAG00000015866,
HES4, ZBTB32, and ZKSCAN2, affected by 128, 116, 67, 42, and 37 eQTLs, respectively.
Among the novel variants, 315 were cis and 2425 (708 unique SNPs) were trans eQTLs.
Lastly, we identified 4297 eQTLs (corresponding to 792 SNPs) acting as cis and trans eQTLs
and affecting 466 genes (Supplementary Table S5). Table 1 shows the top-ten genes and the
number of eQTLs. While most of them are protein-coding genes, the ENSBTAG00000052527
encodes a lncRNA.
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Figure 2. Chromosome distribution of the eQTLs identified from bovine uterine luminal epithelial
cells. (A) Scatter plot of the gene location vs. eQTL position in Mb. Cis and trans eQTLs are scattered
diagonally and vertically, respectively (FDR < 0.05). (B,C) The number of significant cis and trans
eQTLs per chromosome between brackets, respectively. The top three chromosomes are highlighted
in bold.

Table 1. Top-ten genes affected by cis and trans eQTLs identified from bovine uterine luminal
epithelial cells.

Ensembl ID Gene Name
Number of eQTLs

Cis Trans Total

ENSBTAG00000052527 ENSBTAG00000052527 37 178 215
ENSBTAG00000053827 ENSBTAG00000053827 93 113 206
ENSBTAG00000007816 ENSBTAG00000007816 3 195 198
ENSBTAG00000027397 PPP1R3D 1 192 193
ENSBTAG00000048353 ENSBTAG00000048353 30 151 181
ENSBTAG00000048470 IFITM1 33 143 176
ENSBTAG00000027075 ENSBTAG00000027075 2 171 173
ENSBTAG00000038050 ZNF420 35 128 163
ENSBTAG00000025782 TNFSF8 1 137 138
ENSBTAG00000033449 ENSBTAG00000033449 1 128 129
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3.3. eQTLs Were Over-Represented in Reproduction-Related QTL Regions

We performed a SNP trait association to investigate the effects of the SNPs on preg-
nancy outcomes. Based on the association analysis in PLINK, we did not find any significant
SNP (FDR > 0.05). We then investigated if the eQTLs identified here overlapped with known
QTLs for reproductive-related traits from the Animal Genome cattle QTLdb database. We
identified 18 and 9 significantly over-represented QTLs by cis and trans eQTLs, respectively
(Figure 3) (FDR ≤ 0.05). The overlapping cis and trans eQTLs were spread across 11 and
6 chromosomes, respectively. The top three over-represented traits overlapped by cis eQTLs
included the nonreturn rate, luteal activity, and gestation length. From the overlapping
trans eQTLs, in addition to the nonreturn rate, the top traits include the interval to the first
estrus after calving and the interval from the first to last insemination.
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3.4. Differentially Expressed Genes between Pregnant and Nonpregnant Cows Were Affected
by eQTLs

To focus on the SNPs with potential functional roles in reproduction, we overlapped
the 317 DEGs affecting pregnancy outcomes from Martins et al. [14] with the genes reported
here. We identified 32 and 56 DEGs affected by cis and trans eQTLs (Supplementary Table
S6). Among them, the ZNF470 and SNAPC4 TFs were affected by cis eQTLs, while PPARG,
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AR, and KLF7 were affected by trans eQTLs. Additionally, 13 DEGs were affected by both
cis and trans eQTLs. Interestingly, we found 13 regions over-represented by DEGs on
chromosomes 18, 19, 22, and 25 (FDR ≤ 0.05) (Table 2).

Table 2. Enriched chromosomes by differentially expressed genes identified from bovine uterine
luminal epithelial cells.

Enriched
Chromosomes a

Number
of Genes Genes b

18 21

ARHGEF1, CLASRP, ENSBTAG00000023367, BICRA, LMTK3, PRR12, NAPSA,
ENSBATG00000049577, CD37, ENSBATG00000045880, ENSBTAG00000051367,
ENSBTAG00000053237, VSTM1, ZNF581, KMT5C, PTPRH, PPP6R1, TMEM86B, EPS8L1,
SMIM17, ZNF470

19 24
SCARF1, P2RX5,PITPNM3, VMO1, CAMTA2, PLD2, TMEM95, DLG4, KCTD11, NLGN2,
SOX15, TMEM88, KDM6B, PIK3R5, GAS7, RARA, ENSBTAG00000024839, STAT5A, CCR10,
CNTNAP1, TMEM106A, HIGD1B, FMNL1, ENSBTAG00000055302

22 5 SYN2, PPARG, CHST13, MGLL, SLC41A3
25 8 LAT, CD19, GDPD3, DOC2A, ENSBTAG00000046752, TMEM265, FBXL19, SEPTIN14

a FDR < 0.05; b Genes affected by cis or trans eQTLs are in orange or red, respectively. Black bolded genes are
targeted by both cis and trans eQTLs. Differentially expressed genes were retrieved from Martins et al. [14].

3.5. eQTL-Modulated Genes Are Over-Represented in Pathways Related to the Metabolism and
Immune Response

We performed a functional over-representation analysis to understand the biological
processes and pathways affected by the genes targeted by eQTLs. The analysis of cis-
targeted genes retrieved eight significant pathways, including the tryptophan metabolism,
phenylalanine and tyrosine catabolism, and metabolism of lipids and lipoproteins (p ≤ 0.01).
Immune-related biological processes affected by those genes included antigen processing
and the presentation of peptide antigen via MHC class I and immune response (Supplemen-
tary Table S7). Similarly, the FOXM1 transcription factor network, ubiquitin-mediated pro-
teolysis, and coregulation of androgen receptor activity were among the over-represented
pathways by trans eQTL-affected genes. We also identified 50 significant over-represented
biological processes (BPs) (Supplementary Table S8), including the MAPK cascade, embry-
onic placenta development, and the response to estrogen.

Genes affected by both cis and trans eQTLs were involved in pathways such as the
metabolism of amino acids and derivatives, fatty acid degradation, and the tryptophan
metabolism (p ≤ 0.01). Furthermore, antigen processing and presentation, the immune
response, and the positive regulation of interferon-alpha production were among the over-
represented BPs (Supplementary Table S9). Over-represented BPs and pathways affected by
eQTLs were underlying gene expression regulation. The gene ontology (GO) terms included
the regulation of transcription DNA-templated and the positive regulation of transcription.
Likewise, the AP-1 transcription factor network pathway was over-represented by genes
affected by trans eQTLs. Lastly, pathways over-represented by DEGs included the estrogen
and GnRH signaling pathways (Figure 4A) and biological processes related to immune
response (Figure 4B).
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Figure 4. Over-represented functional categories for differentially expressed genes (DEGs) from
bovine uterine luminal epithelial cells. DEGs were retrieved from Martins et al. [14]. Functional
analysis results were based on WebGestalt. (A) Sankey and dot plots showing the pathways connected
to the DEGs. Genes affected by eQTLs are highlighted in bold. The color scale indicates the −log10
(p-value), and the size of the dot indicates the number of observed genes for that pathway. (B) Directed
acyclic graph of the significant biological processes. The darker the blue background color in the
squares, the more significant is the term (p-value ≤ 0.01).

4. Discussion

We identified 3157 genes expressed in the uterine luminal epithelial cells affected by
at least one eQTL. While these variants were mainly found in the Chr 18, 19, 23, and 25,
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it is important to highlight that they were spread across all autosomes. The eQTLs can
affect the gene expression by different mechanisms, which include changing the sequence
of regulatory elements and the affinity of the TF- and miRNA-binding sites [39]. Here, we
found SNPs mainly harbored in downstream or 3′ UTR regions. Polymorphisms in the
3′ UTR may affect the post-transcriptional and translational processes due to their role
in mRNA stability, translation, and miRNA binding [40]. Our analysis identified 31.1%
of missense variants. Despite the impact of these variants resulting in a new amino acid,
it has been shown that they have a low genetic importance to complex traits, likely due
to purifying selection [41]. However, we must consider that, while these may not be the
causal SNPs, they could be in LD with the causative one [9].

Our integration analysis using MatrixEQTL identified 4676 cis and 14,680 trans eQTLs.
These findings support a previous report that trans eQTLs are more common in the
genome [42]. The identified eQTLs were associated with the expression of TF coding
genes and DEGs between pregnant and nonpregnant (P and NP) cows. Proteins encoded
by TFs act by recognizing and binding specific sites of their target genes to either increase
or repress gene expression [43]. The eQTLs located in the TF binding sites are associated
not only with the TF itself, but can indirectly affect histone modification, the DNA structure,
and mRNA expression [39]. Among the genes, 71 and 193 TFs were affected by cis and trans
eQTLs, respectively. Although most of the targeted genes were not coding TFs, changes in
one gene can affect the expression of others, as they share similar functional pathways [44].

Additionally, noncoding RNAs (ncRNAs), including lncRNAs and miRNAs, were
targeted by both cis and trans eQTLs in our study. Noncoding RNAs have been associated
with endometrial function and uterine receptivity by fine-tuning the expression of target
genes in response to hormonal changes [45]. Fonseca et al. [46] identified 17 and 2 lncRNAs
among co-expressed gene modules from endometrium associated with high- and subfertile
cows, respectively.

A coordinated expression of uterine genes is critical to establish endometrial receptiv-
ity and embryo survival [8]. Genes involved with hormone signaling, nutrient transport,
and metabolism were identified in our analyses. Pathways over-represented by cis-targeted
genes included the tryptophan metabolism, phenylalanine, and tyrosine catabolism. En-
dometrial epithelial secretions of nutrients during early pregnancy are critical to support
embryo development [3,47]. França et al. [48] showed that the amino acid profile of uterine
flushing differs between receptive and nonreceptive cows. Likewise, Forde et al. [49]
reported increasing tryptophan concentrations on day 16 of pregnancy.

We identified two (ZNF470 and SNAPC4) and three (AR, KLF7, and PPARG) TFs
affected by cis and trans eQTLs, respectively, which were previously reported as DEGs [14]
in the same cows used in the current study. As expected, these TFs were over-represented
in pathways related to gene transcription. Among the TFs, AR was over-represented in the
androgen receptor and FOXA1 transcription factor network pathways. This TF regulates
gene expression by mediating the actions of androgens, which stimulate the proliferation of
the uterine epithelium cells [50,51]. Zhang et al. [52] reported that AR protein abundance
affects the expression of genes involved with endometrial receptivity and decidualization
in rats. Previous studies have reported an interaction between AR and FOXA1 in cell
proliferation related to human cancer [53,54]. In the current study, FOXA1 was also affected
by one trans eQTL (novel SNP). FOXA1 encodes a TF that changes the chromatin structure
to bind additional TFs, including AR [53]. Also involved with uterine receptivity, we found
the TFs FOXO1 and GATA2 over-represented in the androgen receptor activity pathway. In
humans, FOXO1 is critical for embryo implantation [55], while GATA2 coordinates gene
expression mediated by progesterone [56].

Processes involved with uterine receptivity and pregnancy establishment include
coordinated changes in estrogen and progesterone (P4) production [57]. While circulating
P4 concentrations during the first 20 days postestrus were not different in beef heifers
classified as high-fertile, subfertile, or infertile [13], other studies have shown that P4
affected the endometrial transcriptome and uterine function [57,58]. Martins et al. [14]
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suggested increased oxidative phosphorylation, biosynthetic activity, and the proliferation
of uterine epithelial cells in response to P4 modulation. Additionally, they reported that the
P4 concentration was associated with the differential expression of the endometrial luminal
epithelium. Silva et al. [15] reported that the uterine transcriptome of cows with contrasting
concentrations of P4-affected genes underlying immune signaling, extracellular matrix
remodeling, and inflammatory response at days 4, 7, and 14 postestrus, respectively. Similar
pathways were reported by Mazzoni et al. [59] at days 6–8 of the estrus as differentially
regulated between pregnant and nonpregnant Holstein cows. These authors suggested that
differences in the endometrial transcriptome, rather than hormonal variations, would be
the main factor underlying receptivity. Collectively, these findings highlight the importance
of genes and pathways for pregnancy establishment.

From the DEG list reported by Martins et al. [14], we identified 75 unique genes affected
by eQTLs (32 cis and 56 trans). Interestingly, Chr 18 and 19 were also over-represented by
DEGs. These chromosomes harbored most of the eQTLs identified here. The assumption
is that these gene clusters act on the same pathways, which supports the hypothesis of a
cascade effect in gene expression due to gene variants. The functional over-representation
analysis of DEGs highlighted the estrogen and gonadotropin-releasing hormone (GnRH)
signaling pathways, which included eQTL-affected genes (RARA and ITPR3). These are key
regulators of reproductive processes, acting in a coordinated feedback system to regulate
fertility [60]. Genes acting on the estrogen and GnRH signaling pathways were upregulated
in the endometrium of cows with high progesterone [61]. The RARA (retinoic acid receptor
alpha) TF was over-represented in these pathways. Retinoic acid (RA) signaling is critical
to uterine receptivity and decidualization [62]. Musavi et al. [63] reported the RARA TF as
an upstream regulator of DEGs at the follicular stage in the bovine endometrium.

The maternal innate and adaptive immune systems are critical to creating a conducive
environment for the developing embryo [64]. Here, immune-related biological processes
affected by eQTLs included antigen processing and the presentation of peptide antigen via
the MHC class I and immune response. The genes underlying these pathways were mainly
from the MHC family (BOLA, BOLA-DQA1, BOLA-DQA2, and BOLA-DQB). Likewise, lym-
phocyte activation, leucocyte activation, and immune response were BPs over-represented
by the DEGs. Martins et al. [14] reported a downregulation of immune-associated genes
from the endometrial luminal epithelial cells of pregnant cows. The role of the immune
system at early diestrus for the establishment of pregnancy remains unclear [14]. However,
its activation and a balance between pro- and anti-inflammatory molecules are required
during initial placentation [65].

On the other hand, a higher expression of the complement system and communication
between innate and adaptive immune cell pathways were found by Musavi et al. [63]
in the endometrium of cows during the implantation stage (day 18). During this period,
increasing levels of INF-τ significantly changed the maternal immune response [14,66]. The
INF-τ hormone has been suggested as a key regulator of maternal immune response by
modulating the genes involved with uterine receptivity, implantation, and conceptus devel-
opment [67]. These findings show that differences in the immune response are important
for pregnancy establishment even before increases in the concentration of INF-τ [14,16,59].
It is important to note that samples in the current study were collected before ET [14],
thus there was no circulating INF-τ. According to [68], there is an association between the
increased postovulatory P4 concentration and the increased INF-τ production. Therefore,
SNPs increasing the expression of key genes would potentially improve uterine receptivity.

Several eQTLs overlapped with QTLs previously associated with reproduction traits.
QTLs harbored in Ch 25 were the most over-represented, including traits such as the interval
from the first estrus to the last insemination and the interval to the first estrus after calving.
Likewise, cis eQTLs in Chr 3 overlapped with the luteal activity QTL. Primiparous Holstein
cows carrying a favorable haplotype for fertility showed earlier luteal activity compared
to the ones with the unfavorable haplotype [69]. However, the authors highlighted that
factors other than ovarian dynamics were associated with differences in fertility [69].
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Altogether, these findings provide insights into the regulatory effects of eQTL-targeted
genes and their association with QTL regions that are important for reproduction-related
traits. While we reported several gene targets, our approach does not provide the molecular
mechanism by which changes in gene expression due to gene variants influence pregnancy
outcomes. Hence, future studies will require larger sample sizes to validate these findings.
Furthermore, the role of eQTL-affected genes on endometrial function and pregnancy
establishment warrants further investigation.

Despite these findings, our study has some limitations. The SNPs were exclusively
identified from transcribed regions on the RNA-Seq data, restricting the number of variants
detected throughout the genome. Although we successfully identified eQTLs, none were
directly associated with pregnancy outcomes. Similarly, the identified eQTLs were not
validated in a different dataset. The lack of association may be due to the number of SNPs
tested and the limited sample size (n = 43) used in the current study. Additionally, we
used pregnancy status as the trait for association. Pregnancy is a binary trait affected by
genetic, endocrine, and physiological factors, which brings more complexity to untangle
the impact of associated variants [9]. Moreover, our study was based on a single-time-point
analysis, which does not capture the dynamic nature of gene expression. Therefore, the
associations reported here should be validated in a different cohort with a large sample
size and a higher SNP coverage. Conducting expression analysis of multiple time points
could provide a more comprehensive understanding of the temporal changes in eQTL
regulation. Confirming results in easily sampled tissues like blood would also offer an
opportunity for routine analysis. These suggestions aim to guide further investigations
and refine our understanding of the molecular mechanisms underlying gene regulation
and their functional implications to pregnancy.

5. Conclusions

We conducted a comprehensive eQTL analysis to unveil the genetic regulation of the
uterine luminal epithelial cells of beef cows. These eQTLs were distributed across different
chromosomes and overlapped reproduction-related QTLs. Additionally, we identified
transcription factors and noncoding RNAs regulating gene expression that were affected
by eQTLs. Functional over-representation analysis highlighted the pathways related to
the metabolism, immune response, and hormone signaling, emphasizing their importance
in successful pregnancy establishment. While further research is needed to validate these
findings and understand the precise mechanisms involved, our study provides insights
into the genetic basis of reproductive processes in cattle.
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