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Abstract: Radiomics is an emerging approach to support the diagnosis of pulmonary nodules detected
via low-dose computed tomography lung cancer screening. Serum metabolome is a promising source
of auxiliary biomarkers that could help enhance the precision of lung cancer diagnosis in CT-based
screening. Thus, we aimed to verify whether the combination of these two techniques, which
provides local/morphological and systemic/molecular features of disease at the same time, increases
the performance of lung cancer classification models. The collected cohort consists of 1086 patients
with radiomic and 246 patients with serum metabolomic evaluations. Different machine learning
techniques, i.e., random forest and logistic regression were applied for each omics. Next, model
predictions were combined with various integration methods to create a final model. The best single
omics models were characterized by an AUC of 83% in radiomics and 60% in serum metabolomics.
The model integration only slightly increased the performance of the combined model (AUC equal to
85%), which was not statistically significant. We concluded that radiomics itself has a good ability
to discriminate lung cancer from benign lesions. However, additional research is needed to test
whether its combination with other molecular assessments would further improve the diagnosis of
screening-detected lung nodules.

Keywords: classification models; integration; early detection; lung cancer; screening study

1. Introduction

Lung cancer holds the unenviable position of being the leading cause of cancer-related
fatalities in both men and women. It accounts for 21% of all cancer deaths among men,
followed by prostate (11%) and colon and rectum cancers (9%). In women, it represents
21% of all cancer deaths, followed by breast (15%) and colon and rectum cancers (8%) [1].
In the year 2020, the global landscape witnessed a staggering 2.2 million new cases of
lung cancer, resulting in 1.8 million fatalities attributed to this serious disease [2]. Notably,
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in Poland, 63 individuals succumb to lung cancer each day, ranking high incidence in
Europe. Approximately, 81% of lung cancer deaths result from direct cigarette smoking,
with indirect smoking and air pollution being the following contributing factors. In Poland,
the population of smokers is estimated at a substantial 8 million individuals. The low
survival rate for lung cancer is mainly related to late diagnosis. An asymptomatic course
of disease progression causes a low rate of early-stage detection. In the case of symptoms,
long-term smoking patients usually develop chronic symptoms similar to early signs of
lung cancer earlier but often disregard them if they are not severe or present at all. Moreover,
patients’ beliefs and worries about health changes that may indicate lung cancer appear to
play a crucial part in the delay in diagnosis. Late diagnosis and oncological therapy often
fail to cure the patient. Still, they could do so in the earlier stages of the disease, for which
the survival rate is much higher [3].

The diagnosis of early lung cancer in the real world typically initiates with X-ray chest
radiography or computed tomography (CT) performed for other reasons. Nowadays, the
systemic approach to the detection of early-stage lung cancer has been implemented in a few
countries based on the results of two pivotal randomized clinical trials: NLST and NELSON.
These clinical trials provided incontrovertible evidence of reducing lung-cancer-related
mortality by 20% and 26%, respectively, with the implementation of screening programs
involving low-dose computed tomography (LDCT), specifically targeting high-risk groups,
such as tobacco smokers [4,5]. LDCT-based lung cancer screening leads to thousands of
images with a substantial number of lung nodules that should be appropriately categorized.
Hence, radiologists play a crucial role in identifying nodules or tumors within the lung
parenchyma and predicting the risk of malignancy. If any nodule displays malignant
features, the process of invasive lung cancer diagnosis begins.

Lung cancer screening has been established to enhance the rate of early lung cancer
detection in cases where the disease remains asymptomatic during its progression. These
attempts target a high-risk demographic comprising middle-aged and elderly individuals
with a history of long-term smoking. Ideally, lung cancer screening rounds should occur
annually, which places a significant burden on current radiological resources. The evalu-
ation of image-based screening for detecting subtle abnormalities can be a complex and
time-consuming process. Moreover, a significant proportion of false positive results of
CT-based tests affect lung cancer diagnosis. It is assumed that the diagnostic accuracy of
cancer detection could be increased by supplementing low-dose CT imaging with addi-
tional diagnostic tests, particularly molecular biomarkers [6,7]. Among the hypothetical
biomarkers of early lung cancer that could complement CT-based diagnosis are differ-
ent molecular and cellular components of blood [8–11]. Metabolites present in blood are
promising candidates for biomarkers since they could be potentially detected through
“liquid biopsy” [12]. For example, choline-containing phospholipids and sphingolipids are
serum/plasma components that discriminate between lung cancer patients and healthy
individuals [13–15]. Recently, we performed a metabolomics study to search for serum
metabolites that differentiated three groups of lung cancer screening participants: patients
with screen-detected lung cancer, individuals with benign pulmonary nodules, and those
without any lung alterations. However, despite several specific compounds having sig-
nificant differences among compared groups, the low accuracy of classification models
was observed (AUC = 60%) due to substantial heterogeneity in the levels of analyzed
metabolites [16].

Radiomics allows the extraction of a comprehensive set of features from an LDCT
image for automated cancer detection and the diagnosis of malignant lesions [17]. We
hypothesized that the combination of disease-related features observed at the systemic
level (i.e., the features of serum metabolome) and a depiction of local pathological changes
(i.e., the features of LDCT images) would enhance the precision of lung cancer classification
models. To prove our concept, we developed a method for differentiating between benign
and malignant nodules detected in lung cancer screening participants by combining the re-
sults of LDCT and metabolomic modalities. We gathered data from two different screening
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cohorts and tested two machine learning models and several integration algorithms to find
the best solution.

2. Materials and Methods
2.1. Study Subject

Material included in this study was collected during two lung cancer screening pro-
grams performed by the Medical University of Gdansk in the years 2009–2011
(PPPBWWRP—Pomorski Pilotażowy Program Badań Wczesnego Wykrywania Raka Płuca)
and 2016–2018 (MOLTEST-BIS) [3,16]. These programs enrolled more than 14 thousand
participants and offered LDCT examinations for current or former smokers with at least a
20-pack-year history, aged from 50 to 75 years. This report involves two groups of partici-
pants of the project: (i) individuals with CT-detected lung nodules that were confirmed
benign via histopathology, further marked as benign, and (ii) patients who were ulti-
mately diagnosed with lung cancer, further marked as malignant. For those patients, two
types of measurements (modalities) were collected: (i) radiomic characteristics from LDCT
scans (1086 participants of either PPPBWWRP or MOLTEST-BIS dataset), and (ii) serum
metabolome profiles (246 participants of the MOLTEST-BIS cohort). Several regions of
suspicious elements from the LDCT scan were collected for one of the patients. The basic
characteristics of the analyzed groups are presented in Table 1. Studies were approved
by the appropriate Ethics Committees (the Medical University of Gdansk, approval nos.
NKEBN/42/2009 and NKBBN/376/2014), and all participants provided informed consent
indicating their voluntary participation in the project and provision of blood samples for
future research.

Table 1. Basic characteristics of the analyzed population. NA means that the information was not
available. Since a patient could have benign and malignant nodules at the same time, for radiomics
data, n represents the number of patients with at least one nodule of a given type.

Radiomics Metabolomics

Benign nodules

n 994 (75%) 123 (50%)

Screening program

PPPBWWRP 906 (91%) 0 (0%)

MOLTEST BIS 88 (9%) 123 (100%)

Sex: male/female 445/549 (45%/55%) 66/57 (54%/46%)

Age years: (median) NA 51–79 (67)

Smoking pack-year: range (median) NA 26–133 (43)

Malignant nodules (lung cancer)

n 331 (25%) 123 (50%)

Screening program

PPPBWWRP 258 (78%) 0 (0%)

MOLTEST BIS 73 (22%) 123 (100%)

Sex: male/female 136/195 (41%/59%) 67/56 (54%/46%)

Age years: range (median) NA 53–79 (67)

Smoking pack-year: range (median) NA 24–138 (48)



Biomolecules 2024, 14, 44 4 of 12

Table 1. Cont.

Radiomics Metabolomics

Clinical stage:

IA NA 49

IB NA 10

IIA NA 9

IIB NA 10

IIIA NA 17

IIIB NA 7

IVA NA 16

IVB NA 5

2.2. Metabolomic Data

The detailed procedure of data collection, preparation, and preprocessing is described
elsewhere [16]. Briefly, for serum samples isolated from the peripheral blood of MOLTEST-
BIS participants, the measures were obtained via a high-resolution mass spectrometry
assay using an Absolute IDQ p400 HR kit (test plates in the 96-well format; Biocrates Life
Sciences AG, Innsbruck, Austria) according to the manufacturer’s protocol. For obtained
measurements, batch correction and missing data imputation were performed as described
elsewhere [16]. Finally, concentrations of 259 specific metabolites (or lipid isomer groups)
and aggregated concentrations of different metabolite classes: acylcarnitines, amino acids,
biogenic amines, glycerophospholipids, sphingolipids, cholesterol esters (CEs), glycerides,
triglycerides (TGs), diglycerides (DGs), phosphatidylcholines (PCs), lysophosphatidyl-
cholines (LPCs), and total lipids were analyzed; this resulted in 271 metabolomics features
(Supplementary Table S1).

2.3. Radiomic Data

Radiomic data for this project come from measurements performed on 1086 patients
(925 from PPPBWWRP and 161 from MOLTEST-BIS). For each patient, the LDCT was per-
formed, and for abnormalities found in the lung parenchyma, an annotation was prepared
by an expert radiologist. Regions with abnormalities were categorized into the following
groups: cancer, suspicious nodules, inflammation, benign nodules, lymph nodes, fibrosis,
and calcification (one patient could have different pathologies classified in different groups).
Cancer, suspicious nodules, and inflammation were considered “malignant”, while the
remaining categories represent the “benign” group. Next, the mask of objects and their
segmentations were extracted using a multi-step pre-processing and segmentation algo-
rithm [18]. For extracted regions of the lung, the radiomics features were calculated with
the usage of the PyRadiomics package version 3.0 [19]. In total, 107 radiomics features were
analyzed for 5180 fragments of annotated images from analyzed patients (Supplementary
Table S1). Finally, radiomics features were internally standardized (scaled and shifted)
using non-parametric statistics, like median and interquartile range, calculated on benign
samples within a cohort.

2.4. Univariate Analysis

Each analyzed feature from both modalities was tested due to the normality of dis-
tribution using the Shapiro–Wilk test. As the data were highly skewed, to estimate the
significance of differences in analysis groups, the Mann–Whitney test was used. Moreover,
each feature’s biserial correlation (rg) was calculated and treated as an effect size measure.
Finally, the Benjamini–Hochberg procedure for the FDR correction was applied when
necessary [20]. All statistical hypotheses were tested at the 5% significance level.
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2.5. Machine Learning Sets

The classification models were constructed using two different machine learning (ML)
approaches: (i) logistic regression (LR) and (ii) random forest (RF). Both ML methods were
performed on the same training and test sets. The test set was extracted from the MOLTEST-
BIS cohort by taking 20 benign and 20 malignant cases for which both radiomic and
metabolomic data were available. Moreover, for radiomic data, the test set was expanded
for additional cases from the PPPWWRP cohort. The remaining samples were gathered
into a training set. A summary of the training and test set for both omics is presented in
Table 2.

Table 2. Number of samples in training and test sets for ML model building.

Radiomics Metabolomics Common

Train

Benign 4569 103 68

Malignant 440 103 53

N 5009 206 121

Test

Benign 122 20 20

Malignant 49 20 20

N 171 40 40

2.6. Logistic Regression Models

For the initially selected train set multiple random cross-validation (MRCV) was
performed for logistic regression (LR), as follows: (i) data were split into training and
validation (70%/30%) subsets; (ii) forward feature selection was performed on training
subset with ∆BIC ≤ 2 as a stop criterion; (iii) an evaluation of classification parameters was
conducted on the training and validation subsets; and (iv) an estimation of classification
threshold was made by maximizing balanced accuracy (BAcc). The MRCV procedure
was repeated 100 times. Next, feature ranking was generated as follows: (i) the features
included in each model were sorted by their order of addition in the forward procedure;
(ii) the proportional order was multiplied by the BAcc of the validation set at a particular
fold; and (iii) the elbow technique was used to extract the most relevant features for the
final LR model. Finally, the model was built on the entire training set using selected features
and evaluated on the test set.

2.7. Random Forest Models

Random forest classifier was implemented using caret R package version 6.0-94 [21]
with sample weighting to decrease the effect of class imbalance. Two RF model parame-
ters were tested: (i) Mtry—number of features sampled at each tree split (from 5 to 30);
(ii) Ntree—number of trees in a forest (100, 500, 1000, 2000). MRCV procedure was applied,
as follows: (i) data were split into training and validation (80%/20%) subsets; (ii) RF model
was fit on training data; (iii) estimation of variable importance was made (for each tree,
the prediction accuracy on the out-of-bag portion of the data is recorded; then, the same is
conducted after permuting each predictor variable; the difference between the two accu-
racies is then averaged over all trees and normalized via the standard error); and (iv) an
estimation of classification threshold is made by maximizing balanced accuracy. The MRCV
procedure was repeated 100 times. Next, feature ranking was generated, as follows: (i) for
each feature, the average variable importance score was calculated; (ii) the elbow technique
was used to extract the most relevant features for the final RF model. Finally, the model
was built on the entire training set using selected features and evaluated on the test set.
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2.8. Machine Learning Result Integration

Several approaches were applied to integrate results from both platforms. The first
one was based on statistical integration proposed by Stouffer [22]. It was used for both
classification probabilities of test sets as well as classification thresholds. Additionally,
several common methods were tested including: (i) mean value; (ii) maximum value;
and (iii) product of two probabilities. All methods are described in detail elsewhere [23].
Similarly, both classification probabilities and classification thresholds were integrated
using the same method.

3. Results

To construct classification models, we used two different cohorts, PPPBWWRP and
MOLTEST-BIS, and two types of measured features, radiomic features from LDCT images
and concentrations of serum metabolites (metabolomic features). We cleaned the datasets
by removing missing values and the normalization of the data (see Section 2). For radiomic
features, significant differences were not observed between cohorts after data normalization
(Figure 1). Better separation between benign and malignant cases was noted using radiomic
features compared to metabolomic features, but in general, these two classes are not
separated. The PPPBWWRP radiomic dataset revealed three clusters of data points, of
which the largest one included both benign and malignant cases (Figure 1). A refined
investigation revealed that one of the smaller clusters included mostly calcified nodules
that resulted from historical infections or physical damages (Supplementary Figure S1),
while the smallest one consists of all types of benign nodules and might represent unknown
technical artifacts.
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3.1. Univariate Analysis of Metabolomic and Radiomic Studies

Many features measured in both modalities were highly skewed, showing non-
normal distribution (Supplementary Table S1, Supplementary Figure S2), so we used
non-parametric methods for univariate analysis to compare benign and malignant cases
within each modality. We ran the analysis using all available samples in each modality. Af-
ter applying multiple testing corrections, we found 94 statistically significant (FDR < 0.05)
features in the radiomic data, from which 44 were downregulated and 50 upregulated.
However, no statistically significant features were identified in the metabolomic dataset.
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The mean effect size measured for top differentially regulated features was also higher in
radiomic data than in metabolomic data (0.6 vs. 0.26; examples of differentially regulated
features are presented in Figure 2). Many features showed similar patterns of level differ-
ence, which is due to the high correlation between them within modalities (Supplementary
Figure S3).
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Figure 2. Top 3 most differentially changed features in metabolomic (A) and radiomic (B) modalities.

3.2. Development of Machine Learning Models

Before modeling, we removed highly correlated features in each modality. The MRCV
procedure used for parameter tuning and feature selection (Supplementary Figures S4 and
S5) resulted in the following models: (i) metabolomics—11 features for LR and 14 for RF;
(ii) radiomics—11 features for LR and 8 for RF. Only three features were common between
both ML models in metabolomics mode (PC(41:5), PC-O(42:6), and PC(42:7)) and three in
radiomics mode (glcm InverseVariance, shape Flatness, and glcm Id). As can be observed
in Supplementary Figures S6 and S7, as well as Supplementary Table S2, the LR approach
has good classification performance in training and test sets for radiomic data. However, in
the case of metabolomics, RF has better performance in the test set. Next, the results from
metabolomic and radiomic modalities were integrated within each ML approach using
four different methods (see Section 2). Statistical and product integrations show the best
results. In both, more than half of the patients in the test set were properly classified by
all models after integration (Figure 3). In most cases, integration decreased the number of
false positive and negative findings, giving superior results compared to a model based on
only one modality.

Looking at the model performance indices on the test set after applying the estimated
classification thresholds, we observed diverse results. The RF model was better than the LR
model for metabolomic data; however, it was worse for radiomics mode and after statistical
and product integration (Table 3). The overall performance was moderate with F1 scores
ranging from 0.55 to 0.8 and AUCs ranging from 55.5% to 84.8%. ROC curve analysis
showed that there is a potential to tune threshold values to meet other specific goals of a
model (Figure 4). The ROC curves for the other tested integration methods are presented
in Supplementary Figure S8. Finally, the results of the training set showed that models
were not significantly overtrained (Supplementary Table S2, Supplementary Figure S9).
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Integrating classification results from two modalities slightly increased model performance
in comparison to the basic radiomics model (e.g., F1 and BAcc), regardless of the integration
method used (Table 3; Figure 4). However, this increase was not statistically significant.
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Figure 3. Heatmaps of confusion matrices for prediction models on the MOLTEST-BIS test set for
each modality and after integration. (A) Results of logistic regression models. (B) Results of random
forest models.

Table 3. Results for ML models on MOLTEST-BIS test set. The bold value shows the superiority of a
particular metric and the set of data between ML approaches. LR—logistic regression, RF—random
forest, CI—95% confidence interval.

Metric
Radiomics Metabolomics Statistical Integration Product Integration

LR RF LR RF LR RF LR RF

Sensitivity 0.60 0.70 0.55 0.70 0.70 0.75 0.78 0.63

Specificity 0.85 0.70 0.55 0.55 0.80 0.60 0.73 0.69

PPV 0.80 0.70 0.55 0.61 0.78 0.65 0.70 0.75

NPV 0.68 0.70 0.55 0.65 0.73 0.71 0.80 0.55

F1 0.69 0.70 0.55 0.65 0.74 0.70 0.74 0.68

Balanced accuracy 0.73 0.70 0.55 0.63 0.75 0.68 0.75 0.66

AUC (%) 83.0 70.3 55.5 60.3 83.0 73.0 84.8 71.5

AUC 95% CI 70–96 53–87 38–74 42–79 70–96 56–89 73–97 55–88
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4. Discussion

We used two different modalities to build the prediction model for early lung screen-
ing support: (i) radiomic characteristics from LDCT scans collected in a large cohort, and
(ii) serum metabolome profiles collected in a study with a smaller sample size. In the
univariate analysis, a pool of significant features was found for radiomics. In contrast,
for metabolomics, none of the investigated serum metabolome features were significant
(FDR < 0.05). This indicates that LDCT has a better ability to distinguish lung cancer in
the presented study on a single feature level. Yet, the size of the cohort used for radiomics
was much bigger than for metabolomics, which can impact the observed result. Out of the
significant radiomic features, run percentage (RP) can be primarily distinguished, which
measures the coarseness of the texture by taking the ratio of the number of runs and num-
ber of voxels in the ROI. A higher value indicates a finer texture, and in Figure 2B (first
graph), we can observe much lower values for malignant cases. The second highlighted
feature is long run emphasis (LRE), which measures the distribution of long run lengths,
and greater value indicates longer run lengths and more coarse structural textures. For
malignant cases, we observed a higher value of LRE, as expected (Figure 2B, second graph).
Next, we constructed two separate models for both modalities. Again, the model built
using radiomic features showed better performance compared to the metabolomics-based
model. The AUC for the best radiomics model in the test set was 83% (LR model), while for
metabolomics, it was only 60.3% (RF model). The better-performing metabolomics model
(RF) included 14 features (namely, Histidine, Spermidine, PC(41:5), PC(42:7), PC(42:2),
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PC(33:4), PC-O(42:6), LPC-O(16:1), AC(0:0), AC(8:1), CE(17:0), TG(51:1), TG(51:4), and
TG(44:4)). Noteworthily, a reduced level of histidine was previously noted in the sera
of patients with non-small-cell lung cancer [24]. Additionally, increased concentrations
of spermidine were noted in serum/plasma and urine of patients with different types
of malignancies including lung cancer [25]. However, for other (lipid) components, data
on specific associations with lung cancer was not determined. When radiomic features
were considered, better performance was observed for the LR model with the following
features: glcm InverseVariance, shape Flatness, glszm ZonePercentage, ngtdm Strength,
firstorder InterquartileRange, glrlm RunLengthNonUniformityNormalized, glcm MCC,
glrlm LongRunLowGrayLevelEmphasis, glcm Id, glszm LargeAreaLowGrayLevelEmpha-
sis, and gldm LargeDependenceHighGrayLevelEmphasis. Several features were previously
reported in other studies, e.g., LargeAreaLowGrayLevelEmphasis shows effective discrimi-
nation of lung cancer from tuberculosis with AUC 92% [26]. Other examples are ngtdm
Strength and glszm ZonePercentage, which showed the effectiveness of the response to
immunotherapy for non-small-cell lung cancer [27]. Finally, we integrated predictions
from both modalities. The product integration on LR shows slightly better performance
compared to a single radiomics model, with an AUC of 84.75%. Moreover, the observed
NPV was the highest (80%). Yet, the highest PPV was observed for radiomic features and
the LR model.

To summarize, our results indicate that combining the outcomes of the machine learning
models based on two different modalities—LDCT radiomics and serum metabolomics—slightly
increases the potential of available methods to build diagnostic tools that could discriminate
benign and malignant nodules detected in participants of lung cancer screening programs.
However, the preliminary results of our pilot study must be extended and validated
using larger cohorts from other screening studies. Hopefully, authors of future screening
programs will perform metabolic and radiomic analyses and share their data. Moreover, a
combination of radiomics with other molecular or genomic signatures may result in more
promising outcomes. For example, the combination of miRNA classifiers with radiomic
features resulted in the increased performance of pancreatic cancer diagnosis [28]. Also, a
combination of radiomics with clinical characteristics may further enhance the performance
of classification models, which was previously reported for the discrimination between
pneumonia-like lung cancer from pulmonary inflammatory lesions [29].
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for ML models on train and test set (without removal of MOLTEST-BIS from test set). The bold value
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annotated regions. Figure S2. Distribution of signal skewness for each omics and investigated group.
Panel A shows metabolomics while panel B shows radiomics results. High values on the x-axis
represent right skewness, while low values represent left skewness. Figure S3. Spearman correlation
between features in metabolomics (A) and radiomics (B) modalities. Figure S4. Elbow plot of feature
ranking for logistic regression approach. Panels A and B show results for metabolomics and radiomics
respectively. Pale blue marks features that are used in the final classifier. Figure S5. Elbow plot of
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random forest. Figure S9. ROC with given AUC for the training set, test set, and each modality. Panel
A shows results for logistic regression; Panel B shows results for random forest.
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3. Ostrowski, M.; Marjański, T.; Dziedzic, R.; Jelitto-Górska, M.; Dziadziuszko, K.; Szurowska, E.; Dziadziuszko, R.; Rzyman, W. Ten
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