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Abstract: Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have
been identified as crucial regulators of various biological processes through epigenetic regulation,
transcriptional regulation, and post-transcriptional regulation. Growing evidence suggests that
dysregulation and activation of non-coding RNAs are closely associated with tumor angiogenesis, a
process essential for tumor growth and metastasis and a major contributor to cancer-related mortality.
Therefore, understanding the molecular mechanisms underlying tumor angiogenesis is of utmost
importance. Numerous studies have documented the involvement of different types of non-coding
RNAs in the regulation of angiogenesis. This review provides an overview of how non-coding RNAs
regulate tumor angiogenesis. Additionally, we discuss emerging strategies that exploit non-coding
RNAs for anti-angiogenic therapy in cancer treatment. Ultimately, this review underscores the crucial
role played by non-coding RNAs in tumor angiogenesis and highlights their potential as therapeutic
targets for anti-angiogenic interventions against cancer.
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1. Introduction

Non-coding RNA (ncRNA) refers to a class of RNA molecules that are transcribed
from the genome but do not have the ability to code for proteins [1,2]. They can be
classified into two main types: housekeeping ncRNA and regulatory ncRNA [3]. Regula-
tory ncRNAs can be further categorized as microRNA (miRNA), small interfering RNA
(siRNA), piwi-interacting RNA (piRNA), long non-coding RNA (lncRNA), and circular
RNA (circRNA) [3]. In recent years, there has been extensive research on regulatory
ncRNAs, especially in the field of cancer research. These regulatory ncRNAs play impor-
tant biological functions through epigenetic regulation, transcriptional regulation, and
post-transcriptional regulation.

Tumor angiogenesis refers to the process of new blood vessel formation during the de-
velopment of malignant tumors, which provides nutrients and oxygen to tumor cells [4,5].
Moreover, tumor angiogenesis offers a pathway for tumor metastasis, which is the leading
cause of death in cancer patients [6,7]. Sustaining angiogenesis is a significant hallmark of
cancer [8]. When vascular support is lacking, tumors may become necrotic or even apop-
totic [9]. Therefore, targeting angiogenesis is a promising strategy for cancer treatment [10].

In recent years, there has been growing evidence suggesting that miRNA, lncRNA,
and circRNA play a significant role in the regulation of tumor angiogenesis. It has become
necessary to categorize and summarize the molecular mechanisms of various ncRNAs
in tumor angiogenesis. This article aims to summarize the functions of various ncRNAs
during tumor angiogenesis and discuss their potential implications for tumor diagnosis
and treatment.
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2. The Characteristics of Tumor Angiogenesis

Angiogenesis is a sequential, multi-step process that includes the destruction of the
extracellular matrix, the budding and elongation of endothelial cells, the migration and
proliferation of endothelial cells, and the formation and maturation of tubes [11]. A variety
of cell types, including tumor cells, endothelial cells, immune cells, and fibroblasts are
involved in tumor angiogenesis, which correlates with the complexity of the tumor mi-
croenvironment (TME) [12]. There is a diverse group of mediators secreted from these cells
including growth factors, matrix-degrading enzymes, cytokines, bioactive lipids, and a va-
riety of small molecules in TEM [13]. Among these mediators, vascular endothelial growth
(VEGF) factors are thought to play a crucial role in regulating tumor angiogenesis. It can
activate intracellular signaling pathways by binding to the corresponding receptors on en-
dothelial cell membranes, ultimately forming blood vessels [14]. Hypoxia is a major feature
of the tumor microenvironment, leading to the activation of the hypoxia-inducible factor-1
(HIF-1) transcription factor in tumor cells, which promotes the expression of VEGF [15,16].
HIF-1 complex activity can also be influenced by inflammation and cellular stress among
other factors [17]. Fibroblasts accumulate in the early stages of tumor tissue formation
and participate in regulating angiogenesis by secreting plasminogen activators (PAs) [18].
Immune cells, such as tumor-associated macrophages, secrete various growth factors and
chemical mediators like VEGF, fibroblast growth factor-2, and angiogenesis-modulating
enzymes. These substances directly or indirectly affect the process of angiogenesis [19].
In addition, several signaling pathways, such as transforming growth factor-beta (TGF-β)
and signal transducer and activator of transcription (STAT), are involved in regulating
the expression of these mediators [20,21]. The above features contribute to the complex
nature of tumor angiogenesis. Additionally, these newly formed blood vessels often ex-
hibit irregular, incomplete, and highly permeable characteristics, which promote cancer
cell growth and metastasis [5,22]. Taken together, tumor angiogenesis is a complex pro-
cess characterized by multi-step composition, the involvement of multiple cell types, and
multi-factorial regulation.

3. miRNA and Tumor Angiogenesis

miRNAs are a type of small RNA molecules that exist naturally within organisms
and are approximately 20–24 nucleotides long [23]. They are present in various organisms
and play a significant role in regulating gene expression [24]. They achieve this regulation
mainly by targeting specific recognition sites in the 3′ untranslated region (UTR), leading to
mRNA degradation [25] (Figure 1). Dysregulation of miRNAs can lead to the development
and progression of several diseases. In particular, aberrant miRNA expression has been
linked to tumor angiogenesis [26,27]. Understanding the roles and behaviors of miRNAs
offers valuable insights into the mechanisms of angiogenesis and potential targets for
therapeutic interventions. The role of miRNAs in tumor angiogenesis is complex and
multifaceted. We have classified the recent studies in Table 1 to highlight the functions of
miRNAs in the following aspects.

Table 1. Targets and dysregulation of miRNA associated with tumor angiogenesis.

MiRNA Target Genes Cancer Types The Role in Tumor
Angiogenesis References

miR-130b-3p HOXA5 Hepatocellular Carcinoma Promoter [28]

miR-130b-3p MBNL1 Head and Neck Squamous Cell
Carcinoma Promoter [29]

miR-519a-3p DUSP2 Gastric Cancer Promoter [30]
miR-30b-5p GJA1 Pancreatic Cancer Promoter [31]

miR-197-3p TIMP2/3 Lung Adenocarcinoma
Metastasis Promoter [32]

miR-543 MTA1 Non-small Cell Lung Cancer Promoter [33]
miR-21-5p PTEN, PDCD4, and RECK Non-small Cell Lung Cancer Promoter [34]
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Table 1. Cont.

MiRNA Target Genes Cancer Types The Role in Tumor
Angiogenesis References

miR-3157-3p TIMP/KLF2 Non-small Cell Lung Cancer Promoter [35]
miR-619-5p RCAN1.4 Non-small Cell Lung Cancer Promoter [36]
miR-181a RAD17 Esophageal Cancer Promoter [37]
miR-205 PTEN Ovarian Cancer Promoter [38]

miR-21-5p KRIT1 Colorectal Cancer Promoter [39]
miR-N-72 CLDN18 Colorectal Cancer Promoter [40]

miR-103a-3p LATS2 and SAV1 Colorectal Cancer Promoter [41]
miR-155-5p SOCS1 Melanoma Promoter [42]

miR-145 IRS1 Breast Cancer Inhibitor [43]
miR-206 Met Colorectal Cancer Inhibitor [44]

miR-378a-3p TRAF1 Hepatocellular Carcinoma Promoter [45]
miR-375 PDGFC Hepatocarcinoma Inhibitor [46]

miR-877-3p FGF2 Osteosarcoma Inhibitor [47]
miR-CT3 VEGF-A Osteosarcoma Inhibitor [48]
miR-495 ATP7A Esophageal Cancer Inhibitor [49]
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Figure 1. Mechanisms of miRNA regulation of tumor angiogenesis. miRNAs can play a role in
tumor cells and vascular endothelial cells to regulate tumor angiogenesis. In the process of tumor
angiogenesis, miRNAs primarily function by binding to the 3′-UTR of specific mRNAs, leading to
mRNA degradation or translation inhibition. These target genes mainly include pro-angiogenic or
anti-angiogenic factors, as well as genes involved in angiogenesis signaling pathways. A similar
mechanism also exists in vascular endothelial cells. For example, miR-27b-3p targets the 3′-UTR
region of FOXO1 mRNA and downregulates its expression, thereby regulating the expression of
VEGFR. In addition, exosomal miRNAs have a significant effect on angiogenesis. For example, miR-
25-3p targets and silences KLF2 and KLF4, ultimately regulating the expression of genes associated
with VEGFR2 and ZO-1 in endothelial cells.

miRNAs have a promoting effect on tumor angiogenesis. Since miRNAs are repressive
for the regulation of target genes, angiogenesis inhibitors such as platelet response protein 1
(TSP-1) become prime targets when miRNAs promote tumor angiogenesis [50]. It has been
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demonstrated that miR-467 targets TSP-1, leading to increased inflammation resolution and
angiogenesis [51]. Moreover, overexpression of miR-194 has been observed in advanced
colorectal cancer, which binds to the 3′-UTR region of the TSP1 gene [52]. On the other
hand, when miRNAs directly regulate angiogenic factors, they inhibit tumor angiogenesis.
One crucial group of angiogenic factors is the VEGF family, and overactivation of these
factors can result in abnormal angiogenesis [53]. For example, studies have demonstrated
that miR-126 downregulates VEGF-A expression, inducing apoptosis and impeding tumor
angiogenesis across various cancer types including breast cancer, lung cancer, oral cancer,
and esophageal cancer [54–57].

miRNAs also play important roles in vascular endothelial cells to regulate tumor
angiogenesis. Specifically, miR-27b can suppress the activation of inflammatory path-
ways, consequently inhibiting intrinsic apoptosis. Mechanistically, miR-27b-3p targets the
3′-UTR region of FOXO1 mRNA, thereby downregulating its expression and subsequently
attenuating the activation of the AKT/FOXO1 pathway [58].

In addition to miRNAs present within endothelial cells, extracellular vesicle miRNAs
(exosomal miRNAs) have a notable impact on angiogenesis. For instance, recent studies
have revealed that exosomal transfer of miR-25-3p from colorectal cancer (CRC) cells
to endothelial cells promotes CRC metastasis. Mechanistically, this exosomal miRNA
targets and silences KLF2 and KLF4, ultimately regulating gene expression associated with
VEGFR2 and ZO-1 within endothelial cells. Consequently, this process promotes vascular
permeability and neovascularization [59]. Importantly, extracellular vesicle miRNAs can
also exert their influence on tumor angiogenesis by modulating immune cells. Research
conducted by Zhao et al. demonstrates that exosomal miR-934 derived from CRC cells
induces M2 macrophage polarization through downregulation of PTEN expression and
activation of the PI3K/AKT signaling pathway. As a result, M2 macrophages produce
various growth factors and cytokines like CXCL13 and CXCR5 that play crucial roles in
regulating tumor growth, facilitating migration, and promoting angiogenesis [60]. In vivo,
exosomes derived from stem cells of human deciduous exfoliated teeth significantly reduce
the micro-vascular formation of tumors generated from xenografted oral squamous cell
carcinoma cells via the transfer of miR-100-5p and miR-1246 [61].

4. lncRNA and Tumor Angiogenesis

lncRNAs, a group of RNA molecules longer than 200 nucleotides with a structure sim-
ilar to mRNA, have been shown to possess more versatile mechanisms for regulating gene
expression compared to miRNAs [62–64]. In recent years, lncRNAs have been implicated
in various biological processes, including tumor proliferation, migration, invasion, and
angiogenesis [65]. Here, we aimed to present an overview of the molecular mechanisms by
which lncRNAs function as miRNA sponges, protein scaffolds, and coding peptides in the
context of tumor angiogenesis (Figure 2). Table 2 categorizes recent studies on lncRNAs’
involvement in tumor angiogenesis.

Table 2. Targets and dysregulation of lncRNA associated with tumor angiogenesis.

Basic
Mechanisms LncRNA Target Genes Cancer Types The Role in Tumor

Angiogenesis References

Sponging
miRNAs
(lncRNA-

miRNA-targeted
gene)

LncRNA ZNRD1-AS1 miR-942/TNS1 Lung Cancer Promoter [66]

LINC00173.v1 miR-511-5p/VEGF-A Lung Squamous cell
carcinoma Promoter [67]

LncRNA PCAT6 miR-4723-5p/VEGFR2 TNBC Promoter [68]
LncRNA NR2F1-AS1 miRNA-338-3p/IGF-1 Breast Cancer Promoter [69]

LncRNA NORAD miR-211-5p/FOXD1 Hepatocellular
Carcinoma Cells Promoter [70]

LncRNA MYLK-AS1 miR-424-5p/E2F7 Hepatocellular
Carcinoma Promoter [71]

LncRNA miR503HG miR-15b/PDCD4 Hepatocellular
Carcinoma Inhibitor [72]

LncRNA CRART16 miR-122-5p/FOS Gastric Cancer Promoter [73]
LncRNA NKX2-1-AS1 miR-145-5p/SERPINE1 Gastric Cancer Promoter [74]



Biomolecules 2024, 14, 60 5 of 17

Table 2. Cont.

Basic
Mechanisms LncRNA Target Genes Cancer Types The Role in Tumor

Angiogenesis References

LncRNA H19 miR-138/HIF-1α Glioma Promoter [75]
LncRNA H19 miR-342/Wnt5a Glioma Promoter [76]

LncRNA DANCR miR-145/VEGF Ovarian Cancer Promoter [77]
LncRNA LOC100129620 miR-335-3p/CDK6 Osteosarcoma Promoter [78]

LncRNA HOTAIR miR-126/EGFL7 Renal Cell Carcinoma Promoter [79]

LncRNA IGKJ2-MALLP2 miR-1911-3p/p21 Laryngeal Squamous
Cell Carcinoma Inhibitor [80]

Interacting
(lncRNA-
Proteins)

LncRNA SNHG5 IGF2BP2 Breast Cancer Promoter [81]
LncRNA RAB11B-AS1 RNA Pol II Breast Cancer Promoter [82]

LncRNA PAARH HIF-1α Hepatocellular
Carcinoma Promoter [83]

LncRNA MAGI2-AS3 HEY1 Clear Cell Renal Cell
Carcinoma Inhibitor [84]

LncRNA RP11-536 K7.3 SOX2 colorectal cancer Promoter [85]
LncRNA HITT YB-1 Colon Cancer Inhibitor [86]
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Figure 2. Mechanisms of lncRNA regulation of tumor angiogenesis. In certain tumor cells and specific
tissues, some lncRNAs carry specific sequences that can adsorb miRNA, acting in a similar way to
sponges in order to bind with miRNA, thereby preventing miRNA from binding to its target mRNA.
On the other hand, lncRNA can interact with certain proteins, affecting their post-translational
modifications, protein stability, transcription, and translation activities, ultimately affecting tumor
angiogenesis through the regulation of downstream target genes.

The phenomenon of lncRNAs acting as sponges that absorb miRNAs to promote target
gene expression is universal in tumor angiogenesis. For instance, lncRNA H19 is upregu-
lated in glioblastoma and plays an important role in driving angiogenesis by sequestering
miR-29a and increasing the expression of vasohibin 2, an angiogenesis factor [87]. Similarly,
Zhang et al. identified an lncRNA called CRART16 that is significantly overexpressed
in gastric cancer tissue. They found that CRART16 acts as a sponge for miR-122-5p and
upregulates the expression of the oncogene FOS. The overexpression of FOS leads to an
increase in VEGF levels, promoting cancer cell growth and angiogenesis [73]. In addition,
using the xenograft animal model, lncRNA ZNRD1-AS1 has been proven to inhibit the
development of lung cancer by attenuating tumor angiogenesis [66].

The interactions between lncRNAs and various types of proteins confer a diversity of
modalities for regulating tumor angiogenesis. Firstly, they can influence post-translational
modifications of proteins. For instance, lncRNA PCAT6 binds to USP14 (a deubiquitinase) to
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induce the deubiquitination of VEGFR2, thereby increasing VEGFR2 expression levels and
promoting angiogenesis in triple-negative breast cancer (TNBC) [68]. Secondly, lncRNAs
can regulate gene transcription and translation. For example, in breast cancer cells, lncRNA
RAB11B-AS1 promotes VEGFA and ANGPTL4 gene transcription by recruiting RNA Pol II
to their promoter, enhancing tumor angiogenesis [82]. Additionally, lncRNA BZRAP1-AS1
indirectly enhances the methylation of the THBS1 promoter by increasing the stability of the
DNMT3b protein, which inhibits the transcription of the anti-angiogenic gene THBS1 and
promotes the angiogenesis process in tumors [88]. Furthermore, lncRNA HITT weakens
the binding between YB-1 proteins and the 5′-UTR of HIF1α mRNA, impairing HIF1α
translation. Finally, lncRNA can regulate signaling pathway activity. lncPVT1 interacts
with phosphorylated STAT3 directly in the cell nucleus and activates the STAT3 signaling
pathway, leading to increased expression of VEGFA [89]. Similarly, in non-small-cell
lung cancer, researchers have found that lncRNA EPIC1 promotes tumor angiogenesis by
activating the Ang2/Tie2 axis [90].

Although lncRNAs do not have typical protein-coding ability, some specific lncR-
NAs are capable of encoding small peptides due to their open reading frames (ORFs).
Researchers found that LINC00908 can encode a 60-amino acid peptide in the TNBC. Inter-
estingly, the peptide can directly interact with STAT3 and reduce the phosphorylation level
of STAT3, thereby decreasing the expression of VEGF [91].

5. cirRNA and Tumor Angiogenesis

circRNAs are a unique form of non-coding RNA that possesses a closed circular struc-
ture, providing it with exceptional stability. Consequently, circRNAs are abundantly found
in various cells and tissues and play significant roles in diverse biological processes, includ-
ing tumor angiogenesis. Previous studies have elucidated several mechanisms by which
circRNAs function: (1) They act as sponges, sequestering miRNAs and thereby inhibiting
their regulatory effects on target genes. (2) They interact with proteins to modulate their lo-
calization, post-translational modifications, and stability. (3) Notably, circRNAs themselves
can serve as potential sources for encoding small functional peptides that exhibit specific
biological activities (Figure 3).
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sponges, absorbing miRNAs, inhibiting the binding of miRNAs to target genes, reducing the degra-
dation of target mRNA, and thereby affecting tumor angiogenesis. Certain circRNAs have binding
sites with the protein KHSRP, influencing the degradation of target mRNA and impacting tumor
angiogenesis. The small peptides encoded by circRNAs play a role in influencing tumor angiogenesis.
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As a crucial regulator of tumor angiogenesis, VEGF serves as an excellent indicator for
investigating the role of circRNAs in regulating this process. The abnormal activation of
circRNAs often directly or indirectly influences the expression of VEGF, thereby exerting
an impact on tumor angiogenesis. For instance, circ-29 enhances gastric cancer invasion
and angiogenesis by sequestering miR-29a and consequently boosting the VEGF signaling
pathway. The underlying mechanism involves the interaction between circ-29 and miR-29a,
which reduces the latter’s ability to target the 3′-UTR region of VEGF mRNA and ultimately
increases VEGF expression. Elevated levels of circ-29 contribute to the enhancement of
invasive capabilities in gastric cancer cells and the promotion of neovascularization within
the tumor microenvironment [92]. Furthermore, we have compiled and summarized the
recent studies exploring how circRNA–miRNA interactions regulate various types of tumor
angiogenesis in Table 3.

Interactions between circRNAs and various proteins play a crucial role in the process
of tumor angiogenesis. One example is circLMP2A, which forms a complex with KHSRP, an
RNA-splicing regulatory protein. This interaction inhibits the stability of VHL mRNA and
relieves its inhibitory effect on HIF1α-induced VEGFA expression [93]. Another notable
interaction involves circSHKBP1 and HSP90. In this case, their interaction inhibits the
degradation of HSP90 by STUB1, the E3 ubiquitin ligase, resulting in enhanced VEGF
expression in tumor tissue. As a result, progression and angiogenesis are enhanced in
gastric cancer [94]. Table 3 provides further classification and documentation for similar
mechanisms that have been reported.

Interestingly, some specific circRNAs have been found to possess the capability of
encoding small peptides. This ability is attributed to the presence of an ORF within their
sequence. In the context of tumor angiogenesis, this phenomenon has been extensively
studied and reported. One such example is circ-0000437, which has been identified as
encoding a small peptide comprising 47 amino acids. Through research efforts, it has been
discovered that this particular peptide plays a significant role in inhibiting the interaction
between ARNT and TACC3 proteins. Consequently, this inhibition leads to a reduction in
VEGF expression, ultimately resulting in the suppression of tumor angiogenesis [95].

In addition to its effects on tumor cells, circRNA can regulate other cells in the tu-
mor microenvironment through the secretion of exosomes by tumor cells. Exosomes are
nanoscale lipid-enclosed structures with a diameter of 30–100 nm that are released by cells
and contain proteins, nucleic acids, and other substances. This regulation contributes to the
promotion of tumor angiogenesis. For instance, circHIPK3, which is highly expressed in
breast cancer, can be carried by exosomes and enter human endothelial cells after being
released into the extracellular space. circHIPK3 relieves the inhibitory effect of miR-124-3p
on MTDH gene expression, ultimately promoting angiogenesis [96]. Furthermore, other
cells from the tumor microenvironment can impact angiogenesis. Studies have demon-
strated that M2 macrophages promote angiogenesis in cutaneous squamous cell carcinoma
(cSCC). One potential mechanism involves the interaction between circ_TNFRSF21 and
miR-3619-5p, leading to the increased expression of the ROCK2 gene and subsequent
promotion of angiogenesis [97].
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Table 3. Targets and dysregulation of circRNA associated with tumor angiogenesis.

Basic Mechanisms CircRNA Molecular Target Cancer Types The Role in Tumor
Angiogenesis References

Sponging miRNAs
(circRNA-miRNA-

targeted gene)

CircRNA ARF1 miR-342–3p/ISL2 glioma cancer promoter [98]
Circ_0008344 miR-638/SZRD1 glioma cancer promoter [99]
Circ-ATXN1 miR-526b-3p/VEGFA glioma cancer promoter [100]

Circ3823 miR-30c-5p/TCF7 colorectal cancer promoter [101]
CircTUBGCP4 miR-146b-3p/PDK2 colorectal cancer promoter [102]
Circ_0030998 miR-567/VEGFA colorectal cancer promoter [103]

Circ-ZNF609 miR-145/STMN1 nasopharyngeal
carcinoma promoter [104]

CircFIRRE miR-486-3p and
miR-1225-5p/LUZP1 osteosarcoma promoter [105]

CircFOXP1 microRNA
-127-5p/CDKN2AIP osteosarcoma promoter [106]

Circ_001587 microRNA-223 pancreatic cancer inhibitor [107]

Circ_000684 miR-145/KLF5 pancreatic ductal
adenocarcinoma cells inhibitor [108]

CircRNF13 miR-654-3p/PDK3 pancreatic cancer promoter [109]
CircKDM4B miR-675/NEDD4L breast cancer inhibitor [110]
CircHIPK3 miR-124-3p/MTDH Breast cancer promoter [96]

Circ_0001667 miR-6838-5p/CXCL10 breast cancer promoter [111]
Circ29 miR-29a/VEGF Gastric cancer promoter [92]

Circ_0001190 miR-586/SOSTDC1 Gastric Cancer inhibitor [112]
Circ_0025033 miR-370-3p/SLC1A5 ovarian cancer promoter [113]

CircNFIX miR-518a-3p/TRIM44 ovarian cancer promoter [114]
CircATRNL1 miR-378/SMAD4 ovarian cancer inhibitor [115]
Circ_0111738 miR-1233-3p/HIF-1 Multiple Myeloma inhibitor [116]
Circ_0058058 miR-338-3p/ATG14 multiple myeloma promoter [117]

Circ_TNFRSF21 miR-3619-5p/ROCK cutaneous squamous
cell carcinoma promoter [97]

Circfip1L1 miR-125a-5p/VEGFA Nasopharyngeal
Carcinoma Cells inhibitor [118]

CircHIPK2 miR-1249-3p/VEGFA non-small cell lung
cancer promoter [119]

Circ_0006988 miR-491-5p/MAP3K3 non-small cell lung
cancer promoter [120]

Circ-RAD23B miR-142-3p/MAP4K3 non-small cell lung
cancer promoter [121]

CircPRRC2A miR-514a-5p and
miR-6776-5p/TRPM3 renal cell carcinoma promoter [122]

CircAFAP1 miR-374b-3p/VEGFA renal cell carcinoma promoter [123]
Circ_0015004 miR-130a-3p/CEP55 renal cell carcinoma promoter [117]

Circ_0001955 miR-646/FZD4 Hepatocellular
Carcinoma promoter [124]

Circ_0000519 miR-1296/E2F7 hepatocellular
carcinoma promoter [125]

CircHDAC1_004 miR-361-3p/NACC1 Hepatocellular
Carcinoma promoter [126]

Circ_0000144 miR-1178-3p/YWHAH papillary thyroid
cancer promoter [127]

Circ_0011058 miR-335-5p/YAP1 papillary thyroid
cancer promoter [128]

CircSHKBP1 miR-766-5p/HMGA2 laryngeal squamous
cell carcinoma promoter [129]

Circ_0062019 miR-1253/NRBP1 prostate cancer promoter [130]
CircSLC8A1 miR-21 prostate cancer inhibitor [131]

Circ_0008726 miR-206/HOXA13
Esophageal

squamous cell
carcinoma

promoter [132]

Interacting
(circRNA-Proteins)

circLMP2A KHSRP gastric carcinoma promoter [93]
circKIF18A FOXC2 Glioblastoma promoter [133]
circSHKBP1 HSP90 gastric cancer promoter [94]

circPOLR2A UBE3C and PEBP1 clear cell renal cell
carcinoma promoter [134]

circFNDC3B FUS Oral Squamous Cell
Carcinoma promoter [135]

circ_0004018 FUS hepatocellular
carcinoma inhibitor [136]

CircSMARCA5 SRSF1 Glioblastoma promoter [137]
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6. Other Types of ncRNA and Tumor Angiogenesis

Compared to miRNA, lncRNA, and circRNA, there have been fewer research reports
on tsRNA, snoRNA, and piRNA in tumor angiogenesis in recent years. Here, we present a
classification summary of these molecules. tRNA-derived small RNAs (tsRNAs) are a class
of small non-coding RNAs derived from different regions of tRNA, including the 5′ end,
3′ end, and internal regions. tsRNAs can regulate gene expression and thereby influence
important biological processes such as cell proliferation, differentiation, and apoptosis [138].
One study has demonstrated that tsRNA-26576 is highly expressed in breast tissues and
functions in promoting tumor cell proliferation and inhibiting tumor cell apoptosis [139].
Additionally, 5′tiRNA-His-GTG has been found to be highly expressed in colorectal cancer
tissues and plays a role in response to hypoxic stress by activating the HIF1α/vascular axis
and promoting the Hippo pathway [140].

Small nucleolar RNAs (snoRNAs) are a diverse class of non-coding RNAs (ncRNAs)
that range in length from approximately 60 to 300 nucleotides. These specific ncRNAs are
primarily localized in the nucleolus and play important roles in cleaving and chemically
modifying ribosomal RNAs (rRNAs) [141,142]. In recent years, there have been limited
studies investigating the association between snoRNA and tumor angiogenesis. However,
reports have suggested abnormal expression of snoRNAs in various types of tumors,
indicating their potential correlation with tumorigenesis. For instance, SNORA42 has
been demonstrated to act as an oncogene in lung cancer, hepatocellular carcinoma, and
colorectal cancer [143–145]. Similarly, upregulation of SNORD17 has been observed in
hepatocellular carcinoma tissues compared to normal liver tissues, implicated in driving
cancer progression. Mechanistically, SNORD17 anchors nucleophosmin 1 (NPM1) and MYB
binding protein 1a (MYBBP1A) simultaneously within the nucleolus, leading to decreased
activation of p53 [146].

piRNA is a recently discovered class of small non-coding RNA that is found in both
germline cells and somatic cells. These RNA molecules can form complexes with PIWI
proteins and typically comprise 24-31 nucleotides in length [147]. In contrast to other RNA
sequences, piRNAs deviate from canonical sequences by having a uridine at the 5′ end or
an adenine at position ten. Additionally, they lack clear secondary structure motifs [148].
The function of piRNAs encompasses various biological processes such as transposon
silencing, spermatogenesis, genome rearrangements, epigenetic regulation, and protein
regulation [147]. However, recent reports suggest that abnormal expression of piRNAs
may be associated with tumor development and angiogenesis [149]. For instance, studies
have observed the upregulation of piRNA-823 in patients with multiple myeloma (MM) as
well as MM cell lines. This upregulation positively correlates with clinical staging. In MM
cells specifically, downregulating piRNA-823 has been shown to inhibit the secretion of
VEGF, subsequently reducing angiogenic activity [150]. Furthermore, low expression levels
of piRNA-2158 have been detected in breast cancer tumors. It functions by suppressing
transcription through binding to the IL-11 promoter. Interestingly enough, it has been
demonstrated that this specific piRNA inhibits angiogenesis in breast cancer, as well [151].

7. ncRNA-Targeting Therapeutics in Tumor Angiogenesis

Targeted ncRNA therapy holds great promise for the treatment of tumors. In recent
decades, significant clinical investment has been made in RNA-based therapeutic modal-
ities. Currently, there are various RNA-based therapeutic modalities available, such as
antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), short hairpin RNAs
(shRNAs), ASO anti-microRNAs (antimiRs), miRNA mimics, miRNA sponges, therapeutic
circular RNAs (circRNAs), and CRISPR-Cas9-based gene editing. Among these modalities,
ASOs and siRNAs are more widely used [152].

There are several advantages to using miRNA-based therapies. Firstly, miRNAs are
naturally occurring molecules in human cells, in contrast to man-made chemotherapeutic
compounds or ASOs. They possess all the mechanisms for processing and downstream
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target selection. Secondly, miRNAs act by targeting multiple genes in a pathway, thereby
eliciting a broader but specific response [153–155].

One notable characteristic of circRNAs is their closed covalent structure, which makes
them less susceptible to degradation compared to other RNA molecules. This property
allows circRNAs to easily accumulate within various types of cells or tissues and serve as
drugs [156]. Understanding the molecular mechanisms by which circRNAs function has
led to the utilization of various chemical and enzymatic synthesis strategies for producing
circRNA drugs in vitro [157]. In contrast to conventional protein- or peptide-based drugs,
circRNAs exhibit a sub-stoichiometric mode of action, thus facilitating drug delivery
with lower toxicity concerns. Moreover, they have favorable pharmacokinetic potential
compared to traditional vaccines based on pathogens and DNA/proteins/peptides since
they do not require nucleotide modification; yet, they can achieve strong drug efficacy
through simple steps [158].

Based on the advantages of targeted ncRNA therapy and the understanding of the
molecular mechanism of ncRNA, the first clinical trial of miRNA therapy for tumors was
conducted in 2013 [159]. The drug MRX34 is a synthetic double-stranded mir-34a mimic,
which can induce tumor cell apoptosis, inhibit tumor cell survival, and extend the survival
time of mice. However, severe immune-mediated adverse events occurred in patients in
the phase I clinical trial, leading to trial failure [160]. Nevertheless, this experiment proved
that improving tumor-specific delivery systems can reduce the off-target toxicity of miRNA
drugs. Subsequently, a synthetic mimic of miR-16 called TargomiR entered clinical trials
but showed insignificant effects and mild adverse events [161]. However, this clinical
trial indicated that the drug delivery system has a greater responsibility for inflammation
toxicity. With continuous improvement in drug delivery systems and other conditions, an
analog of mir-193a-3p called INT-IB3 is currently undergoing phase I clinical trials [162].
In addition, as of the date of this paper, no circRNA therapeutic candidate has entered
clinical trials. However, there has been some progress in pre-clinical studies utilizing
circRNA-based mechanisms and nanoparticle delivery systems for cancer treatment. For
instance, researchers have discovered that circEHMT1 can effectively inhibit the migration
and invasion of breast cancer cells. In a study conducted on mice, nanoparticles were
employed to deliver a plasmid expressing circEHMT1, resulting in a significant reduction
in lung metastasis of breast cancer cells [163]. Although ncRNA-based therapeutics are
still mainly in the research and development stage, it is believed that they will have a wide
range of applications in the near future.

8. Conclusions and Future Perspectives

This review mainly summarizes the functions of miRNAs, lncRNAs, and circRNAs in
tumor angiogenesis and highlights their molecular mechanisms. Meanwhile, we have sum-
marized the advantages of ncRNA-based therapy. It is well understood for the significant
roles of miRNAs, lncRNAs, and cirRNAs in tumor angiogenesis.

We have conducted a classification analysis of miRNA, lncRNA, and circRNA based
on their molecular mechanisms in tumor angiogenesis. It can be observed that they are
interconnected and compete with each other. For example, lncRNAs and circRNAs can
inhibit the function of miRNAs by sequestering them. With regard to the summarized
molecular mechanisms in this paper, progress has been made in recent years, which has
advanced our understanding of tumor angiogenesis to some extent. However, considering
the dual complexity of tumor angiogenesis and the potential involvement of various molec-
ular mechanisms, our current understanding of the role of ncRNAs in tumor angiogenesis
may only scratch the surface.

During the literature review process, we also focused on exploring the clinical ap-
plications of ncRNAs. Unfortunately, there are currently no real applications of ncRNAs
in clinical therapy. We speculate on several reasons for this. Firstly, although substantial
achievements have been made in understanding molecular mechanisms in humans, there is
still a lack of breakthroughs due to similarities or redundancies among many studies. This
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might be limited by current molecular biology techniques. Secondly, each study highlights
its ncRNA as having noteworthy clinical implications for tumor angiogenesis; however,
identifying which ones occupy central positions within regulatory networks and serve
as viable drug targets likely requires deep collaboration among fields such as artificial
intelligence, molecular mechanism research, and drug development to integrate complex
regulatory networks. Thirdly, tumor angiogenesis is an ongoing process occurring within a
complex tumor microenvironment, which further complicates the application of ncRNAs
in clinical settings. Therefore, more advanced models need to be developed for research
purposes. Finally, the optimization of drug delivery systems plays a crucial role in reducing
patient immune responses and determining the success of ncRNA therapy. Fortunately,
the field of nanomaterials has experienced rapid development in recent years. With the
continuous development of multiple disciplines, it is foreseeable that there will be more
clinical applications based on ncRNA therapy in the future.
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