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Abstract: Melatonin, an endogenous neurohormone produced by the pineal gland, has received
increased interest due to its potential anti-cancer properties. Apart from its well-known role in
the sleep–wake cycle, extensive scientific evidence has shown its role in various physiological and
pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising
potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of
apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological
mechanism is yet to be established, several pathways related to the regulation of cell cycle progres-
sion, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic
potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of
melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor
primarily affects children and adolescents and is treated mainly by surgical and radio-oncological in-
terventions, which has improved survival rates among affected individuals. Significant disadvantages
to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating
side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has
therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell pro-
liferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore,
the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced
oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the
many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results
from several in vitro and animal models. Nevertheless, if further explored, human trials remain
a challenge that could shed light and support its utility as an adjunctive therapeutic modality for
treating osteosarcoma.

Keywords: anti-cancer therapeutics; apoptosis; bone cancer; melatonin; osteosarcoma

1. Introduction

Melatonin, an endogenous product of the pineal gland, has emerged as an interest-
ing biomolecule implicated in several biological/physiological processes. As a naturally
occurring hormone, it is well studied and known for its role in regulating the circadian
rhythm and the sleep cycle in humans. Scientific evidence points to the role of melatonin
in lipid metabolism, thermoregulation, energy metabolism, and immunity and its vitality
in maintaining cardiovascular, reproductive, and neurological health [1,2]. Studies have
also explored its role in bone metabolism, showing that it could regulate mesenchymal
stem cell (MSC) differentiation and support osteoblastic growth and mineralization [3,4].
Curiosity regarding other effects of melatonin that remained unknown has led many
scientific/research initiatives to explore the multifaceted potential of melatonin.
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The latest research has shifted towards investigating the oncostatic characteristics
of melatonin showcased in different malignancies, including breast, ovarian, lung, and
prostate cancers [3,4]. Such budding potential, along with the variable nature of melatonin
production and physiological levels that decline in the pediatric population near puberty,
coincides with a rise in osteosarcoma (OS) incidence in this population [3,5]. This promoted
inquiries on the osteosarcoma-centered outcomes of melatonin use.

Although recent medical advancements with the utility of neo-adjunctive chemother-
apy have led to drastic improvements in the survival of patients with non-metastatic
osteosarcoma, possible safer modalities of therapy that aim to slow its progression and
improve therapeutic efficacy and minimize adverse side effects have remained as an unmet
need among the scientific community. Therefore, in this systematic review, we delve into
the possible utility of melatonin as a facilitating factor in therapeutic intervention and its
positive effects on the quality of life in patients suffering from osteosarcoma.

2. Melatonin: The Basics
2.1. Synthesis and Secretion of Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a product produced rhythmically in
response to changes in light perceived by the cells of the inner retina. This neuroendocrine
agent is also synthesized and secreted peripherally, including the skin, bone marrow,
gut, ovaries, and prostate [2,6,7]. Its regulation relies heavily on the master clockwork
and neuronal stimulus of the suprachiasmatic nucleus [2,8,9]. This allows the temporal
regulation of various biological processes and personalizes it to the organism’s inner
processes and interaction with the external environment [7]. Melatonin production is
mainly facilitated by the absence of light, in which its levels mainly peak in blood during
the night at concentrations that vary between 80 and 120 pg/mL, while in the presence of
light (during the day), its levels go between 10 and 20 pg/mL [2,3,7–9]. Studies have also
reported high levels of melatonin in bile and CSF [2,3,7–9].

2.2. Childhood and Melatonin

Interestingly, serum concentration of melatonin appears to vary with changes in the
human body [2,7,10]. These concentrations continue to evolve with human development’s
growth and inner changes. To illustrate, the immature central nervous system begins to
produce melatonin in the neonatal period but fails to present the circadian rhythm. As the
child matures, melatonin concentrations steadily increase, reaching a steady rhythm around
the first year of life [10]. Melatonin synthesis continues to grow as the child ages and peaks
around preschool [5,11]. These levels continue to decline steadily until puberty, where a
minimal transient increase in melatonin levels is observed before it resumes decline [5,11].
This, as Gupta et al. propose, could be correlated to the growth of the skeletal frame of the
individual [10].

2.3. Mechanism of Action and Physiology

Melatonin acts both centrally and peripherally. It can operate in receptor-dependent
and receptor-independent fashions. It mainly acts via G-protein coupled melatonin recep-
tors, MT1 and MT2, found throughout the body (Figure 1). These GPCR receptors can
work independently utilizing their alpha subunit, leading to the activation of inhibitory G
proteins, leading to activation of the PKC, ERK, and PI3K/Akt pathways with the addition
of activating Gq proteins by dimerizing to MT2 receptors [12,13] (Figure 1). These receptors
are found in different concentrations within the body, mainly throughout the central ner-
vous system, cardiovascular system, immune system, skin, liver, kidneys, adrenal cortex,
placenta, ovaries, and testes [13]. Melatonin can also compete with glucose and utilize
GLUT1 receptors for cellular entry [14].

Moreover, its excellent lipophilic characteristics allow melatonin to act independently
of receptors by freely moving between peripheral tissues, transversing the plasma mem-
brane, and working directly on cellular proteins such as cytosolic receptors, mitochondrial
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proteins, and nuclear receptors and thus modulate signal transduction [7,15] (Figure 1).
Melatonin’s function extends to facilitating exome formation and reducing endoplasmic
reticular stress. The nuclear receptor RORa/RZR is utilized by melatonin to regulate
gene transcription through the direct interaction with ROR response elements and affects
5-lipooxygenase as one of its target response genes [16,17] (Figure 1).

Overall, these functions indicate the critical role of melatonin in regulating signal-
ing pathways mainly correlated to cell signaling, cell metabolism, and DNA damage
response [12,14,18].
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Figure 1. Mechanism of action of melatonin. The image was adapted and modified from [12,19,20].
Melatonin enters the cell through various receptors on cellular surfaces (such as MT1/2 and GLUT1
or passively diffuses into the cells and organelles. Melatonin utilizes receptors such as MT1/MT2,
cytoplasmic receptor quinone reductase II, and nuclear receptor RORa/RZR, leading to various
biological effects. It also contributes to the function and regulation of processes of other organelles,
such as mitochondria, exosomes, and ER. AKT = protein kinase B, cGMP = guanosine 3’,5’-cyclic
monophosphate, CREB = cAMP-response element binding protein, IP3 = inositol trisphosphate,
MT1 = melatonin receptor 1, MT2 = melatonin receptor 2, OXPHOS = oxidative phosphorylation.
PDK = pyruvate dehydrogenase kinase, PI3K = phosphoinositide 3 kinase, PKC = protein kinase
C, PKG = protein kinase G, SIRT3 = sirtuin 3, TCA = tricarboxylic acid cycle, and SOD2 = super-
oxide dismutase 2. The dotted arrows indicate possible transmembrane translocation of melatonin
molecules while the regular arrows indicate pathway activation and progression via pathway related
molecules. The ‘closed’ lines indicate pathway inhibition. Created with BioRender.com.

Many studies have presented various contributions of melatonin in different aspects
of biological functions. A simplified summary in Figure 2 and Table 1 below showcases
melatonin’s multifaceted functions in biology.
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Figure 2. Biological functions of melatonin in various physiological sub-categories summarized in
the illustration provided. ATP = adenosine triphosphate and ROS = reactive oxygen species. Created
with BioRender.com.

Table 1. Biological effects of melatonin.

Pathology Effects of Melatonin References

Lipid Metabolism

↓ Dyslipidemia by ↓ levels of triglycerides and
↓ total cholesterol.

Exogenous melatonin has secondary effects in
↓ Waist circumference

↓ BMI

[21,22]

Reproductive Health

↓ GnRH release
↓ LH levels.

↓ Melatonin was associated with hypothalamic
amenorrhea and precocious puberty.

[1]

Cardiovascular ↓ Blood pressure [7,23]

Energy Metabolism
↑ Glucose tolerance
↑ Insulin sensitivity

↓ Body weight
[24]

Thermoregulation ↓ Body temperature [1]

Neurodegenerative Diseases
and Dementia

↑ Cognitive thinking
↑ Neurogenesis

↑ Anti-aging effects
[1,25,26]
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Table 1. Cont.

Pathology Effects of Melatonin References

Stroke ↓ Infarction volume [7]

Psychiatric Conditions ↓ Melatonin in depression, anxiety,
schizophrenia, and autism [26]

Immunity
↑ Anti-inflammatory cytokines

↓ Proinflammatory cytokine production
(COX and iNOS)

[27,28]

BMI = body mass index, COX = cyclooxygenase, GnRH = gonadotropin hormone-releasing hormone,
LH = luteinizing hormone, and iNOS = inducible nitric oxide synthase.

Table 1 below presents the promising findings on the effect of melatonin in
various conditions.

2.4. Melatonin in Bone Metabolism and Remodeling

Melatonin contributes to bone repair and growth [4]. Melatonin plays a remarkable
role in the modulation of MSC differentiation and bone formation [29]. Reports also
shed light on its role in decreasing RANKL and macrophage colony-stimulating factor
(M-CSF) mediated osteoclastogenesis and stimulation of osteoblastic activity, either through
regulating gene expression or modulating osteoprotegerin activity, which has been linked
to the MAPK and ERK signaling pathways [30,31]. Melatonin also suppresses osteoclastic
activity through the inhibition of the transcription factor: the nuclear factor of activated
T cell cytoplasmic 1 via the suppression of NF-κB activity [32]. A free-radical scavenger
like melatonin also helps in protecting bone cells from oxidative stress and decreasing ROS
secondary to osteoclastic activity [32].

Xiaofeng et al. have outstandingly presented the various evident effects of melatonin
on osteogenic activity. The study supported melatonin’s role, suggesting that osteoblastic
activity heavily relied on constant exposure to melatonin, where gene expression was
correlated to circadian rhythm [4]. Furthermore, mesenchymal transformation mainly
relies on interacting with these stem cells and the external stimulus. Melatonin increases
concentrations of neuropeptide Y, which plays a role in MSC proliferation, migration, and
osteogenic differentiation. It also modulates the ERK and Wnt pathways, which prevents
osteoporosis secondary to estrogen deficiency, aging, and bone regeneration in fractures [4].

A summative illustration of the molecular modifications of melatonin on bone home-
ostasis has been presented in an exceptional systematic review by MacDonald and col-
leagues (2021), where the multifaceted effects of melatonin on bone pathologies such as
osteoporosis and bone loss secondary to malignancy evident in preclinical and clinical
settings is summarized [33].

Furthermore, the anti-inflammatory qualities of melatonin aid in other bone patholo-
gies, including osteoarthritis, where the modulation of the SIRT1 pathway by reducing its
activity leads to the reduction in NOS, PGE2, and cyclooxygenase 2 synthesis. All these
advantageous effects remain that way based on the therapeutic doses administered. Increas-
ing doses of melatonin up to 50 mg/kg had unexpectedly suppressed bone remodeling
in mice [4,31,34,35]. Finally, the regulation of pro-inflammatory cytokines by melatonin in
rheumatoid arthritis and osteoarthritis was secondary to alterations in clock gene expres-
sions such as DEC2, CRY, and BMAL supporting the role of melatonin in synchronizing
biological events such as bone health with circadian rhythm [33].

The bone remodeling cycle is a continuous balancing interaction between osteoblasts’
bone deposition and osteoclasts’ bone resorption that occurs in response to various inter-
actions of biological processes with the external environment [36]. A balanced circadian
rhythm and adequate sleep is essential for bone health [36]. Sleep is an essential factor in the
bone remodeling cycle, where studies have presented a decrease in bone remodeling with
an unchanged pace of bone resorption in states of inadequate sleep [34]. Preclinical studies
aiming to explore the actions of sleep restriction on bone health in rats presented a signifi-
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cant decrease in osteoblast activity and osteoid formation in sleep-deprived rats [34,37,38].
Other findings showcased an unchanged bone resorption rate, with a peculiar decrease
of osteoclast activity in sleep-deprived rats, contributing to the reduction in bone density
facilitating osteopenia [34]. Since low levels of melatonin may affect normal sleep and
wake cycles, this also may contribute to bone health and hence the correlation between
melatonin levels, inadequate sleep, and bone health must be thoroughly investigated [36].

3. Osteosarcoma: Where Are We Now?
3.1. Osteosarcoma: The Facts

Osteosarcoma, the second most common form of primary bone neoplasm, is primarily
known for its vicious growth in a rapidly growing bone, which, timing-wise, would often
be correlated to puberty [39]. It arises most commonly in the metaphyseal portion of long
bones such as the tibia and femur and has a bimodal distribution of 10–14 years of age and
60 years old [39]. This aggressive tumor seeds itself and creates metastatic foci in other long
bones and lung tissue and has a 27% 5-year survival rate [40]. Current treatment modalities
include surgical interventions with polychemotherapy and adjunctive radiotherapy as
secondary interventions. Recent research aims to explore the efficacy of immunotherapy in
osteosarcoma.

The pathogenesis of this malignancy presents a common pathophysiology, which in-
cludes abnormal signal transduction leading to uncontrolled cellular proliferation and pro-
tein translation, loss of apoptosis, angiogenesis, tissue invasion, and metastasis [9,39,41,42].
Environmental exposures, chromosomal abnormalities, changes in gene expression and reg-
ulation, and signal transduction anomalies lead to aberrant metabolism and growth factor
production and, finally, cell cycle irregularities in the leading cellular players of tumorige-
nesis that include MSCs, preosteoblasts, and osteoblasts termed as cells-of-origin [41,43].
Common environmental exposures related to osteosarcoma include but are not limited to
exposure to ionizing radiation, beryllium oxide, asbestos, and prosthetic use [39].

3.2. Cancer Cell Populations

Studies have indicated the critical role of deregulation in the process of bone homeosta-
sis in MSCs, correlating significantly to the formation of bone-originating neoplasms [44].
MSCs can be found throughout the body, and in the context of osteosarcoma, MSCs of
various origins seem to be heavily recruited and promote tumorigenesis via the active
interaction with components of a tumor-promoting microenvironment [39,44–46]. MSC
can be recruited to the tumor site by TGFβ and cytokines such as SDF-1 and MIF. Recruited
MSCs are then heavily influenced by factors such as INFγ, TNFα, IL-1α, and TGFβ to grow
relentlessly, metastasize, and aid in the formation of malignancy-associated fibroblasts [41].

Furthermore, the MSC-derived osteosarcoma cancer stem cells (O-CSC) can influence
and promote tumorigenesis through intercellular communication and utility of growth
factor containing vesicles, which, as a result, enhance recruitment of circulating MSCs
that will aid in tumorigenesis [47]. The varying surrounding microenviroment acts as a
supportive factor in further OS-CSC heterogeneity, where the exploitation of bone signaling
allows the formation of niches (as illustrated by Abarrategi and colleagues in 2016) as the
perivascular niche, the endosteal niche, and the hypoxic niche. These O-CSC carry varying
degrees of mutation burdens, aiding in creating further sub-populations that can adjust
phenotypic expressions, survive in sacrospheres, and continue evolving in methods of
survival [48].

3.3. Genomic Nature

OS is known for its heterogeneity in genomic levels that vary from one patient to
another and diversify in a single tumor [44]. Studies utilizing whole exome sequencing
have presented a myriad of OS genomic defects, showcasing its complexity, diversity, and
instability [44,49,50]. Whole genomic sequencing in pediatric patients in 2020 revealed that
additional aberrant genomic modifications, such as chromosomal structural alterations
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secondary to chromothripsis, occurred in 20–89% of the patients, and 50–85% of patients
have presented with kataegis that further promotes disease heterogeneity in OS [50]. This
contributed to the formation of OS subclasses varying in morphology, metabolism, tumor
microenvironment, immunogenicity, and metastatic potential, thus posing a challenge in
evaluating the initial cause of osteosarcoma carcinogenesis [47]. Furthermore, deficien-
cies in DNA damage surveillance and repair also contributed to chromosomal structural
abnormalities, deregulation of the tumor suppressor function, and uncontrolled cell cy-
cle [41,43,51]. Recent studies focus on the stages of pathogenesis, where defects in the
osteogenesis of MSCs predisposed to mutations lead to the formation of highly malignant
OS colonies.

As mentioned, common genetic alterations present as familial syndromes or sporadic
mutations that predispose to OS are provided in Table 2 below. These defects affecting
tumor suppressor genes, such as TP53 and retinoblastoma (Rb), are commonly associated
with pediatric osteosarcoma cases. Overall, various genetic defects in TP53 were identified
in 75–90% of OS cases [50]. Familial TP53 was located in 20% of OS cases [52]. Next
generation sequencing has established that approximately 50–78% of OS cases have been
associated with defects in Rb1 [50]. Sporadic cases of OS are attributed to the silent
mutations affecting TP53 or Rb1 genes [41].

Table 2. Familial syndromes predisposing to OS.

Familial Syndrome Gene Inheritance Pattern Function References

Li–Fraumeni p53 AD
↓ Cell growth

↓ Differentiation
↑ Cell apoptosis

[41,46,52–54]

Retinoblastoma RB1 AD Cell cycle
regulation [43,46,54]

Bloom BLM AR DNA helicase [54]

Werner WRN AR DNA helicase [54]

Rothmund Thompson RECQL4 AR RecQ helicase [54]
Familial syndromes predisposing to osteosarcoma, presented with affected gene, inheritance patterns, and
function of the gene. AD = autosomal dominant, AR = autosomal recessive, BLM = bloom syndrome protein,
RB1 = retinoblastoma 1, RecQ = recombination Q helicases, and WRN = Werner protein.

A plethora of genetic anomalies are correlated to the incidence of osteosarcoma,
presented concisely by Chia-chin and colleagues in 2020 [50]. Such genetic alterations
contribute to OS, but they are not necessarily found consistently in all OS patients. Some
common genetic alterations identified were included in the Table 3 below:

Table 3. Genetic alterations implicated with OS can either be overexpressed or inhibited in OS
initiation, progression, and viability.

Gene Expression in OS Function References

PTEN ↓
↓ Cell growth

↓ Differentiation
↑ Cell apoptosis

[52]

WWOX ↓ Tumor suppressor gene [41,53,55]

SOX5 ↑ ↑ Transcription factor synthesis
↑EMT, invasion, and migration [41]

CDKN2A ↓ Cyclin-dependant kinase [41,56]

INK4A ↓ CDK4
Cell cycle [57,58]
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Table 3. Cont.

Gene Expression in OS Function References

MDM2 ↑ Oncogene [41,59]

c-Myc ↑ Oncogene [41,60]

C-fos ↑ Protooncogene [61]

RUNX2 ↑ Oncogenesis [41,55]
Genetic modifications correlated to osteosarcoma, presented with their studies’ expression pattern in OS and
their function in OS pathogenesis. c-Myc = cellular myc, CDKN2A = cyclin-dependent kinase inhibitor 2A,
EMT = epithelial-mesenchymal transition, INK4A = CDK inhibitors superfamily, MDM2 = murine double minute
2, PTEN = phosphatase and tensin homolog, RUNX2 = runt-related transcription factor 2, SOX5 = S RY-Box
transcription factor 5, WWOX = WW domain-containing oxidoreductase.

Irregular expression of non-coding components of the genome, which include the
various types of RNA involved in the epigenetic regulation of gene expression, have
also been correlated to OS. These components play an essential role in various biological
processes in which long non-coding RNA plays a role in cell cycle control, transcriptional
regulation, cell growth, and development [41,62].

Table 4 showcases some of the different types of non-coding RNA expressed in higher
quantities in osteosarcoma.

Table 4. Non-coding RNA highly expressed in OS and their various effects on OS biology.

Non-Coding RNA Type Non-Coding RNA Effect References

miR

miR-101, miR-574–3P, mi-R-20a,
mi-R-19a, miR-16, miR-140, miR-150,

miR-29, miR-133a, miR26a, miR-29b-1,
miR-200b, miR-181, miR-205, miR-424,

miR-106, miR-519

CSC formation and proliferation
Activation of PI3K/Akt pathway
Activation of JAK/STAT pathway
Cell invasion
↓ IL-2
Lung metastasis

[41,63–66]

lncRNA
MALAT1, HOXD-AS1, TUG-1,

LINC00161, SNHG16RO, NEAT1,
SARCC, MIR17HG, OIP5, FENDRR

Tumor initiation
Tumor proliferation
Migration
Invasion

circRNA

hsa_circRNA_103801, hsa-miR-370-3p,
hsa-miR-338-3p, hsa-miR-877-3p,

CircTCF25, CircMMP9, Circ001621,
CircEPSTI1, Circ0001658, Circ-LARP4

Cell proliferation
Hinder cell death
Tumor invasion

[41,67]

Role of various types of non-coding RNAs in the different stages of osteosarcoma biology. circRNA = circular
RNA, CSC = cancer Stem Cell, lncRNA = long non-coding RNA, miR = microRNA, and RNA = ribonucleic acid.

3.4. Signaling Pathways

Abnormal expression of oncogenes and tumor suppressor genes secondary to changes
in epigenetic and genetic elements leads to anomalies in cell biology, leading to aberrant
signal transduction mechanisms and abnormal communication between various cellular
processes and gene expressions. Many pathways are implicated in cancer cell formation,
progression, survival, and metastasis in OS (Figure 3 and Table 5) [3,43,66,68–84].

Examples of signaling cascades involved in OS include those correlated to cell growth
and proliferation, such as PI3K/Akt/mTOR, MAPK, and growth factor pathways. Studies
have showcased significant gene mutations correlated to OS’s PI3K/Akt and MAPK/ERK
pathways [41,85] (Figure 3 and Table 5). The JAK/STAT3 pathway also has a prominent
role in OS proliferation, prevention of apoptosis, and immune regulation, where GFs (FGF,
VGEF, etc.) and cytokines (IL-6, IL-10, IL-11, etc.) inappropriately activate STAT-3 protein
and encourage OS progression [72,81,86]. Several other pathways (illustrated in Figure 3),
such as the Hedgehog pathway, Wnt, SIRT1 and NOTCH signaling pathways, and TLR
pathways, support tumor progression through the modulation of cell cycle progression and
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inhibiting cellular mechanisms of cell death and apoptosis. These pathways also aid in cells’
epithelial–mesenchymal transition (EMT), encouraging cancer cell migration, invasion,
and metastasis. Hinton and colleagues explained the role of these factors in EMT in the
pathophysiology of OS [87–89] (Figure 3 and Table 5).

Inter-cellular cross-communication via the Hedgehog pathway supports OS’s invasion
and metastasis, supporting various oncogenic pathways in tumor progression and metasta-
sis. Moreover, overexpression of Hes/Hey proteins involved downstream of the NOTCH
signaling pathway was correlated to poor prognosis and survival [66] (Figure 3 and Table 5).
The Wnt/β-catenin pathway also plays a pivotal role in OS-CSC renewal, embryogenesis,
and tissue regeneration [70,74]. In the context of bone disease, this pathway affects the
growth, survival, and differentiation of MSCs and interacts with different aspects of bone
metabolism [74] (Figure 3 and Table 5).

Besides the pathways mentioned, studies also implicate the RANK/RANKL/OPG
pathway and exosomal/vesicle-based cellular communication in the initiation and progres-
sion of OS, proliferation EMT, invasion, and metastasis [45,56,66,94–98].

Table 5. Signaling pathways involved in OS and their expression in OS.

Signaling Pathway
Involved Expression in OS Function References

SOX-9 via JNK Pathway ↑ ↑ Tumor progression [43,90,91]

Wnt Pathway ↑ (↑ in CSC)

↑ Cell proliferation
↑ Cancer cell survival
↑ Tumor metastasis

↑ EMT
↑ Chemoresistance

[43,70]

NOTCH Pathway ↑

↑ Tumor metastasis
↑ Drug resistance

↑ EMT
↑ Cancer relapse

[43,66]

Hedgehog Pathway ↑ ↑ Tumor metastasis [82]

SDF1-CXCR4 Pathway ↑ ↑ MMP9 expression
leading to invasion [43]

PI3K/Akt/mTOR
Pathway ↑

OS progression
↑ Angiogenesis
↑ Proliferation
↑ Invasion
↑ EMT

↑ Metastasis

[41,43,83,85]

JAK2/Stat3 Pathway ↑
↑ Tumor cell survival

↑ EMT
↑ Metastasis

[43,81]

RANK Pathway ↑

↑ Cancer cell
migration

↑ Lung metastasis
↑ Pathological bone

destruction

[43,51,81,92]

Hippo Pathway ↑ ↑ Chemoresistance [43,92]

ERK/MAPK Pathway ↑

↑ Angiogenesis
↑ Proliferation
↑ Inflammatory

microenvironment

[43,69]
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Table 5. Cont.

Signaling Pathway
Involved Expression in OS Function References

NF-κB Pathway ↑ Cancer proliferation
Immune response [52,93]

Fas/Fas ligand Pathway ↓ Caspase cascade
Apoptosis regulation [94]

Summary of the commonly studied signaling pathways involved in osteosarcoma, presented with their rate
of expression and implicated effects. Akt = protein kinase B, EMT = epithelial mesenchymal transition,
ERK = extracellular signal-regulated kinase, MAPK = mitogen-activated protein kinase, MMP9 = matrix Metal-
lopeptidase 9, mTOR = mechanistic (formerly “mammalian”) target of rapamycin, NF-κB = nuclear factor kappa
B, OS = osteosarcoma, PI3K = phosphoinositide 3 kinase, Wnt = wingless/integrated.

3.5. Cancer Cell Survival: Cytokines, Growth, and Transcription Factors

Furthermore, osteosarcoma cells have also presented abilities to promote cellular prolif-
eration via the secretion of autocrine growth factors such as insulin-like growth factor (IGF),
transforming growth factor (TGF), and connective tissue growth factor (CTGF) [39,41,42].
Other factors, including VEGF, bone morphogenic proteins (BMPs), and hypoxia-inducible
factor 1 (HIF1), also promote an optimal oncogenic microenvironment. Broadhead et al.
presented in vitro studies that showcased a 30–50% decrease in OS with the inhibition of
TGFβ [39]. Other studies showed that TGFβ played an essential role in EMT and was
expressed in more significant affinities in high-grade OS [39]. Platelet-derived growth factor
(PDGF) supported and preserved neoplasticity and cancer cell characteristics in OS [51].

PTHR1, the receptor primarily activated by PTH and PTH-rp, is a GPCR highly
expressed in the kidney, cartilage, and bone. Abnormal expression of this receptor has
been correlated to incidence and malignant transformation of OS. It modulates several
signaling pathways, such as MMP signaling, ECM modulation, osteoblastic differentiation
and proliferation, and others involved in bone metabolism [99]. Cell studies revealed
that parathyroid hormone (PTH) and parathyroid-related peptide (PTH-rp) supported the
migration of OS cells (MG-63 and SaOS-2), downregulated pro-apoptotic mechanisms, and
aided in chemoresistance [39]. Receptor parathyroid receptor-1 (PTHR1) expression in OS
cells is a poor prognostic marker [99].

Aberrant expression of transcription factors aids in the mutation load, leading to
uncontrolled and aggressive neoplasm proliferation. The transcription factor c-Myc has
been studied extensively in osteosarcoma and promoted cell growth and proliferation [60].
Han and colleagues have noted the role of c-Myc in invasion via the MEK-ERK pathway
in OS [60]. In addition, the transcription factor nuclear factor κB is highly expressed
in OS tissue and contributes prominently to various stages of cancer progression. A
downregulation of PTEN expression in the OS tissues as a secondary effect related to
the increase in levels of NF-κB [52,79]. Overall, these factors and higher levels are often
correlated to higher grades of osteosarcoma [39,41,42,51,52].

Cytokines have been a significant influence on tumor viability (Table 6). Growing
neoplasms take advantage of specific cytokines and facilitate pro-inflammatory conditions
that promote migration, invasion, and metastasis. The interconnective communication
between these various cytokines with diverse sets of cells contributes to optimizing the
tumor microenvironment [52,100,101].
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Figure 3. Signaling cascades involved in OS pathogenesis commonly such as the PI3K/Akt/mTOR, MAPK/ERK, TGFβ, Notch, Hedgehog, and NF-κB
pathways have been evident in the different aspects of OS pathogenesis, summarized in the figure. These pathways can, independently or through cross-
communication, aid osteosarcoma proliferation, survival, angiogenesis, migration, and invasion. Akt = protein kinase B, APC = adenomatous polyposis coli protein,
Bcl2 = B-cell lymphoma 2, Bcl-xL = B-cell lymphoma-extra-large, CK1 = casein kinase 1, c-Myc = cellular myc, Co-F = co-factor, Dvl = dishevelled protein,
EMT = epithelial mesenchymal transition, EGF = epidermal growth factor, ERK = extracellular signal-regulated kinase, FGF = fibroblast growth factor, GSK-3β = glyco-
gen synthase kinase 3β, JNK = Jun N-terminal kinase, Kif = kinesin family member, MMP = matrix metallopeptidase, mTOR = mechanistic (formerly “mammalian”),
NCID = NOTCH intracellular domain, NF-κB = nuclear factor kappa B, PI3K = phosphoinositide 3 kinase, R-SMAD = receptor-regulated SMAD,
STAT = signal transducers and activators of transcription, target of rapamycin, SMAD = suppressor of mothers against decapentaplegic, SUFU = suppressor of fused
homolog, TCF/LEF = T-cell factor/lymphoid enhancer factor, TGFβ = transforming growth factor-beta, TF = transcription factor, TSC 1/2 = tuberous sclerosis 1/2,
VEGF = vascular endothelial growth factor, and WNT = wingless/integrated. Created with BioRender.com.
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Table 6. Cytokines involved in the various aspects of tumor biology.

Cytokine Effect References

IL-6

↑ Glycolytic metabolism in OS cells
↑ Lung metastasis

↑ MEK/ERK1/2/hypoxia-inducible transcription
factor-1α (HIF-1α)

[52,102]

TNFα
↑ Undifferentiated cells
↑ Neo-angiogenesis

↑ M2 macrophage recruitment
[52,100,101]

IL-34 ↑ Neo-angiogenesis
↑ M2 macrophage recruitment [52,101]

Summary of the most common cytokines involved in tumorigenesis and osteosarcoma formation, presented with
known effects. OS = osteosarcoma and IL-6/34 = interleukin 6/34.

3.6. Microenvironment, Angiogenesis, and Tumor Metabolism

Optimal blood supply aids in developing cancer colonies, survival, and viability.
Intraosseous neoplasms such as OS aim to take advantage of the osteolytic destruction
of surrounding tissue secondary to cancer biology and, often in an autocrine/paracrine
fashion, promote angiogenesis via utilizing hypoxia-inducible factor 1α (HIF1α). Zhao
and colleagues have deduced the significance of HIF1 in OS, in which elevated HIFα
expressions were identified in 56.82% of OS cells [103]. The overexpression of HIF1α
contributes to activating the vascular endothelial growth factor (VEGF), a vital factor that
promotes angiogenesis. The excess production of both factors facilitates immature vascular
supply to tumor colonies that further support its survival [65,104].

Cancer cells require high energy sources to thrive, which is commonly attributed to
the Warburg phenomenon. The rate of aerobic glycolysis (Warburg effect) and subsequent
lactate production was found to be increased in MSCs, a phenomenon triggered by neigh-
boring/adjacent OS cells [105,106]. The MSCs, in turn, via the MCT1 transporter (reverse
Warburg effect), feed the osteosarcoma cells with the lactate, which is then converted to
pyruvate to enter the Krebs cycle [105,106]. In an in vivo mice model of osteosarcoma,
elevation in lactate levels and lactate shuttling via increased expression of MCT1/4 was
observed [106]. This, in turn, resulted in an increase in oxidative phosphorylation and
ATP production in OS in the presence of MSCs and accumulation of lactate in the OS cells,
thereby enhancing their metabolism and allowing the cancer cells’ aberrant proliferation,
growth, and metastasis [106]. The relationship between this proposed metabolic state in
OS and the classic Warburg effect in many neoplasms has not been studied. In addition,
the role of melatonin in this phenomenon has not been explored, but itis a promising angle
to explore in osteosarcoma.

3.7. Cancer Resistance

Standard therapeutics for the treatment and management of OS include surgical ex-
cision of the tumor with adjuvant pre/post-operative polychemotherapy that uses one
or more chemotherapeutic drugs such as methotrexate, doxorubicin, cisplatin, and ifos-
famide. Additionally, other treatment options include radiotherapy in conjunction with
chemotherapeutic intervention. This regimen can be personalized based on the location,
tumor burden, patient demographics, and metastasis status of the malignancy [42]. Novel
treatments include bisphosphonate use and immune modulation strategies [94].

Osteosarcomas, via inherent capabilities or acquired mechanisms, develop resistance
to drug interventions and become less responsive to therapeutic intervention. Resistance to
current management programs is multifactorial and is primarily attributed to the heteroge-
neous nature of O-CSCs. The heterogeneity and diversity in the origin of the OS cells, the
tumor microenvironment, and gene mutations help the tumor achieve resistance to current
anti-tumorigenic therapeutics, enhancing their survival against hypoxia and supporting
immune evasion while retaining and evolving self-renewal mechanisms [107]. Further-
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more, the upregulation of ABC transporter, P-gp, and MDR proteins and the presence of
cancer stem cells have been implicated in the development of resistance in OS and are
characterized by the poor response to various chemotherapeutic drugs [63,94–96,107,108].
Other resistance mechanisms investigated in high-grade OS involve the upregulation of
ABC1 transporters, changes to the expression of modified DNA repair mechanisms, and the
use of extracellular vesicles via modulating microRNAs with the surrounding cells [95,96].
Figure 4 summarizes the various effectors in the pathogenesis of OS.
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of nuclear factor kappa beta, TGF = transforming growth factor, TGFβ = transforming growth
factor-beta, VEGF = vascular endothelial growth factor. Created with BioRender.com.

4. Melatonin in OS
4.1. Melatonin in Malignancy

The oncostatic characteristics of melatonin have been explored in various types of
malignancy. It was evident that shifts in the sleep-wake cycle had significantly enhanced
the risk of genomic instability, contributing to tumorigenesis [109–111]. Animal models
undergoing pinealectomy have consistently illustrated an increased tumor burden, al-
though two studies reported the opposite effect [68,112]. A myriad of scientific experiments
revealed melatonin’s oncostatic qualities in diverse neoplasms. In vitro and in vivo studies
complimented this hypothesis, which encouraged the proposition of the use of melatonin
in the treatment of cancer [113–118]. Melatonin has exhibited anti-tumorigenic properties
in multiple neoplasms (Table 7 and Figure 5). These were mainly explored in in vitro and
animal studies, where melatonin affects various aspects of cancer cell biology:

The myriad of anti-cancer properties of melatonin encourages ongoing and future research
to develop melatonin as a potent influence on future cancer therapy (Table 7 and Figure 5).
In particular, the nuanced relationship between skeletal expansion during puberty and
the stark decline in melatonin synthesis was deduced to contribute to the pathogenesis of
osteosarcoma among this group of the population [3,5,39]. Epidemiologic studies correlated
low levels of melatonin to OS patients. This, and the proposed role of melatonin in bone
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metabolism, urges scientists and researchers working in this area to focus on melatonin’s
prospective oncostatic roles, particularly in primary bone malignancy.
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Table 7. Melatonin’s effects in different neoplasms.

Malignancy Effects References

Neuron Malignancy ↓ Neuroblastoma via ↓ VGEF [113,119]

Breast Cancer

↓ Risk of breast cancer
↓ CDK2, CDK4

↓ IGFR
↓ HIF-1α
↓ VEGF

↑ miR-152-3p

[45,114–117,120]

Ovarian

↓ Oxidative stress
↓ CDK2, CDK4

↓ Risk of ovarian cancer
↓ Akt/ERK/JNK

pathway
↓ NF-κB pathway

[114,116,118]

Lymphoproliferative
Pathologies

Cell cycle arrest
↓ Bcl-2

Mitochondrial membrane depolarization
Cytochrome c release activation of caspase-3

in lymphoproliferative disease.

[9,114]

Lung Cancer ↑ Cancer cell migration and variability 2/2 ↑
JNK/MAPK pathway (6) [114,121]

Renal Cancer ↑ Bim → ↑ apoptosis [122]

Gastric Cancer ↓ RZR/RORγ → ↓ angiogenesis [97]
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Table 7. Cont.

Malignancy Effects References

Colon Cancer ↑ Apoptosis
↓ TGF [114,123]

Prostate
↓ Cell growth of both androgen-dependent
and androgen-independent prostate cancer

↑ miRNA3195 and miRNA374b
[124,125]

A summary of some of the effects of melatonin against cancer, as studied and published on various types
of malignancies, provided the illustrated effects. Akt = protein kinase B, CDK2/4 = cyclin-dependent ki-
nase 2/4, Bcl-2 = B-cell lymphoma 2, Bim = Bcl2-like protein 11, ERK = extracellular signal-regulated kinase,
HIF-1α = hypoxic-inducible factor 1 alpha, JNK = c-Jun N-terminal kinase, MAPK = mitogen-activated protein
kinase, NF-κB = nuclear factor kappa B, TGF = transforming growth factor, and VEGF = vascular endothelial
growth factor.

4.2. Melatonin, the Cell Cycle, and Cell Signaling

Melatonin exerts oncostatic effects via the modulation of cell cycle activity. Melatonin
can inhibit different components of cell cycle control. These could either inhibit the cell
cycle-related proteins such as PKC and cyclic-dependent kinases (CDK), decrease cyclin D
proteins, increase CDK inhibitors, or inhibit prominent pathways involved in the cell cy-
cle [126]. Melatonin was also evident in modulating telomerase activity and regulating cell
autophagy [127]. As showcased in Table 8, melatonin interferes in MG-63 cell proliferation
via the decrease in CDK1, CDK4, cyclin B1, and cyclin D1 leading to the accumulation of
cells in the G0/G1 phase of the cell cycle, blocking progression through G2/S/M phases in
variable concentrations.

Convincing proof indicates that melatonin exhibits both cytotoxic and anti-metastatic
effects in diverse cancer cells, with these actions appearing to be specific to different
cell types, including human osteosarcoma cell lines [62,115,118–120,128–131]. The role of
melatonin in signaling cascades involved in the different stages of cellular proliferation
and stability has been investigated extensively (Table 8 and Figure 6).

Noteworthy pathways pivotal in osteosarcoma advancement that have been evaluated
in the presence of exogenous melatonin include the MAPK signaling pathway family.
These intercommunicating pathways that include the c-Jun N-terminal kinase (JNK) and
extracellular signal-regulated kinase (ERK) pathway that aid in cell proliferation and
progression, as stated in Section 3.4. Variable mmol/L increments of melatonin were used,
where initially there were no changes in 24 h of exposure, but there were changes in cell
activity such as motility in 48 h, with changes in phosphorylation of components of the
MAPK, ERK and JNK pathways in the U2OS and HOS cell lines [132].

Moreover, the Wnt/β-catenin signaling network was also assessed in different os-
teosarcoma cell lines (Saos-2, MG63, and U2OS) where a dose-dependent decrease in cell
survival, migration, and metastasis was seen more prominently at 1 mM of melatonin [62].

The process of epithelial–mesenchymal transformation creates an aggressive and more
invasive OS niche. What is seen is that through inhibiting SOX-9 mediated signaling,
melatonin impairs the formation of osteosarcoma sacrospheres and EMT initiation and pro-
gression, thereby decreasing OS invasion. These effects were significant in cell and animal
studies [133]. Likewise, the inhibition of the SIRT1 pathway in micromolar concentrations
of melatonin contributed to an increase in the apoptosis index, with an overall reduction in
cell growth [134].

Finally, the Rho/ROCK pathway, commonly known for its transduction of inhibitory
signals, was recently correlated to play a pivotal role in vasculogenic mimicry in osteosar-
coma cells [135]. This pathway, along with others aiding in OS metastasis, has been explored
by Zhang and colleagues (2021) through cell and in vivo models, where 1 mM of melatonin
impeded mitochondrial activity of OS cells and inhibited cell-in-cell structural formation,
utilizing 3D printed magnesium–polycaprolactone as a delivery agent [136].
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Figure 6. Oncostatic effects of melatonin in osteosarcoma. An illustrative summary of inhibitory
(red) and enhanced (green) effects of melatonin. These include inhibiting cell cycle progression
signaling pathways involved in OS tumorigenesis, such as SIRT, JAK-STAT, Rho/ROCK, ERK1/2,
JNK, NOTCH, and Wnt-catenin. Melatonin also induces apoptosis through interactions with Fas/Fas-
ligand, modifies cancer metabolism and immune response to malignancy, and modifies inflammatory
conditions of the surrounding microenvironment by reducing ROS and inflammation. Finally,
it enhances the sensitivity of tumors to current chemotherapies. CIC = capicua transcriptional
repressor, EMT = epithelial-mesenchymal transition, ERK1/2 = extracellular signal-regulated kinase,
NF-κB = nuclear factor kappa B, Rh0/ROCK = Rho-associated protein kinase, ROS = reactive oxygen
species, and VEGF = vascular endothelial growth factor. Created with BioRender.com.

Table 8 below has been provided as a summative representation of the preclinical
trials in preclinical osteosarcoma studies. Based on the suggested data, the conclusion
deduces that melatonin has been effective as an oncostatic molecule in pharmacological
concentrations ranging from micromolar to millimolar.
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Table 8. Melatonin and OS-related preclinical studies, signaling cascades, and their effects.

Signaling
Cascade Study Model Type of Model Melatonin

Concentration Effects References

Cell Cycle
Modulation Cell Study MG-63 cells 4–10 mM

↑ Cells in G0/G1 phase
↓ G1 phase progression via
(↓ cyclin D1 and CDK4)
↓ G2/M phases progression
via
(↓ cyclin B1 and CDK1)

[137]

Cell Cycle
Modulation Cell Study MG-63 cells 0–0.1 M ↓ G0/G1 cell cycle phase at

9 mM [138]

SOX9
suppression EMT

Pathway

Cell Study HOS, MG-63, and
U2 1 mM

↓ Migration
↓ Invasion
↓ Sarcosphere formation
OS-CSC
↓ EMT markers

[133]

Animal Study Mice 100 mg/kg ↓ Initiation and metastasis

JNK/ERK
Pathway Cell Study U2OS, HOS 0.25, 0.5, 1.0,

2.0 mmol/L

No effect of melatonin after
24 h exposure
↓ Cell motility after 48 h
↑ Phosphorylation of ERK1/2
↓ Phosphorylation of JNK1/2
in U2OS and HOS cells

[132]

JPX-Wnt/β-
catenin Cell Study Saos-2, MG63, and

U2OS
0.1, 0.5, 1, 1.5,

and 2 mM

↓ Cell survival rate
↓ Cell viability in a
concentration-dependent
manner (more evident from 1,
1.5, 2),
dose-dependent
↓ Migration
↓ Metastasis

[62]

SIRT1 inhibition Cell Study 9607
250 µM
500 µM

1000 µM

↓ Cell growth
↑ Apoptotic index
↓ Adhesion ability
↓ Migration ability
↓ Glutathione (GSH) levels

[134]

miR-424-
5p/VEGFA Cell Study SaOS-2 and MG-63

cells 1–1000 µM

↓ Cell viability beyond 50 µM
↓ VEGFA mRNA
↓ Protein expression
↓ Secreted levels of VEGFA
↑ miR-424-5p expression in
microenvironment.

[65]

CIC, Rho/ROCK
cAMP/PKA

Cell Study

U2OS, 143b,
hFOB1.1, MG63,
HOS, OS patient
tissue samples,

VX2
1 mM

↓ OS development
↓ CIC activity
↓ Mitochondrial biogenesis
↓ Mitochondrial function

[136]

Animal Study Rabbit

Concise list of the preclinical trials on the effects of melatonin on osteosarcoma cells, showcased with af-
fected cellular pathway, type of study, type of cell/animal, melatonin concentration used, and denoted results.
CDK = cyclin-dependent kinase, ERK = extracellular signal-regulated kinase, OS-CSC = osteosarcoma–cancer
stem cell, EMT = epithelial–mesenchymal transition, SIRT1 = sirtuin (silent mating type information regulation
2 homolog) 1, VEGF = vascular endothelial growth factor, JNK = Jun N-terminal kinase, and Wnt = wing-
less/integrated.
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4.3. Tumor Microenvironment, Immune Response, and Oxidative Stress

Tumor microenvironment is a biosphere of various cell types and blood vessels that
support tumorigenesis. In osteosarcoma, the TME consists mainly of a similar setting, with
additional bone cells, and vascular and stromal cells in the mineralized extracellular matrix.
The intercommunication between normal bone metabolism and surrounding immune cells
through cytokines and growth factors is exploited in the TME [139]. Thus, osteosarcoma
cells result in aberrant immune cell differentiation and recruitment to optimize cancer-
thriving conditions [140].

Melatonin has succeeded in showcasing a well-studied relationship with the immune
system, as suggested in Table 1. Preclinical studies showcased how melatonin has bidirec-
tional communication with the immune system utilizing common endogenous substances,
including ACTH, acetylcholine, growth hormones, somatostatin, endorphin, and vasoac-
tive intestinal peptide [15,28]. The heavy distribution of melatonin receptors in immune
cells supports its role in enhancing innate and acquired immunity [7,8,27,28,93].

These characteristics allow it to moderate immune and inflammatory responses in
tumor microenvironments with responses to surrounding cells. This is achieved by regulat-
ing the expression of various pro-inflammatory mediators such as IL-6, TNFα, and IFN
γ. Vital immune cells in TME include tumor-associated macrophages, NK cells, Treg cells,
and cytotoxic T cells. The abundance of melatonin receptors on various cells of immune
cells facilitates the activation, differentiation, recruitment, and survival of immune cells,
such as T cells, in the presence of melatonin. Melatonin simultaneously aids in reducing
such drastic inflammation and oxidative stress in surrounding tissue by decreasing IL-2,
TNFα, IFN-γ, and COX-2 and improving IL-4, IL-10, and IL-27 expression [15].

Furthermore, melatonin creates a cancer-hostile environment by targeting tumor cells
and creating a TME with elevated ROS levels, leading to oxidative damage and, eventually,
cancer cell death, as reported in a hepatocellular cancer cell study by Dominguez (2016)
and colleagues [141]. This has not been studied extensively in OS but could be a potential
area to explore.

Primary bone tumors, such as osteosarcoma, can create a hostile ROS-rich environment
as it progresses [142]. The cytoprotective features of melatonin against oxidative stress
allow it to act directly and scavenge free radicals via its aromatic indole ring that acts as an
electron donor, regulating antioxidative enzymes. It also stimulates antioxidant synthesis,
decreases free radical production, and reduces the production and activity of reactive
oxygen species [7,123]. Melatonin’s direct targeting of the NF-κB signaling pathway leads
to a secondary reduction of free radicals [76]. This was evident through the reduction of
ROS generation in 143B cells in 100 µM of melatonin [3]. Also, melatonin has showcased
conditional pro-oxidant effects in elevated (millimolar) concentrations that lead to Fas-
induced apoptosis, mitochondrial membrane instability, and mitochondrial complex III
binding [143–150].

4.4. Melatonin and Cancer Metabolism

Aberrant utilization of glucose via aerobic glycolysis and inhibition of mitochondrial-
related metabolism, known as the Warburg effect, has been a key finding in cancer cell
biology [151,152]. It enhances tumorigenesis by amplifying energy sources and promoting
cell proliferation [151,153]. In osteosarcoma, the reprogramming of metabolic activity
aided its progression making it more aggressive and was reported to even enhance drug
resistance [154]. Common metabolic alterations involve glycolysis, amino acid, lipid
production, and the TCA cycle [155].

Moreover, research exploring the metabolic changes in cancer has also showcased
drastic cancer cell metabolism in different phases of the day, in which glycolysis is more
prominent during the day, where cancer cells depend on oxidative phosphorylation during
the latter half of the day [130].

In addition, melatonin counteracts the Warburg effect and stops the related metabolic
processes by directly or indirectly suppressing HIF-1α. HIF-1α is stabilized with the
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help of reactive oxygen species created in more significant quantities in hypoxic environ-
ments [129]. Melatonin also participates in various metabolic pathways, including aerobic
glycolysis, gluconeogenesis, the TCA cycle, and the pentose phosphate pathway [129,130].
Melatonin regulates the various signaling pathways involved in these metabolic cascades
or directly inhibits glucose transportation (GLUT) and enzymes (G6PDH activity) partic-
ipating in metabolism [130]. This was evident in tumor cell studies supplemented with
melatonin. Other preclinical studies have also noted decreased linoleic acid (LA) uptake,
LA metabolism, and fatty acid metabolism in mice with hepatomas in the presence of
melatonin [156].

Finally, these functions of melatonin, although not centered on OS, the overlapping
rewiring of the metabolic processes among the different cancers including OS can be
used to good advantage to further evaluate the effect of melatonin in OS with regards
to its effect on aberrant metabolic alterations that occur in OS. However, the previously
mentioned “reverse Warburg” phenomenon mentioned in OS has not been extensively
studied, and the role of melatonin in the phenomenon is unclear and remains another
area of investigation that needs to be addressed [105]. Similarly, the association between
metabolic status shifts in day–night settings, mentioned previously, could aid in learning
more about the undetermined importance of melatonin in cancer metabolism.

4.5. Melatonin and Synergistic Effects with Therapeutics

The oncostatic effects of melatonin have been highly evident from past and ongoing
research, but the implementation of melatonin in cancer treatment continues to be scru-
tinized. Its utility as an independent regimen remains unclear. However, many studies
have studied the efficacy of co-administering melatonin in current management programs
(Table 9). Using melatonin in combination with other standard chemotherapeutic drugs
can either be beneficial by decreasing the side effects of current treatments or by enhancing
their oncostatic effects [157–159]. For example, supplementing melatonin with chemothera-
peutics has been investigated in patients with solid tumors, including breast cancer and
lung cancer neoplasms of the GI tract and head and neck. Melatonin combination therapy
reportedly improved chemotherapeutic sensitivity and other specific parameters such as
myelo-immune suppression, neurological and cardiac toxicities, thrombocytopenia, and
stomatitis [157,158]. Hrushesky (2021) and colleagues have showcased improved survival
rates in patients taking 20 mg melatonin in the evening with their etoposide/cisplatin
therapy [160].

Supplemental melatonin was also assessed for its role in aiding patients with general
symptoms of advanced cancer. It was using the role of melatonin in regulating the sleep–
wake cycle to one’s circadian rhythm. Melatonin improved fatigue in breast cancer patients,
while other studies have reported the improvement of sleep and decreased delirium with
melatonin supplementation in advanced cancer patients [164].

For osteosarcoma, co-administration of melatonin with standard chemotherapeutics
has showcased various results in varying melatonin concentrations, as provided in the
table below [163] (Table 9). Another mode of delivery of melatonin was evaluated, where
melatonin/HPβCD scaffolds were utilized to optimize delivery that enhances the apoptotic
effects of melatonin, which could be deduced to be secondary to an improvement in half-
life [138]. This suggests an alternative administration system for melatonin administration
to consider in OS therapy.
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Table 9. Melatonin’s effects as an adjunctive therapy in common therapeutics.

Treatment Melatonin
Concentration Cell Type(s) Effects in OS References

Doxorubicin 10 mg of the
MLT-nanocarrier

Saos-2
MG-63
human bone
marrow
mesenchymal
stem cell,
(hBM-MSC)

Improved DOX
efficacy in cancer
treatment and
reduced toxicity.

[161]

Melatonin/HPβCD
inclusion
complex-loaded
chitosan
scaffolds

9 mM MG-63 Time-dependant
↑ Apoptosis [138]

Methotrexate
0.5 mmol/L
1 mmol/L
2 mmol/L
4 mmol/L
5 mmol/L

SaOS-2
↓ Cell activity
↑ Cells at G1 Cycle
↑ Apoptosis

[162]
Cisplatin-
Methotrexate

Cisplatin
19.74 µg/mL
179.1 µg/mL
7.72 µg/mL

MG-63

↑ Sensitivity
↓ BCL2
↓ miR-181b
↑ CYLD
↑ CBX-7
↑ p53
↑ Apoptosis

[163]

Supporting benefits of melatonin in contemporary osteosarcoma therapeutics presented with cell types utilized in
the studies and their effects in OS.

5. Melatonin in the Clinical Setting
Clinical Studies on Melatonin’s Effects on OS: Prospects and Limitations

There is an abundance of cell and animal studies that prove the oncostatic effects of
melatonin in various malignancies in clinical trials. Nevertheless, an endeavor to study the
anti-cancer effects of melatonin in OS patients in a clinical setting appears to be minimal.
Utilizing search words such as “Osteosarcoma” or “Bone Cancer” or “Bone Neoplasm”
and “Melatonin” yielded no results on ClinicalTrails.gov (accessed on 8 December 2023).
A similar search performed for melatonin as an intervention for “Cancer” generally has
resulted in 46 clinical trials (accessed on 8 December 2023). Eleven of the forty-six trials
(23.9%) of the studies presented results, while 35/46 (76.08%) did not report any results on
the website.

An additional component to reflect on is the limiting nature of integrating preclin-
ical data in a clinical setting. Reports suggest that factors such as (1) differences in the
circadian rhythms (known to influence cancer incidence and progression), (2) differences
in metabolic rates (that should affect the response to anti-cancer drug interventions),
(3) immune responses, and (4) genetic variations since humans are diurnal when compared
to most experimental animals (rats or mice), known to be nocturnal, must be carefully
considered in melatonin-related research [165–169].

While being diurnal or nocturnal may not affect melatonin synthesis, the fact that
this may affect susceptibility to the disease, expression of genes and proteins, immune
responses, and drug metabolism must be factored in to determine optimal dosage and
the timing and frequency of melatonin intervention while translating melatonin-related
anti-cancer effects from bench to bedside [165–169].

Moreover, the accurate pharmacokinetics of melatonin supplementation remains uncer-
tain, which leads to a lack of consensus on a single therapeutic dose. Several attempts were
made to administer melatonin using various methods that showcased variable bioavailabil-

ClinicalTrails.gov
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ity and half-lives, yet a clear conclusion was not exhibited [123]. Varying dosages have been
proposed for multiple cancer studies. This can be highlighted by comparing the variable
effective dosages presented in multiple preclinical trials; these were then extrapolated to
propose a suitable dosage for 60 kg adults. These had presented heterogeneity in suggested
dosages ranging from 1 to 195 mg. RCTs on the utility of melatonin adjunctively in breast
cancer patients have also revealed that several studies implement low dosages, such as
3 mg/day and 10–20 mg/day, that have showcased improved 1-year survival rates [45].

Furthermore, after optimizing dosage in OS, another factor to consider would be to
study the optimal duration, follow-up method, potential toxicities, and side effects [170].
Another suggestion for future research is reflecting on the heterogenicity of a patient’s
circadian cycle, its effect on tumors, and its consideration in therapeutic administration
timings [169]. Thus, the lack of standardized protocols for melatonin administration in
osteosarcoma clinical trials can complicate data interpretation across different studies.
Consistency in study design and methodology is essential for drawing meaningful conclu-
sions. In addition, some gaps that can be further explored would be the role of melatonin
in the variable grading and genetic morphology of OS. Further research should explore
melatonin’s oncostatic potential, particularly on the RANKL/RANK/OPG axis, PTHR
expression in OS, and its possible role in the “Reverse Warburg Effect”.

This sheds light on the dire need for future scientific endeavors to implement preclini-
cal findings and consistent experimentation of melatonin’s use in pediatric osteosarcoma,
where repetitive inquiries around the optimal therapeutic dosage, administrative method,
and correlation to the body’s physiological rhythmic secretion of melatonin.

6. Conclusions and Future Perspectives

In conclusion, current evidence showcases promising discoveries and notable lim-
itations in the area of melatonin research with respect to its effect in the treatment of
osteosarcoma. Several studies have showcased the complexity behind the pathogenesis of
osteosarcoma and the pharmacokinetics of exogenous melatonin use. These investigations
have delved into potential synergies between melatonin and conventional chemotherapies,
utilizing delivery systems like micro/nanoparticles and inclusion complexes to augment
its effectiveness. However, there remain challenges in translating preclinical evidence into
clinical settings. The lack of standardized protocols, study design, optimal administration
modality, patient heterogeneity and a large body of evidence on the role of the timing of
melatonin administrations linked to its robust role in the circadian rhythm in melatonin
warrants more focused research in this regard to understand the oncostatic efficacy of
melatonin in OS. Future research incentives could address such elements to advance our
understanding and harness the therapeutic benefits of melatonin.
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Abbreviations

AANAT Aralkylamine N-acetyltransferase
ABC ATP-binding cassette transporter
ACTH Adrenocorticotropic hormone
AD Autosomal dominant
Akt Protein kinase B
APC Adenomatous polyposis coli
AR Autosomal recessive
ATP Adenosine triphosphate
Bcl2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma-extra large
BLM Bloom syndrome protein
BMI Body mass index
CDK2/4 Cyclin-dependant kinase 2/4
CDKN2A Cyclin-dependant kinase inhibitor 2A
cGMP Guanosine 3′,5′-cyclic monophosphate
CIC Capicua transcriptional repressor
circRNA Circular RNA
CK1 Casein kinase 1
c-Myc Cellular myc
Co-F Co-factor
COX Cyclooxygenase
CREB cAMP-response element binding protein
CSC Cancer stem cell
CTGF Connective tissue growth factor
DNMT DNA methyltransferase
Dvl Dishevelled protein
ECV Extracellular vesicles
EGF Epidermal growth factor
EMT Epithelial–mesenchymal transition
ERK Extracellular signal-regulated kinase
FGF Fibroblast growth factor
GnRH Gonadotropin hormone-releasing hormone
GSK-3β Glycogen synthase kinase 3β
HIF-1α Hypoxia-inducible factor 1 subunit alpha
HPβCD 2-Hydroxypropyl-beta-cyclodextrin.
IGF Insulin growth factor
IL-2/6/12/34 Interleukin
INFγ Interferon gamma
INK4A CDK inhibitors superfamily
INOS Inducible nitric oxide synthase
IP3 Inositol trisphosphate
JNK Jun N-terminal kinase
Kif7 Kinesin family member 7
LA Linoleic acid
LH Luteinizing hormone
lncRNA Long non-coding RNA
MAPK Mitogen-activated protein kinase
M-CSF Macrophage colony-stimulating factor
MCT1/4 Monocarboxylate transporter 1/4
MDM2 Murine double minute 2
MDR Multidrug resistance
MeCP2 Methyl CpG binding protein 2
miR MicroRNA
MMP-9 Matrix metallopeptidase-9
MSC Mesenchymal stem cell
MT1 Melatonin receptor 1



Biomolecules 2024, 14, 145 23 of 30

MT2 Melatonin receptor 2
mTOR Mechanistic (formerly “mammalian”) target of rapamycin
NCID NOTCH intracellular domain
NF-κB Nuclear factor kappa B
NOS Nitric oxide synthases
OPG Osteoprotegerin
OS Osteosarcoma
OS-CSC Osteosarcoma–cancer stem cell
OXPHOS Oxidative phosphorylation
PDK Pyruvate dehydrogenase kinase
PEDF Pigment epithelium-derived factor
PGE2 Prostaglandin E2
P-gp P-glycoprotein
PI3K Phosphoinositide 3 kinase
PKC Protein kinase C
PKG Protein kinase G
PTEN Phosphotase and tensin homolog
PTH Parathyroid hormone
PTHR Parathyroid hormone receptor
PTH-rp Parathyroid-related peptide
RANKL Receptor activator of nuclear factor kappa beta
Rb1 Retinoblastoma 1
RCT Randomized clinical trial
RecQ Recombination Q helicases
Rh0/ROCK Rho-associated protein kinase
RNA Ribonucleic acid
ROR Retinoic acid receptor-related orphan receptor
ROS Reactive oxygen species
R-SMAD Receptor-regulated Smad
RUNX2 Runt-related transcription factor 2
SIRT3 Sirtuin 3
SMAD Suppressor of mothers against decapentaplegic
SOD2 Superoxide dismutase 2
SOX5 S RY-Box transcription factor 5
STAT Signal transducers and activators of transcription
SUFU Suppressor of fused homolog
TCA Tricarboxylic acid cycle
TCF/LEF T-cell factor/lymphoid enhancer factor
TET Ten-eleven translocation
TF Transcription factor
TGF Transforming growth factor
TGFβ Transforming growth factor beta
TNFα Tumor necrosis factor alpha
TP53 Tumor protein p53
TSC 1/2 Tuberous sclerosis 1/2
VEGF Vascular endothelial growth factor
Wnt Wingless/Integrated
WWOX WW domain-containing oxidoreductase
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