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Abstract: Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts,
and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles)
and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are
purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after
discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or
bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated
that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct
lipid and protein composition as well as functions. These findings support the view that matrix
vesicles and media vesicles released by mineralizing cells have different functions in mineralized
tissues due to their location, which is anchored to the extracellular matrix versus free-floating.

Keywords: media extracellular vesicles; matrix vesicles; cell-cell communication; biomineralization;
collagenase; ultracentrifugation

1. Introduction

Most cells and tissues release nanoparticles and microparticles which can be
vesicular [1–8] or non-vesicular [9–11]. Their lipid and protein composition and
functions may differ depending on the cell type and physiological or pathological
conditions [12–19]. There is a consensus to classify vesicular particles (extracellular vesi-
cles) based on their size, density, or mechanism of biogenesis [20,21]. Small-sized vesicles
have a size ranging from 40 to 150 nm (sometimes referred to as exosomes), medium-sized
vesicles have a size ranging from 100 to 300 nm, while large-sized vesicles can have a size
up to several microns (this class includes apoptotic bodies) [21]. Extracellular vesicles may
originate from the endosomal network (exosomes) or through the budding of the plasma
membrane (ectosomes) [8]. Non-vesicular nanoparticles, including exomeres (smaller than
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50 nm) [10] and supermeres [11], are also found in the extracellular medium. Supermeres
are separated from exomeres after high-speed ultracentrifugation of supernatants [11].
Extracellular vesicles can interact with the extracellular matrix and modulate its structure
and function [22,23]. Herein, we will discuss a few examples of extracellular matrix-bound
vesicles (matrix vesicles), how they can be extracted, and how they are different from the
extracellular vesicles unbound to the extracellular matrix (media extracellular vesicles
extracted directly from the extracellular medium or, more simply, media vesicles).

2. Discovery of Matrix Vesicles

Lipid components in the mineralizing front of cartilage were revealed by Sudan Black
B staining of growth plate cartilage [24–26]. Later, electron microscopy indicated the pres-
ence of 100–300 nm in diameter vesicular structures at the site of epiphyseal cartilage in
mice [27,28]. Cartilage at an early stage of calcification of 1-month-old guinea pigs and at
proximal tibial-distal femoral epiphyses of 3-day-old rats showed the presence of roundish
bodies, which gradually become filled with crystallites [29]. The first extraction of mineral-
izing vesicles was carried out using bovine fetal or rabbit epiphyseal cartilages [30,31]. A
collagenase digestion of the epiphyseal cartilage, followed by several differential centrifu-
gations, was performed [30–32]. An enriched amount of cholesterol, phosphatidylserine,
and sphingomyelin was found in mineralizing vesicles, as compared to the composition
of plasma membranes [33–35]. The isolated vesicles had high tissue-nonspecific alkaline
phosphatase (TNAP) activity [32,36,37]. The first mineralizing vesicles were isolated di-
rectly from cartilage tissues and were released after collagenase digestion. They were not
extracted from either the extracellular medium or biological fluids. At that time, mineraliz-
ing vesicles were referred to as matrix vesicles or collagenase-released vesicles [38]. Since
their initial discovery in the growth plate cartilage, other mineralizing vesicles have been
found at the first mineral deposit site during intramembranous bone formation [39], in
fracture callus [40], in developing dentin [41], in pathological calcification of valves [42],
and in osteosarcoma [43].

3. Discovery of Media Vesicles

The discovery of media (extracellular) vesicles has been reviewed elsewhere [20,44–46].
Here, we briefly communicate work describing the occurrence of extracellular vesicles not
bound to the extracellular matrix. Early work on the clotting factors in human plasma indi-
cated the presence of blood corpuscles, in addition to the thromboplastic agent, sedimented
at 31,000× g [47]. The material extracted from plasma and separated by ultracentrifuga-
tion was enriched in phospholipids and showed coagulant properties resembling those
of platelet factor 3 [48]. Around 1960, several pieces of evidence suggesting the occur-
rence of extracellular vesicles in platelets [48] secreted by mammalian cells [49], as well as
non-mammalian phagocytic cells [50,51] were collected by means of electron microscopy.
Extracellular synaptic vesicles at sites of the periaxonal space within the mouse atrium were
evidenced by electron microscopy [52,53]. It was also discovered that extracellular vesicles
can contribute to neuronal signaling [54,55]. Addition of the A23187 cation ionophore to hu-
man red blood cells induced a discocyte to echinocyte morphological change and the release
of extracellular vesicles enriched in 1,2-diacylglycerol [56]. Extracellular vesicles released
from Ochromonas danica were evidenced by electron microscopy in the early 1970s [57].
It was not a fixation artifact since extracellular vesicles could be isolated [57]. Similarly,
other microorganisms such as Candida [58], Corynebacterium [59], Acinetobacter [60], and
trypanosoma cruzi [61] can release extracellular vesicles. The first indication that these
particles could mediate functional biological effects was indicated by the discovery that
major histocompatibility complex (MHC) class II-containing extracellular vesicles from B
lymphocytes could regulate the activity of T cells [62]. Later, horizontal RNA transfer was
reported between extracellular vesicles and recipient cells [63,64]. Extracellular vesicles
were referred to by several names around this time by groups working in different fields
and it was often unclear exactly what these particles were [20]. In this respect, it is important
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to emphasize that exosomes are generated via the endocytic pathway, which correspond to
one subcategory of extracellular vesicles [65,66]. Another category of extracellular vesicles
which shed directly from plasma membranes are called ectosomes [20]. Since the sizes
of ectosomes and exosomes may overlap and sometimes no specific markers have been
identified, they are collectively referred as extracellular vesicles [20].

4. How to Differentiate Matrix Vesicles and Media Vesicles

In this section, we describe the model showing that not all types of extracellular
vesicles can be found in the extracellular medium, but a distinct population remains
strongly bound to the extracellular matrix. The model can be validated by comparing the
lipid and protein composition and functions of the extracellular vesicles isolated directly
from the extracellular medium (media vesicles) with those of the extracellular vesicles
isolated after discarding the extracellular medium and subjecting the cells and/or tissues
to an enzymic digestion (matrix vesicles) (Figure 1).

There is no perfect extraction method to isolate extracellular vesicles, and therefore
the isolation step should be accompanied by a biochemical analysis to fully characterize
the extracellular vesicles and their functions [21,67]. Several pieces of evidence from
studying mineralizing cells support the model that media vesicles are distinct from matrix
vesicles [38,68]. In the following sections, we will compare the properties of media vesicles
and matrix vesicles released from chondrocytes, osteoblasts, and smooth muscle cells.

Media vesicles have been isolated by using a variety of published protocols [69]
(Figure 1A). Ultracentrifugation, polyethylene glycol precipitation, total exosome isola-
tion reagent, and an aqueous two-phase system with and without repeat washes or size
exclusion chromatography have been assessed for their ability to extract extracellular
vesicles [70]. Among these methods, size exclusion chromatography and ultracentrifu-
gation were favored for overall efficiency [70]. Although there are variations in sample
purity between isolation methods, scalability, and yield, ultracentrifugation represents the
most common method but remains not specific. Further specificity could be gained after
ultracentrifugation by using affinity chromatography or a combination of size exclusion
chromatography with ultrafiltration to maximize both yield and purity [71]. One of the
hallmarks of the mineralization process is the presence of tissue non-specific phosphatase
(TNAP) activity of the cells and of extracellular vesicles [38]. The expression of TNAP
in media vesicles and in matrix vesicles could be compared to further substantiate their
differences. In this paragraph, we briefly describe the ultracentrifugation method since it is
commonly applied for the recovery of both media and matrix vesicles. Briefly, extracellular
medium is harvested and centrifuged at 1000× g for 30 min at 4 ◦C to remove cells and
bigger debris. A second centrifugation, which is optional, can be performed at 20,000× g
for 30 min to isolate large-sized media vesicles along with smaller debris (smaller debris
can be removed by a successive step based, for instance, on chromatography). The final
centrifugation step is performed at 100,000× g for a time ranging from 30 min to 2 h. The
pellet obtained at this stage contain small- and medium-sized media vesicles. The pellet is
resuspended preferably in ice-cold synthetic cartilage lymph, which is a buffer matching the
electrolyte composition of the extracellular milieu in cartilage and bone tissues. This is not
the case for most media vesicle studies. However, buffer composition has been optimized to
obtain the most stable matrix vesicles [72]. To compare media vesicles and matrix vesicles,
the same buffer should be used. In this respect, most of the findings concerning the com-
parisons of properties of media vesicles and matrix vesicles are from mineral-competent
cells. The synthetic cartilage lymph contains 1.42 mM Na2HPO4, 1.83 mM NaHCO2,
12.7 mM KCl, 0.57 mM MgCl2, 100 mM NaCl, 0.57 mM Na2SO4, 5.55 mM glucose, 63.5 mM
sucrose, and 16.5 mM 2-{2-hydroxy-1,1-bis (hydroxymethyl) ethyl} amino)-propanesulfonic
acid (pH 7.4) [72,73].
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population can be extracted. (B) Isolation of matrix vesicles. The extracellular medium is discarded. 
Cells and the extracellular matrix are washed with synthetic cartilage lymph [72,73]. An enzymatic 
digestion, for instance, with collagenase, is performed to degrade the collagen fibers and release 
matrix vesicles. After several centrifugation steps, matrix vesicles are obtained. * = optional step. 
Abbreviations: SUR = supernatant; PEL = pellet. 

Most matrix vesicles with high TNAP activity are released from fully differentiated 
and mineral competent cells, while undifferentiated cells release extracellular vesicles 
with little TNAP activity [68]. Matrix vesicles are released from hypertrophic 
chondrocytes [28,28,74–77]. Hypertrophic chondrocyte differentiation is associated with 
high TNAP activity, and the synthesis and secretion of type X collagen followed by type 
II collagen by proliferating and pre-hypertrophic chondrocytes [28,74–76]. Expression of 
type I collagen by hypertrophic chondrocytes might be associated with differentiation into 
osteoblast-like cells [77–79]. Matrix vesicles correspond to mineralizing cartilage, where 
the growing cartilage is replaced by bone, while articular cartilage matrix vesicles 
originate from normal cartilage that does not undergo matrix mineralization except in 
pathologic conditions such as osteoarthritis [80]. Articular matrix vesicles from normal 
cartilage show low TNAP activity, however during osteoarthritis chondrocytes can 
become hypertrophic and fully mineralized. They release articular matrix vesicles which 
can induce pathologic calcium crystal deposition in articular cartilage matrix [81]. The 
release of matrix vesicles by osteoblasts is stimulated in osteogenic medium containing 
ascorbic acid and beta-glycerophosphate [82]. TNAP activity of Saos-2 cells increased with 
the duration of the treatment with osteogenic factors which coincided with the amount of 
released matrix vesicles [83]. Matrix vesicles have been isolated by the collagenase-
digestion method [38,84,85] (Figure 1B). Briefly, tissues (for instance, growth plates and 
epiphyseal cartilage from 17-day-old chicken embryos) are cut into 1–3 mm thick slices 
and washed with synthetic cartilage lymph. In the case of cells (for instance, osteoblast 
and chondrocyte cultures), the extracellular medium is discarded, and the cells embedded 

Figure 1. (A) Isolation of media vesicles. Cells and the extracellular matrix are discarded. The
extracellular medium is subjected to two–three centrifugation steps to obtain either the large-sized
vesicles or small- and medium-sized vesicles. Extracellular vesicles anchored to the collagenous
matrix (i.e., matrix vesicles) remain mostly attached to the extracellular matrix and only a small
population can be extracted. (B) Isolation of matrix vesicles. The extracellular medium is discarded.
Cells and the extracellular matrix are washed with synthetic cartilage lymph [72,73]. An enzymatic
digestion, for instance, with collagenase, is performed to degrade the collagen fibers and release
matrix vesicles. After several centrifugation steps, matrix vesicles are obtained. * = optional step.
Abbreviations: SUR = supernatant; PEL = pellet.

Most matrix vesicles with high TNAP activity are released from fully differentiated and
mineral competent cells, while undifferentiated cells release extracellular vesicles with little
TNAP activity [68]. Matrix vesicles are released from hypertrophic chondrocytes [28,28,74–77].
Hypertrophic chondrocyte differentiation is associated with high TNAP activity, and the
synthesis and secretion of type X collagen followed by type II collagen by proliferating and
pre-hypertrophic chondrocytes [28,74–76]. Expression of type I collagen by hypertrophic
chondrocytes might be associated with differentiation into osteoblast-like cells [77–79].
Matrix vesicles correspond to mineralizing cartilage, where the growing cartilage is re-
placed by bone, while articular cartilage matrix vesicles originate from normal cartilage
that does not undergo matrix mineralization except in pathologic conditions such as
osteoarthritis [80]. Articular matrix vesicles from normal cartilage show low TNAP activity,
however during osteoarthritis chondrocytes can become hypertrophic and fully mineral-
ized. They release articular matrix vesicles which can induce pathologic calcium crystal
deposition in articular cartilage matrix [81]. The release of matrix vesicles by osteoblasts is
stimulated in osteogenic medium containing ascorbic acid and beta-glycerophosphate [82].
TNAP activity of Saos-2 cells increased with the duration of the treatment with osteogenic
factors which coincided with the amount of released matrix vesicles [83]. Matrix vesicles
have been isolated by the collagenase-digestion method [38,84,85] (Figure 1B). Briefly,
tissues (for instance, growth plates and epiphyseal cartilage from 17-day-old chicken em-
bryos) are cut into 1–3 mm thick slices and washed with synthetic cartilage lymph. In the
case of cells (for instance, osteoblast and chondrocyte cultures), the extracellular medium
is discarded, and the cells embedded in the collagenous matrix are washed with syn-
thetic cartilage lymph. The osseous and cartilage tissues or cells are vortexed in synthetic
cartilage lymph containing 1 mM CaCl2 and 100–200 U of type-I collagenase from Clostri-
tidium histolyticum at 37 ◦C for 180 min. Since the quality of the commercial collagenase is
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variable, the amount of the collagenase to be adjusted can be determined by measuring
TNAP activity of the matrix vesicles [84]. Indeed, scientists have taken advantage of this
to define matrix vesicle purity as having TNAP activity that is a minimum of two-fold
greater than that of the plasma membrane fraction [86]. From this stage, either a three-step
centrifugation [87] or a two-step centrifugation [88] is usually performed. The collagenase-
digested sample is filtered through a nylon filter and centrifuged at 600× g for 30 min at
4 ◦C to remove cells and fragments of the extracellular matrix. The pellet is discarded, and
the supernatant is subjected to an optional centrifugation step at 20,000× g for 30 min at
4 ◦C to remove membrane debris. Then, the supernatant is ultracentrifuged at 80,000× g
for 60 min at 4 ◦C. The final supernatant is removed, while the pellet, containing matrix
vesicles, is washed three times with synthetic cartilage lymph to remove collagenase and
calcium. Matrix vesicles shall not be frozen—however they can be stored at 4 ◦C up to
five days [84] to preserve their original enzymatic activity, including those of TNAP, Pi
and Ca transporters, and other membrane proteins. The freezing thaw process can induce
membranous defects which can leak ions and/or other soluble particles. Cryoprotectant, as
sucrose or trehalose, can be added [89] to preserve the integrity of extracellular vesicles [89].
The collagenase-digestion method provides a relatively high amount of matrix vesicles dis-
playing a TNAP specific activity of around 15 to 30 µmole min−1 mg−1 [84]. Alternatively,
trypsin [90], trypsin/collagenase [91], liberase/blendzyme-1 [92], hyaluronidase [80,85],
and hyaluronidase/collagenase [91] can be used to release matrix vesicles from the extra-
cellular matrix (Table 1). Collagenase digestion is among the most used digestion method
to isolate matrix vesicles which can yield a high ratio of alkaline phosphatase activity in
matrix vesicles compared to that in media vesicles or plasma membrane (Table 1). The col-
lagenase and hyaluronidase digestion, which removed the surface collagens on the matrix
vesicles, induced a loss of calcium uptake [91] (Table 1). In contrast collagenase and trypsin
digestion, which maintained a part of surface collagens on matrix vesicles, preserved the
calcium uptake [91] (Table 1). The process of trypsin digestion resulted in the release of
matrix vesicles from the extracellular matrix, exhibiting an alkaline phosphatase activity six
times greater than that of the plasma membrane [93] (Table 1). Liberase and blendzyme1,
which is gentle digestion, was the less efficient method to release matrix vesicles than the
other digestion methods, as indicated by the lower ratio of alkaline phosphatase in matrix
vesicles as compared to that in media vesicles [92] (Table 1).

Although collagenase digestion is often used to release the cells from the extracellular
matrix, enzymatic digestion may alter/damage surface protein expression of the matrix
vesicles. For instance, the main collagen identified in matrix vesicles from growth plate
cartilage is collagen type VI, which is consistent with the resistance of this type of collagen
to the collagenase digestion [94]. Only three peptides corresponding to cartilage specific
collagen type X are identified from proteomic analysis [94]. Generally, the quality of matrix
vesicles is assessed by TNAP activity, an ability to form apatites inside MVs, turbidity
measurements, and morphological assessment by electron microscopy [38,84]. As a result
of matrix vesicles not being lysed during isolation, their native conformation remains intact.
Thus, they remain right side out, with the ectoenzyme TNAP facing outward [85]. Each
digestion method displays a different efficiency to release matrix vesicles and/or maintain
their physical and biochemical properties [91].

One essential function of matrix vesicles is to initiate apatite formation and to deposit
it onto collagen fibers [38,95,96]. Several pieces of evidence support that matrix vesicles
are strongly bound to the extracellular matrix. Northern blot and immunohistochemical
analyses on matrix vesicles from chondrocytes revealed an increase in annexin A5 and
type I collagen [76]. Annexin A5 is highly enriched in matrix vesicles and was found
to bind to native type I, II, and X collagens [97–100]. Neutral metalloproteases 2, 9, and
13 [101,102] were found in matrix vesicles, which would suggest that the initiation of
matrix vesicle-induced mineralization is coupled with the degradation of the inhibitory
proteoglycan matrix [38]. Matrix vesicles are anchored within the extracellular matrix via
integrin binding to type II collagen [103].
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Table 1. Properties, ratio of TNAP activity of matrix vesicles (MVs): Media extracellular vesicles
(media EVs), mineralization assay, and determination of apatite in the lumen of matrix vesicles
subjected to different types of enzymatic digestion. * refers to the ratio of TNAP activity of matrix
vesicles:basolateral membranes and ** refers to the ratio of TNAP activity of matrix vesicles: plasma
membranes. IR = infrared; ND = not determined.

Digestion Properties Samples Ratio TNAP Mineralization Apatite in References

Process Activity Assay Lumen
MVs: Media EVs

Growth plate From 4 to 6 YES YES (IR) [88]
cartilage chicken

Collagenase Widely used Primary From 8 to 12 YES ND [87]
Chondrocytes

Saos2 cells Around 16 * YES YES (IR) [83]

Collagenase and MVs without Growth plate ND Calcium uptake Calcium uptake [91]
hyaluronidase surface collagens cartilage chicken was impaired was impaired

Collagenase and MVs with surface Growth plate ND Calcium uptake Calcium uptake [91]
trypsin attached collagens cartilage chicken was optimum was optimum

Hyaluronidase Used for Non mineralizing ND ND ND [80]
articular articular

chondrocytes chondrocytes

Trypsin MG-63 cells Around 6 ** ND ND [93]

Liberase and Gentle digestion MC3T3-E1 From 0.7 to 0.8 ND ND [92]
blendzyme-1

In the next sections, we will ask the question whether there are differences on composi-
tion and functions of media vesicles and matrix vesicles released by mineralizing cells. An
advantage to focus essentially on the extracellular vesicles released from mineralizing cells
is the possibility to discriminate the two classes of vesicles by their ability to accumulate
apatite in their lumen.

5. Matrix Vesicles and Media Vesicles from Growth Plate Cartilage and Hypertrophic
Chondrocytes

Chick growth plates are often used to obtain a large amount of matrix vesicles [38].
Collagenase-released vesicles are distinct from the vesicles isolated without collagenase
treatment [104]. Growth plate chondrocytes do produce vesicles typical of exosomes that
they release into the culture media [105]. However, they differ significantly from matrix
vesicles [85] as they are not enriched in alkaline phosphatase activity, and possess different
enzymes than are found in matrix vesicles [85]. Matrix vesicles, unlike exosomes, are
anchored to the extracellular matrix [85]. Without enzymatic digestion, at least four types
of media vesicles can be released from the growth plate cartilage, as evidenced by sucrose
gradient ultracentrifugation (Figure 2A) [94]. Conversely, collagenase digestion of the
growth plate cartilage yields only two lighter fractions which were identified as matrix
vesicles. Matrix vesicles have the lowest density (ρ = 1.12–1.14 g.cm−3), the highest lipid to
protein ratio (around 2–3 mg/mg), and the highest TNAP specific activity (Figure 2B) [94].
Media vesicles, extracted without collagenase treatment, have detectable TNAP activity
but they do not induce mineral formation well. Matrix vesicles and media vesicles have
distinct protein profiles (Figure 2C) [94].
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Figure 2. TNAP activity and protein profiles of media vesicles and matrix vesicles. (A,B) Extraction
of media vesicles from growth plate cartilage of chicken embryos without collagenase digestion by a
differential centrifugation in a sucrose gradient (A). Four fractions, labelled a (ρ = 1.12–1.14 g cm−3),
b (ρ = 1.20–1.21 g cm−3), c (ρ = 1.30–1.32 g cm−3), and d were evidenced in media vesicles (black trace),
while two fractions were extracted from growth plate cartilage of chicken embryos with collagenase
digestion labelled a (ρ = 1.12–1.14 gcm−3) and b (ρ = 1.20–1.21 gcm−3) (red trace). Fraction labelled
with “a” corresponds to functional matrix vesicles since they display high TNAP activity and induce
mineralization. (C) The protein profile of matrix vesicles is distinct from each fraction of media vesicles
as indicated by gel electrophoresis. Adapted from [94].

Earlier findings indicated that the (media) vesicles in the fractions obtained without
collagenase treatment and isolated from sucrose gradient were distinct from the collagenase-
released (matrix) vesicles [104]. The osmotic pressure induced by sucrose gradient could
affect the mineral property of matrix vesicles due to the loss of ability to accumulate Ca and
P in the lumen [38,104]. Percoll gradient isolation enabled researchers to obtain a fraction
with two major populations of matrix vesicles with one having mineralizing functions
and the other not [106], however, this method is rarely used. Therefore, the experimental
evidence that matrix vesicles can accumulate Ca and P in the lumen was obtained from
vesicles extracted after collagenase digestion and centrifugation but without using sucrose
gradient (Figure 2B). Transmission electron microscopy coupled with energy dispersive
X-ray spectroscopy of matrix vesicles indicated that the Ca/P ratio in neat matrix vesicles
(that is, in the absence of extracellular Ca2+) was lower than that in the vesicles in the
presence of extracellular Ca2+ [107], which confirmed the calcium influx inside the vesicles
(Figure 3A–C). Infra-red analysis of mineral deposits inside matrix vesicles indicated the
presence of apatite (Figure 3D).

Matrix vesicles have high levels of cardiolipin and sphingomyelin compared to the
plasma membrane [34], while phosphatidylserine and phosphatidylinositol are enriched in
the inner leaflet of the phospholipid bilayer [32,108].

As an alternative to growth plate cartilage, chondrocyte cultures [74,86,109–123] can
be used as a starting material to compare the properties of media vesicles and matrix
vesicles. Chondrocytes isolated from the proliferating and hypertrophic regions of the
growth plate differ significantly in their ability to release TNAP-rich matrix vesicles [105].
Functional matrix vesicles with high TNAP specific activity are usually extracted from
hypertrophic chondrocytes [38]. To stimulate cell differentiation, 50 µg·mL−1 ascorbic acid
and 10 mmol· L−1 β-glycerophosphate are added to the primary chondrocytes isolated
from the articular cartilage of 4–6 days old mice [124]. β-glycerophosphate, often used to
stimulate mineralization of chondrocytes in culture, does not correspond to physiological
conditions. As an alternative, 2, 4, 7 or 10 mM inorganic phosphate can be added to
stimulate mineralization in chondrocytes [125]. From this point, hypertrophic chondrocytes
are washed with synthetic cartilage lymph and treated with collagenase followed by several
differential centrifugations to obtain matrix vesicles (Figure 4A, left side). The discarded
extracellular medium is subjected to several centrifugation steps to obtain media vesicles,
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including apoptotic bodies and exosomes (Figure 4A, right side). It is worth noting that
matrix vesicles from primary hypertrophic chondrocytes lack ALIX and CD9 (Figure 4B),
however CD9 was detected in matrix vesicles from growth plate cartilage by proteomic
analysis [94]. Matrix vesicles are distinct from small-and medium-sized media vesicles
enriched in ALIX and CD9, which were isolated from the same hypertrophic chondrocytes
(Figure 4B, top panel). Large-sized vesicles (apoptotic bodies) contain calnexin (Figure 4B,
top panel). In general, media vesicles are not homogeneous since they may contain variable
exosomal and non-exosomal subpopulations [126]. We can’t exclude that matrix vesicles
contain other subpopulations [85]. TNAP activity is high in matrix vesicles in contrast to
exosomes or other vesicles (Figure 4B, bottom panel). It was earlier reported that apoptotic
bodies and matrix vesicles have distinct mineral forming property [127]. In contrast to
matrix vesicles, media vesicles are less able to induce mineral formation, regardless of
size, as indicated by the turbidity (Figure 4C). There is the possibility that a small fraction
of matrix vesicles and/or other types of mineralizing vesicles could be present in media
vesicles despite the low TNAP activity due to the difficulty to obtain a pure fraction of one
type of extracellular vesicles. It was earlier reported that microvilli are the precursors of
matrix vesicles, and that retraction of the supporting microfilament network is essential
for the release of these structures [115] while exosomes originate from an endosomal
pathway [128].
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Figure 3. Electron microscopy and infrared analyses of matrix vesicles. Matrix vesicles were incubated
in synthetic cartilage lymph devoid of Ca2+ (MV Neat) or supplemented with 2 mM Ca2+ (MV+Ca2+)
for 24 h, then dried and analyzed by means of transmission electron microscopy coupled with X-ray.
(A) TEM images (scale bars are 500 nm) of matrix vesicles devoid of (arrow empty circle), partially
filled with (arrow partly filled circle), and fully filled with mineral deposits (arrow full filed circle).
(B) Frequency of matrix vesicles devoid of (white area), partially filled with (grey area), and fully
filled with (black area) mineral deposits. (C) Ca/P ratio of mineral deposits found in matrix vesicles
incubated in synthetic cartilage lymph devoid of Ca2+ (MV Neat, hatched area) or supplemented with
2 mM Ca2+ (MV+Ca2+, cross hatched area) as measured by transmission electron microscopy coupled
with energy dispersive X-ray spectroscopy. Statistical analysis was performed by Student’s t-test.
** p < 0.1(D) The top trace is the infrared spectrum for MV+Ca2+ after background subtraction of the
MV Neat sample (middle trace) and subsequent amplification by a factor of four to better resolve
the peaks. The bottom trace is the infrared spectrum of crystalline apatite as a control. Adapted
from [107].
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Figure 4. Matrix vesicles and media vesicles from primary hypertrophic chondrocytes. (A) Scheme of
purification of matrix vesicles and media vesicles. (B) Top panel: Western blot of calnexin (marker of
apoptotic bodies), Alix (marker of the syndecan-syntenin-Alix pathway associated with ESCRT-III),
and CD9 (sometimes referred as endosomal marker). Matrix vesicles are distinct from media vesicles
enriched with Alix and CD9. Bottom panel: TNAP specific activity of cells, apoptotic bodies, matrix
vesicles and extracellular vesicles (mostly exosomes) indicating that MVs had the highest specific
TNAP activity. Statistical analysis of TNAP specific activity of apoptotic bodies, matrix vesicles
and extracellular vesicles vs cells was performed by Student’s t-test. ** p < 0.1. (C) Turbidity at
340 nm induced by the addition of 2 mM Ca2+ and 3.41 mM Pi in synthetic cartilage lymph containing
either matrix vesicles, chondrocytes, or small- and medium-sized extracellular vesicles (including
exosomes), or large-sized vesicles (apoptotic bodies). Only matrix vesicles induced a significant
turbidity, suggesting mineral formation. (Adapted from [87]). Abbreviations: SUR = supernatant;
PEL = pellet.

6. Matrix Vesicles and Media Vesicles from Differentiated Osteoblasts

Human osteosarcoma Saos-2 cells are often the cellular source to extract matrix
vesicles [83,129–133] since they can produce matrix vesicles and mineralize the extracel-
lular matrix [134]. Other osteoblast-like cell lines include rat osteosarcoma ROS 17/2.8
cells [82,110,135–137], C57BL/6 mouse calvaria MC3T3 (cells or sub-line MC3T3-E1) [82,92,
110,135,136], human osteosarcoma U2-OS cells (Jiang et al. 2013), human osteosarcoma MG-63
cells [82,110,135–137], and human fetal osteoblast hFOB [131]. Matrix vesicles are extracted
from mineralizing osteoblasts fully differentiated after two–three weeks of incubation in
an osteogenic medium containing ascorbic acid (50–100 µg/mL) and β-glycerophosphate
(7.5–10 mM) [82]. Indeed, extracellular vesicles derived from non-mineralizing osteoblasts
were not found to enhance mineralization in human bone marrow-derived mesenchymal stem
cells in contrast to those extracted from mineralizing osteoblasts stimulated by exogeneous
phosphate [138]. Not only osteogenic medium may affect the mineral properties of cells.
Inflammatory cytokines can induce mineralization by influencing the enzymes regulating
the pyrophosphate (inhibitor of mineralization) to phosphate ratio [81]. Extracellular vesi-
cles produced by IL-1β treated mesenchymal stem cells have altered ratio of ectonucleotide
pyrophosphatase/phosphodiesterase 1 to alkaline phosphatase and less pyrophosphate in
the vesicle fraction [139]. Calcium nodules characteristic for osteoblastic mineralization can
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be detected by means of Alizarin Red-S staining after 6–12 days of incubation in an os-
teogenic medium (Figure 5A,B). TNAP specific activity is higher in Saos-2 cells stimulated
with 50 µg/mL ascorbic acid and 7.5 mM β-glycerophosphate than in unstimulated cells
(Figure 5C).
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Figure 5. Mineralization by Saos-2 cells. (A) Saos-2 cells were incubated for 12 days in the absence
(control) or presence of 50 µg/mL ascorbic acid and 7.5 mM β-glycerophosphate (stimulation),
stained with Alizarin Red-S to detect calcium nodules and visualized under fluorescence microscope
using transmitted light and phase contrast filter. (B) Alizarin Red-S was solubilized in control
(grey trace) and stimulated (black trace) cell cultures by cetylpyridinium chloride and quantified at
562 nm (Results are mean ± SD, n = 3). (C) TNAP activity was calculated in control (grey trace) and
stimulated (black trace) cell cultures. Adapted from [83].

The accumulation of minerals inside the matrix vesicles embedded in bone tissues
has been observed using electron microscopy [140–142]. Transmission electron microscopy
coupled with X-ray microanalysis spectroscopy (TEM-EDS) of matrix vesicles released from
Saos-2 cells indicated that Ca and P ions or elements co-localized inside matrix vesicles
([131], Figure 6).
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Figure 6. Transmission electron microscopy coupled with X-ray microanalysis of mineralizing Saos-
2 cells. Saos-2 cells were stimulated for mineralization by treatment with 50 µg·mL−1 ascorbic
acid and 7.5 mM beta-glycerophosphate for 7 days. The cells with matrix vesicles were observed
under high performance TEM ((A), bar 500 nm) and elemental maps ((B), Calcium, Ca, red; (C),
Phosphorus, P, green) were performed using EDS. Presence of calcium and phosphorus was evidenced
in matrix vesicles containing dense materials. Co-localization of both elements ((D), yellow) and
quantitative determinations ((E), Calcium, Ca, red, Phosphorus, P, green, Calcium to Phosphorus,
yellow), provided evidence of calcium and phosphorus deposition inside vesicles, suggesting apatite
deposition in matrix vesicles’ lumen. Adapted from [143].
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Several pieces of evidence indicate that matrix vesicles secreted by osteoblast-like
Saos-2 cells bud off from the plasma membrane, especially from microvilli [128]. Cytocha-
lasin D, which inhibits actin polymerization, stimulates cell apoptosis and facilitates the
release of matrix vesicles [83]. In contrast, phalloidin, which stabilizes actin filaments,
inhibits matrix vesicle secretion, indicating that matrix vesicle secretion is induced by
actin depolymerization [83]. 93% of the proteins (262 proteins over 282) found in matrix
vesicles from Saos-2 cells are present in microvilli-like membranes from Saos-2 cells [130].
Of particular interest is that β-actin is always found in matrix vesicles from growth plate
cartilage [94], MC3T3-E1 cells [92], and Saos-2 cells [129], while β-actin is absent in media
vesicles from MC3T3-E1 cells [92] and in primary calvaria osteoblasts [144]. Matrix vesi-
cles and microvilli are enriched in cholesterol, phosphatidylserine, sphingomyelin, while
they are depleted in phosphatidylcholine and triacylglycerols in contrast to basolateral
membranes [129]. Leucine aminopeptidase (microvilli marker), annexin A2, annexin A6,
Na+/K+ ATPase, and TNAP are highly enriched in both matrix vesicles and microvilli
as compared to basolateral membranes [129]. Taken together, these findings support that
matrix vesicles bud from the plasma membrane. Initially, CD9 was considered an exosomal
marker but later it was proposed that CD9 could be linked to budding vesicles [145]. CD9
was found by proteomic analysis in matrix vesicles from MG-63 osteoblasts [93] and in
matrix vesicles from the growth plate cartilage [88], while it was undetected in matrix
vesicles from MC3T3-E1 cells [92] and Saos-2 cells [129]. Exosomal marker CD81 was also
present in matrix vesicles from MG-63 osteoblasts [93] and Saos-2 cells [129] but it remained
undetected in matrix vesicles from MC3T3-E1 [92] and the growth plate cartilage [94]. The
apparent contradiction lies from the fact that while various types of extracellular vesicles
contain several common markers, including tetraspanins, their relative proportions vary in
the different vesicle types [146]. Alternatively, since the isolation methods are not optimal,
other types of extracellular vesicles may coexist. In this respect, the quantification of the
occurrence of the different markers could contribute to determine the populations of dif-
ferent subtypes of extracellular vesicles. Alternatively, the development of more selective
methods to fully characterize the subpopulations of media vesicles and of matrix vesicles
are needed. Nevertheless, matrix vesicles appear to be distinct from media vesicles due to
their distinct TNAP specific activity and different lipid and enzyme content [93]. Matrix
vesicles and media vesicles serve a different role in bones due to their location within
mature bone, as they are anchored to the extracellular matrix versus free-floating [93].
Media vesicles can communicate with distant cells, while matrix vesicles remain close to
the parent cells [93]. Consistent with this view, local administration of matrix vesicles
from mouse bone marrow-derived stromal cell line ST2 embedded in gelatin hydrogels
restored the femoral bone defect in mice [147]. In contrast, media vesicles secreted from
either primary osteoblast or MC3T3-E1 cells can inhibit bone formation and enhance bone
resorption through osteoblast to osteoclast communication [148]. Alternatively, media
vesicles may contain a small population of matrix vesicles and/or extracellular vesicles
with mineralization properties.

7. Matrix Vesicles and Media Vesicles from Smooth Muscle Cells

Vascular calcification occurs when vascular smooth muscle cells or circulating cells
differentiate to an osteogenic-like phenotype, synthesize an extracellular matrix, and
form apatite [149]. Histologic, ultrastructural, and cytochemical techniques indicated
that extracellular vesicles are involved in arterial medial calcification [150] but they are
distinct from their bone counterparts [151]. Extracellular vesicles released by vascular
smooth muscle cells are at the sites of medial vascular calcification [152–158] and can be
involved in atherosclerosis-related vascular calcification [151,159]. Extracellular vesicles
can communicate with cells and organs to regulate vascular calcification and may serve
as therapeutic methods in vascular calcification [160]. In this respect, it is essential to
make a clear distinction between matrix vesicles and media vesicles. Matrix vesicles
extracted after a collagenase digestion [146,161–164] and media vesicles isolated without
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collagenase digestion, both from vascular smooth muscle cells cultured in an osteogenic
medium [146,153,165–170], have distinct characteristics both at molecular and functional
levels. Proteomic profiles of matrix vesicles and media vesicles from MOVAS cell line are
distinct [171]. Matrix vesicles from vascular smooth muscle cells are enriched in endosomal
CD63 as compared to media vesicles, which are enriched in CD81 and CD9 [146]. Matrix
vesicles induced calcification of recipient vascular muscle cells, while media vesicles appear
to be less efficient [146] probably due to the enriched amount of fetuin (which inhibits
calcification) in media vesicles. Media vesicles from vascular smooth muscle cells are
of exosomal origin [15]. This is supported by the presence of phosphatidylserine on the
outside layer leaflet of media vesicles [165]. It was proposed that phosphatidylserine
exposure on the external surface of extracellular vesicles together with annexin A6 could
drive the mineralization process [165], although direct experimental evidence of apatite
formation induced by media vesicles released by vascular smooth muscle cells is lacking.
TNAP-enriched matrix vesicles released from vascular smooth muscle cells subjected to
collagenase contained more minerals with higher Ca/P ratio than the less TNAP-enriched
vesicles isolated without collagenase treatment. These findings suggest a role for collagen
in promoting calcification induced by TNAP in atherosclerotic plaques [172]. To explain
why osteoporosis can contribute to vascular calcification—a calcification paradox—it was
reported that extracellular vesicles from aged bone matrix during bone resorption can
favour the adipogenesis of bone marrow mesenchymal stem/stromal cells and increase
vascular calcification [173]. So far it is still unclear if such extracellular vesicles could
originate from osteoclasts within the aged bone matrix. This opens the possibility that
osteoclasts can release matrix-vesicles and media vesicles with distinct properties than
those released from osteoblasts and from smooth muscle cells.

8. Concluding Remarks

Mineralization-competent cells (hypertrophic chondrocytes, mature osteoblasts, and
osteogenic-differentiated vascular smooth cells) secrete matrix vesicles and media vesicles
which have distinct biochemical properties (distinct protein and lipid compositions) and
biological functions (ability to accumulate calcium phosphate complex in the lumen and
induce calcification versus cell-cell communication). One general problem is that there
is no perfect method to extract media vesicles and matrix vesicles. Indeed, several pop-
ulations of extracellular vesicles may coexist in both media vesicles and matrix vesicles.
So far it appears that the relative population of TNAP-enriched extracellular vesicles is
distinct in media vesicles and in matrix vesicles. Matrix vesicles and media vesicles have
a different role in the bone due to their location—anchored to the extracellular matrix
versus free-floating [93]. Media vesicles can communicate with distant cells, while matrix
vesicles remain close to their parent cells [93]. These findings support the view that matrix
vesicles released by mineralization-competent cells are a specific class of vesicles which
modulate the properties of the extracellular matrix, while media vesicles are more prone
to participate in cell-to-cell communication to modulate cell functions. This opens the
possibility that other types of cells, not only mineral-competent cells, could secrete both
matrix vesicles and media vesicles, and the question of what their respective functions
might be in those tissues. Extracellular vesicles may represent good candidates for tissue
engineering and regenerative medicines [46,174]. In this respect matrix vesicles and media
vesicles with their distinct properties derived from osteoblasts/mesenchymal stromal cells
could have a considerable utility to mineralized tissue engineering. The conditions to
preserve matrix vesicles and media vesicles need to be further optimized for possible
therapeutical applications.
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