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Abstract: Ocular surface disease (OSD) associated with topical glaucoma drugs is a common issue
impacting treatment adherence. We aimed to identify conjunctival transcriptomic changes in glau-
coma and dry eye patients, comparing them to healthy controls. Bulbar conjunctival specimens were
collected via impression cytology from 33 patients treated for glaucoma, 9 patients with dry eye,
and 14 healthy controls. RNA extraction and bulk RNA sequencing were performed, followed by
bioinformatics analysis to detect gene dysregulation. Ingenuity pathways analysis (IPA) identified
pathways and biological processes associated with these transcriptomic changes. Sequencing analysis
revealed 200 modified genes in glaucoma patients compared to healthy individuals, 233 differentially
expressed genes in dry eye patients versus controls, and 650 genes in treated versus dry eye samples.
In glaucoma patients, 79% of altered pathways were related to host defense, while dry eye patients
showed a 39% involvement of host response, 15% in cellular proliferation and integrity, and 16% of
mitochondrial dysfunction. These findings were validated through qRT-PCR. Glaucoma patients
showed an intensified conjunctival immune response as a potential cause of OSD, whereas in dry eye
patients, in addition to the immune response, other mechanisms such as mitochondrial dysfunction
or reduced cellular proliferation were observed.

Keywords: impression cytology; glaucoma medication; ocular surface disease; RNA sequencing

1. Introduction

Ocular surface homeostasis and integrity are the major contributors to ocular protec-
tion. Numerous factors affect the ocular surface, i.e., “internal” factors, such as age and
autoimmune or metabolic diseases, and “external” factors, such as infections, contami-
nation, or contact lens wear. Moreover, the ocular surface is the gateway for antibiotics,
steroids, and glaucoma ocular drops. The conjunctiva comprises an unkeratinized epithe-
lial layer in which other cellular types reside, such as goblet cells (GCs), which prevent
pathogenic adhesion and invasion, trap debris, and provide lubrication. Mucin secretion
by GCs is regulated by the nervous system, and is altered by ocular surface conditions and
inflammatory cytokines [1]. Immune cells infiltrate the conjunctiva, i.e., primarily dendritic
cells (DCs), T cells, and neutrophils. The internal and external factors can induce damage
and stress in the conjunctival epithelium, triggering production of inflammatory media-
tors, which initiate the inflammatory cascade by immune cell recruitment and maturation.
These mediators, combined with exposure to autoantigens, can lead to an adaptive T-cell-
mediated response. Recent studies have reported the potential role of GCs in the immune
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tolerance of the ocular surface by modulating antigen delivery and the antigen-specific
immune response [1–3].

Glaucoma treatment includes hypotensive drugs to control the intraocular pressure
(IOP), the only treatable risk factor to prevent visual loss [4,5]. Several types of IOP-
lowering eye drops are available commercially: prostaglandin analogues, beta-blockers,
carbonic anhydrase inhibitors (CAIs), and sympathomimetic agents. Prostaglandin ana-
logues increase aqueous humor drainage, and the other IOP-lowering treatments inhibit
production. A fifth group, Rho-kinase inhibitors, recently approved for use in patients, are
believed to improve aqueous drainage through the trabecular meshwork by acting on the
cytoskeleton [6]. These treatments require daily application of a varying number of drops,
depending on the type and/or number of medications; 40% of patients with glaucoma are
estimated to need more than one type of IOP-lowering medication [7]. Patients treated
for glaucoma frequently present with symptoms associated with ocular surface disease
(OSD) [8,9], the prevalence of which is estimated to be about 15% among people older
than 65 years and 59% in patients with glaucoma [10]. OSD associated with glaucoma
treatment causes decreased quality of life and is associated with non-compliance with
treatment, leading to disease progression [11]. OSD in treated patients has been associ-
ated with preservatives in the drugs, specifically benzalkonium chloride (BAK) [12]. BAK
is associated with adverse effects such as ocular irritation, tear film instability, chronic
inflammation, and subconjunctival fibrosis. Mohammed et al. evaluated the effects of
different preservatives in treatment-naïve patients, profiling temporal changes in cytokines
in impression cytology and tear samples. They saw that prolonged use of BAK-preserved
drops correlated with elevated cytokine levels and ocular discomfort, while patients using
polyquad (PQ)-preserved drops also showed moderately high cytokine levels, suggesting
potential subclinical inflammation [13]. Although it is undeniable that BAK-free formula-
tions cause less toxicity, toxicities associated with the active ingredients or other excipients
also must be considered. In addition, the preservative toxicity can differ and be greater
when used alone compared with being an ingredient in a formulation [14,15]. Thus, β-
blockers have been associated with burning, prickling, foreign-body sensation, and ocular
redness [16]. These compounds may increase production of reactive oxygen species (ROS)
in the conjunctival epithelium [17] and exert a cytotoxic effect on the corneal epithelium [18].
Sympathomimetics, especially brimonidine, are associated with allergic reactions and con-
junctival edema [19,20]. The toxicity associated with CAIs is predominantly associated
with corneal endothelial cell dysfunction [21]. Finally, prostaglandins induce conjuncti-
val hyperemia not associated with inflammation [22,23]. Patients with glaucoma have
increased expression of inflammatory markers such as human leukocyte antigen-DR and
interleukin (IL)-6 in combinations of prostaglandins and β-topical blockers at the ocular
surface [24]. Different cytokines, including several interleukins, macrophage inflammatory
protein 1 alpha, or fibroblast growth factor-β, have been detected in tears of patients treated
for glaucoma, indicating that inflammation is a key factor affecting the ocular surface in
these patients [25–27]. Inflammation always results from an insult to the ocular surface.

According to the 2017 Dry Eye Workshop, dry eye is a multifactorial disease of the
ocular surface characterized by a loss of homeostasis of the tear film, accompanied by
ocular symptoms. In this disease, instability, hyperosmolarity of the tear film, inflammation,
damage to the ocular surface, and neurosensory abnormalities play important etiological
roles [28]. This syndrome is divided into two main groups: evaporative dry eye and
hyposecretory dry eye. In the evaporative subgroup, the primary alteration is found in the
lipid layer of the tear film, while in the hyposecretory subgroup, the main alterations occur
in the mucin and aqueous layers of the tear film [28,29].

In a recent study by Mauduit et al., the researchers examined dysregulated pathways in
nonobese diabetic (NOD) mice, a well-established model for investigating the development
of Sjögren’s syndrome (SS), one of the leading causes of aqueous-deficiency dry eye. The
most significant pathway up-regulated was the “TYROBP Causal Network”, which had not
been described previously in SS. This pathway is linked to macrophage activity, chemokine
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signaling, microglia phagocytosis, and apoptosis. Additionally, they observed a significant
decrease in genes related to amino acid and lipid metabolism, along with ATP production,
suggesting a mechanism contributing to the progression of the disease in these mice [30].
Changes in the composition of meibum in individuals with Meibomian gland dysfunction
(MGD) are thought to alter microbial populations, contributing to the activation and
increased abundance of immune cells, thereby leading to an inflammatory response in tears
and glandular tissue. This cascade of events impacts the differentiation of glandular cells
and their capacity to produce and release lipids, which is considered critical in initiating
pathological changes [29,31].

Furthermore, Suárez-Cortés et al. recently compared implicated pathways in dry
eye disease (DED) and ocular allergy (OA), discovering shared features like chronic in-
flammation and alterations in the tear film mucous layer. Both groups exhibited common
biomarkers (e.g., Th17, Th1, and Th2 cells) and overexpression of proinflammatory cy-
tokines (e.g., IL-1α, IL-1β, IL-17, TNFα, INFγ, IL-4, IL-5, and IL-13) in tears and on the
ocular surface. Additionally, they shared inflammatory responses involving metallopro-
teinases (MMPs) and tissue inhibitors (TIMPs). Despite similarities in ocular surface
inflammation, triggers of the disease differed: low tear production in DED led to instability
and cascading inflammatory events, while OA involved eosinophils, mast cells, neutrophils,
and Th2 lymphocytes [32].

We hypothesize that ocular surface inflammation secondary to toxicity from BAK
results from molecular and cellular pathways that are different from other ocular surface
inflammatory conditions such as dry eye disease, despite both groups presenting similar
symptoms. To test this hypothesis, we performed transcriptomic analysis of samples from
the conjunctiva of patients on glaucoma medications containing BAK, and compared these
to samples from dry eye patients and healthy controls. The ultimate goal is to identify new
targets for the treatment of these patients, providing a more personalized approach to each
disease.

2. Materials and Methods
2.1. Study Design

A cross-sectional study was conducted involving patients diagnosed with dry eye
syndrome, patients using glaucoma hypotensive drops, and a control group.

For the dry eye group, the inclusion criterion consisted of individuals with a clinical
diagnosis of dry eye according to the DEWS classification [28]. The exclusion criteria
for this group included patients receiving topically administered medications containing
preservatives (e.g., for glaucoma, blepharitis, etc.); furthermore, individuals with a history
of previous ocular surgeries affecting the ocular surface (refractive surgery, eyelid surgery,
corneal surgery), use of systemic medication that may cause alterations in tear production,
use of contact lenses, or eyelid pathology (lagophthalmos, exophthalmos, ectropion, etc.)
were also excluded from the dry eye group.

For glaucoma-treated patients, the inclusion criteria involved individuals on hypoten-
sive drops for at least 1 year, including prostaglandin analogues, beta-blockers, carbonic
anhydrase inhibitors, and alpha agonists alone or in combinations (Supplementary Table S1).
Exclusion criteria for this group comprised individuals receiving systemic or topical medi-
cation that could alter results (e.g., anti-inflammatory or immunosuppressant drugs), as
well as those with a history of previous eye surgery that could alter the ocular surface.

The control group comprised asymptomatic individuals consecutively recruited from
hospital staff, nurses, patient relatives, and those referred for routine visual acuity ex-
aminations without ocular diseases. The inclusion criteria for the control group were an
intraocular pressure (IOP) of 20 mmHg or lower, normal visual fields, and the absence of a
familial history of glaucoma. All participants were of European Caucasian descent, had
no corneal or retinal pathology, no significant media opacity obscuring the eye fundus, no
history of amblyopia, and no contraindication to dilation. Additionally, they showed no
intolerance to topical anesthetics, mydriatic agents, or fluorescein dye.
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2.2. Conjunctival Impression Cytology

Conjunctival impression cytology (CIC) was performed using an Eyeprim device (OPIA
Technologies, Paris, France), following the manufacturer’s instructions. Topical anesthesia
was instilled into the lower conjunctival sac. The device was placed onto the temporal bulbar
conjunctiva. A total of 140 samples from 70 patients were collected, with one sample obtained
from each eye. Out of the total 140 collected conjunctival impression cytology (CIC) samples,
56 were selected for RNA sequencing; 33 patients were treated for glaucoma, 9 patients
had dry eye, and 14 patients were healthy (Table 1). Only one eye from each patient was
used for RNA sequencing. The remaining 95 samples underwent quality classification, with
30 of them used for result validation (Supplementary Figures S3 and S4). The dry eye group
included patients who had been diagnosed with dry eye unrelated to glaucoma treatment
and who used artificial tears. The treated group included patients diagnosed with bilateral
open-angle glaucoma who had been treated with a minimum of one medication for at
least 1 year. The numbers and types of treatments for each patient were recorded (see
Supplementary Table S1). The control group included subjects recruited among hospital
staff and patients referred for a routine visual acuity examination with no ocular diseases
or familial glaucoma history or use of topical drops for glaucoma or dry eye for at least 1
year. All of the patients provided written informed consent before the study began.

Table 1. Demographic data of patients included in the sequencing study.

Total Sex M/F 1 Age (Range) ± SD

Control 14 6/8 58.32 (32–79) ± 14.58
Treated 33 19/14 66.32 (29–89) ± 15.30
Dry eye 9 3/6 70.04 (61–77) ± 5.33

Total 56 28/28 66.75 (29–89) ± 14.45
1 M/F: Male/Female.

2.3. RNA Isolation, Quantification, and Reverse-Transcriptase Polymerase Chain Reaction

The RNA was isolated from the CIC using the Maxwell® 16 RNA extraction kit
(Promega, Madison, WI, USA), following the manufacturer’s instructions. The RNA quan-
tification was evaluated via the NanoDrop® spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). The quality of the RNA was evaluated using the Bioanalyzer (Agilent
Technologies, Lexington, MA, USA).

Quantitative RT-PCR (qRT-PCR) was conducted using the C1000 Touch Thermal Cycler
from Bio-Rad. The samples were initially incubated at 37 ◦C for 60 min, then at 95 ◦C for 60 s,
and then immediately cooled to 4 ◦C. Subsequent qPCR steps were carried out in the CFX96
Real-Time System from Bio-Rad, following the protocol detailed by Carnero et al. [33]. The
resulting data were analyzed with Bio-Rad CFX Manager software 3.1. GAPDH levels
were assessed as a reference in all cases, and only samples with comparable GAPDH
amplification underwent further analysis. The relative RNA levels were determined using
the 2−∆Ct method, where ∆Ct represents the difference between the Ct values of the gene
of interest and the GAPDH mRNA internal control.

2.4. RNA Sequencing and Data Analysis

Bulk RNA sequencing was performed following the metal artifact reduction sequence
protocol [34] adapted for bulk RNA sequencing [35] with minor modifications using the
NextSeq 500 (Illumina Inc., San Diego, CA, USA) with dual-index sequencing (Rd1, 68
cycles; Rd2, 15 cycles; i7, 8 cycles) at a depth of 10 million reads/sample.

RNA sequencing data analysis was performed using the following workflow: (1) the
quality of the samples was verified using FastQC software 0.12.0 (Babraham Institute;
Cambridge, UK); (2) the alignment of reads to the human genome (hg38) was performed
using STAR software 2.7.0a [36]; (3) gene expression quantification using read counts of
exonic gene regions was performed with featureCounts 2.0.6 [37]; (4) the gene annotation
reference was Gencode v29 [38]; and (5) differential expression statistical analysis was
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performed using R/Bioconductor 3.18 [39]. First, the gene expression data were normalized
with edgeR 3.18 [40] and voom [41]. After quality assessment and outlier detection using
R/Bioconductor 3.18 [39], filtering was performed. Linear models for microarray data [41]
identified the genes with significant differential expressions between groups. Genes were
selected as differentially expressed using a p-value cut-off of <0.01. Biologic knowledge
extraction was complemented using Ingenuity Pathway Analysis (IPA) (Ingenuity Systems,
Redwood City, CA, USA), the database of which includes manually curated and traceable
data derived from literature sources.

2.5. Data Analysis

Both p-values and Z-scores are statistical measures used in bioinformatics and other
fields, often in the context of analyzing high-throughput data such as gene expression data.

A p-value is a measure of the evidence against a null hypothesis. In the context of
gene expression analysis, it helps researchers assess whether the observed differences
in expression between experimental groups are statistically significant. A low p-value
(typically below a chosen significance threshold, e.g., 0.05) suggests that there is enough
evidence to reject the null hypothesis, indicating a potentially meaningful difference. In the
context of differential gene expression analysis, a p-value is often associated with statistical
tests such as the t-test or ANOVA.

The Z-score is a standardized score that represents the number of standard deviations
a data point is from the mean of a population. In the context of bioinformatics and pathway
analysis tools like Ingenuity Pathway Analysis (IPA), Z-scores can be used to assess the
activation or inhibition status of biological pathways. For example, in IPA, a positive Z-score
may indicate pathway activation, while a negative Z-score may suggest pathway inhibition.
Z-scores help interpret whether the observed gene expression changes are consistent with
the expected direction of change based on prior knowledge of pathway regulation.

The Shapiro–Wilk test was employed to assess whether the samples deviated signifi-
cantly from a normal distribution. Differences between the severe and non-severe groups
were examined using Student’s t-test for parametric data, while the Mann–Whitney U-test
was utilized for non-parametric parameters. To identify associations among parametric
variables, Pearson’s correlation coefficient was calculated for normal distributions, whereas
Spearman’s correlation coefficient was applied for non-parametric variables. The statistical
analysis was conducted using SPSS software version 20.0.1 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Differential Gene Expression Analysis Using RNA Sequencing Data Derived from Treated and
Dry Eye Patients Compared to Healthy Individuals

Sequencing analysis detected the expression of 58,722 genes annotated in reliable
databases, 200 of which were modified in patients treated for glaucoma compared to
healthy individuals (logFC > 0.5; p < 0.01) (Table 2). Following the same selection criteria, we
detected the differential expression of 233 genes compared with dry eye and control samples,
and 650 genes were differentially expressed in treated glaucoma patients compared to dry
eye samples (logFC > 0.5; p < 0.01) (Table 2). Volcano plots that were used to assess
the messenger RNA expression variation between groups initially showed significant
differentially expressed messenger RNAs (logFC > 1, p < 0.01) (Figure 1).

Table 2. Numbers and types of dysregulated RNA.

Dysregulated Genes Up Down

Treated vs. control 200 86 114

Dry eye vs. control 233 107 126

Treated vs. dry eye 650 259 391
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Figure 1. Volcano plots display differentially expressed genes between (A), treated versus control
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corresponds to the mean expression value of -log (p-value), and the x-axis displays the fold change
value. The red genes represent the up-regulated expressed transcripts; the green genes represent the
down-regulated transcripts.

3.2. Genes and Pathways Dysregulated in Eyes Treated with Topical Glaucoma Medications

Overall, the gene expression profiles in patients treated for glaucoma were compared
to control patients using Qiagen Ingenuity Pathway Analysis (IPA). IPA is bioinformatics
software (2018 version) that helps researchers analyze and interpret omics data, such as
gene expression, microarray, and RNA-seq data. It is commonly used for pathway analysis,
network analysis, and functional annotation to gain insights into the biological significance
of experimental results.

When IPA analysis was performed, a marked activation of pathways implicated in the
immune response was seen. Host defense-related pathways represented 79% of the total
pathways (Table 3). Increases in the expressions of different cellular damage sensors or
their components were identified: Toll-like receptor 4 (TLR4) (p < 0.001), LY86 (p < 0.001), or
P2RX7 (p = 0.002) in patients treated for glaucoma; elevated expression of genes related
to antigen-presenting cells were identified in dendritic cell activation: TREM2 (p = 0.003),
CD86 (p < 0.001), FCER1G (p = 0.009), and FCGR3A or TYROBP (p < 0.001). Induced
expressions of Tec and Src kinase members that act immediately downstream of antigen
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and Fc receptors in immune cells were also found: BTK (p = 0.002), HCK (p = 0.004), and
FGR (p = 0.005) (Figure 2). Increases in these molecules were also seen to a lesser extent in
dry eye genes versus controls. The other pathways altered in patients with glaucoma were
related to control cellular proliferation and differentiation (Table 3).
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Figure 2. Pathways altered in the functional analysis of dysregulated genes in treated patients
compared to healthy individuals using IPA. Orange bars indicate activation of the route (positive
Z-score), blue bars predicted a decreasing activity of the pathway (negative Z-score). Grey lines
corresponding to the grey pathways represent an effect not predicted based on the IPA activation
Z-scores.
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Table 3. IPA of treated and dry eye versus healthy patients. Numbers and percentages of dysregulated
pathways in glaucoma-treated and dry eye syndrome patients compared to those in control groups.

Treated vs. Control Dry Eye vs. Control

Host defense and immune system 19 (79%) 13 (39%)

Cellular proliferation and differentiation 3 (13%) 5 (15%)

Mitochondrial dysfunction - 5 (16%)

Cellular movement and integrity - 1 (3%)

Wound healing - 6 (18%)

Unspecific 2 (8%) 3 (9%)

Total 24 (100%) 33 (100%)

3.3. Routes and Genes Dysregulated in Dry Eye

In dry eye, 39% of altered pathways were related to cellular growth and differenti-
ation; that is, there were decreases in proteins that participate in the hippo pathway, a
core pathway regulating organ size, cellular proliferation, and differentiation that includes
transcription factors YAP1 (p = 0.009), TEAD1 (p = 0.005), and SMAD4 (p = 0.006). Several
components of the transforming growth factor β (TGF-β) pathway, which acts on both
autocrine and paracrine activities to regulate cellular growth, differentiation, and migra-
tion, were also down-regulated in patients with dry eye. Decreased expression of ITGB8
that regulates TGF-β activation, besides other integrin-related genes, was also observed.
However, increased activity of pathways associated with mitochondrial dysfunction and
the Nrf2-mediated oxidative stress response (Figure 3) was seen. Mitochondrial genes such
as MT-CYB or MT-CO2 were overexpressed, as were genes associated with oxidoreductase
activity; SOD genes and GPX2 were up-regulated in patients with dry eye. The expression
of SIRT, a deacetylase involved in antioxidant activity, DNA repair, and aging, was regu-
lated by ROS that were down-regulated in dry eye (Figure 3). Finally, genes such as RGS1,
RNASE6, or FCER1G that participate in the host defense mechanism, comprised 39% of the
total pathways (Table 3).

3.4. Differential Pathways Dysregulated in Patients Treated Topically for Glaucoma Compared with
Patients with Dry Eye

We evaluated the differences in the cellular responses of patients who were treated
and those with dry eye. Major differences were found in the regulation of cellular adhesion,
migration, and maintenance of epithelial integrity. These routes were under-expressed
in patients with dry eye compared to those treated for glaucoma (Table 4). We observed
higher expressions of the routes related to oxidative stress responses in patients with dry
eye compared to patients treated for glaucoma. However, we found that treated patients
had increases in pathways related to the immune system compared to patients with dry
eye and with controls (Table 4).
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Table 4. Analysis (Z-score) of dysregulated pathways in glaucoma-treated patients versus controls
and in dry eye syndrome patients versus controls.

Canonical Pathways Treated vs. Control Dry Eye vs. Control

Tec kinase signaling 2.2360 −1.2650

Leukocyte extravasation signaling 1.6330 −1.0000

Integrin signaling 1.3420 −2.3090

TREM1 signaling 1.3420 -

Neuroinflammation signaling pathway 1.1340 −0.4470

Dendritic cell maturation 1.1340 -

Role of NFAT in regulation of
the immune response 0.8160 −0.4470

Sirtuin signaling pathway 0.3780 −1.0000

PAK signaling - −2.6460

Ephrin receptor signaling - −2.5300

Paxillin signaling - −2.4490

Regulation of Cellular Mechanics
by Calpain Protease - −2.4490

TGF-β signaling - −2.2360

Agrin interactions at
neuromuscular junction - −2.2360

Cholecystokinin/gastrin-mediated signaling - −1.8900

Actin nucleation by ARP-WASP
complex - −1.6330

NRF2-mediated oxidative stress response - 1.5080

G beta gamma signaling - −1.1340

ErbB signaling - −1.1340

Renin-angiotensin signaling - −1.1340

HGF signaling - −1.0000

EIF2 signaling - 1.0000

HIPPO signaling - 0.8160

IGF-1 signaling - −0.8160

PTEN signaling - 0.7070

ERK/MAPK signaling - −0.6320

EGF signaling - −0.4470

Sumoylation pathway - 0.4470

Cdc42 signaling - −0.4470

Regulation of eIF4 and p70S6K signaling - −0.4470

ErbB4 signaling - −0.4470

Neuregulin signaling - −0.4470

α-Adrenergic signaling - 0.4470

Fc Epsilon RI signaling - −0.3780
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4. Discussion

The current study investigated the cellular mechanism underlying the clinical symp-
toms of patients treated for glaucoma and patients with dry eye syndrome, and whether
the cellular responses in both groups of patients were similar. We performed CIC on the
bulbar conjunctival samples obtained from patients treated topically for glaucoma, from
patients diagnosed with dry eye syndrome, and from healthy controls.

4.1. Differences between Dry Eye and Controls

The main alterations in the dry eye syndrome group were observed in conjunctival
epithelial cells (proliferation, cellular adhesion, migration, differentiation), ocular surface
immunotolerance, oxidative stress, inflammation, and mitochondrial DNA damage.

When comparing the ocular surface of patients with dry eye syndrome to that of
individuals with healthy conjunctiva, we observed a significant dysregulation of gene
expression and pathways associated with proliferation and tissue differentiation. Several
genes of the hippo pathway, including YAP1, TEAD1, or SMAD4, were down-regulated
in patients with dry eye. This route regulates human conjunctival epithelial cellular
proliferation and cell attachment, and is closely related to the TGF-β signaling pathway [42],
which plays a key role in cellular adhesion, migration, proliferation, and differentiation [43].

Moreover, TGF-β secreted by human lacrimal glands, corneal and conjunctiva epithe-
lia [44,45], and presumably immune system cells [46] has an important role in preventing
unwanted immune responses by controlling the tolerance against self and innocuous anti-
gens through generation of regulatory T cells (Tregs) and impairing the clonal expansion
and functions of T cells, B cells, and natural killer cells or DCs [47].

Recently, Stockis and colleagues reported that integrin αVβ8 is indispensable for TGF-
β1 activation from GARP/latent TGF-β1 complexes on the surface of human Tregs. ITGB1
and especially ITGB8 are down-regulated in patients with dry eye [48]. These data suggest
that ocular surface immunotolerance decreases in these patients. Thus, the ocular surface
would have increased inflammation, as we and other authors observed [49].

In the results of the dry eye syndrome group, we also observed an increase in SOD1,
responsible for 90% of SOD antioxidant activity. Mice lacking this gene showed increased
lipid and DNA damage related to oxidative stress and increased immune cells infiltration,
decreased GC density, and lacrimal gland dysfunction [50]. Together with SOD1, we found
elevated expressions of other genes associated with an antioxidant response and related to
NRF2, a transcription factor and master regulator of antioxidant gene expression.

With aging, mitochondrial DNA (mtDNA) mutation accumulates, and the mitochon-
drial structure is disrupted. The response to mtDNA damage was reported to increase the
mtRNA copy number [51], and we observed an increase in mtRNA in patients with dry
eye compared to healthy eyes.

Patients with dry eye in this study also had a significant decrease in SIRT1 RNA
levels compared to controls. SIRT1 is involved in the response to chronic inflammation;
it regulates the redox environment and compensates for oxidative damage by convert-
ing NAD to NADH; it is highly conserved through evolution; and it regulates multiple
cellular metabolism components regarding aging, DNA repair, mitochondrial biogenesis,
or apoptosis [52–55]. SIRT1 has an important role in ocular morphogenesis and retinal
development, and is associated with cataracts, corneal diseases, age-related macular degen-
eration, diabetic retinopathy, glaucoma, and optic neuritis [56–58].

Findings in the dry eye syndrome group revealed distinctive patterns when compared
with the control groups. We observed that the conjunctiva of patients with dry eye has a
decrease in the genes implicated in the maintenance of immunotolerance, an increase in
redox balance pathways that indicate increased levels of ROS and is implicated in increased
inflammation (Figure 4). Inflammation is a major contributor to both the appearance of dry
eye disease and its progression over time, although the immunologic mechanisms resulting
in the pathogenesis have yet to be elucidated. Stressors, including environmental hazards
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such as toxins or infections, endogenous stress related to age, and genetic factors, can
disrupt the fine-tuned balances on the ocular surface and trigger the inflammatory response.
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4.2. Differences between Glaucoma-Treated Patients and Controls

When it comes to treating glaucoma patients, in addition to the factors described
previously, the daily use of topical treatments must be considered. We already evaluated
the clinical signs of damage on the ocular surface of these patients [8]. Since most glaucoma
treatments contain BAK, and numerous studies have reported its role as a pro-inflammatory,
pro-apoptotic, and pro-oxidative agent, BAK is assumed to be the primary damaging agent
for the ocular surface. This study emphasizes the activation of immune response-related
pathways, such as dendritic cells and inflammasome-related pathways, and the potential
role of specific receptors and kinases in the observed changes to ocular surface damage
mediated by glaucoma drugs.

Among the routes dysregulated in the treated glaucoma patients, we observed ac-
tivation of the TREM pathway. TREM receptors are expressed on immune cells, such
as neutrophils, mature monocytes, macrophages, DCs, or platelets. Specifically, TREM2
coupled with DAP-12/TYROBP was highly up-regulated in our results, and is involved in
survival, migration, and maturation of DCs to secondary lymphoid organs [59].

We also detected a high expression of CD86 in these patients, a dendritic marker with
low expression under normal conditions; however, it is up-regulated after DC activation
and has an important role in priming naïve T cells [59]. Finally, Cd11C (ITGAX), a membrane
marker found at high levels in DCs among other cells, was overexpressed in patients treated
for glaucoma.

We also found clear up-regulation of TLR4 in glaucoma patients, which seemed to be a
major regulator of chronic inflammation and inflammation-related diseases; its downstream
signaling with the nuclear factor-κβ (NF-κβ) is critical for the expression of inflammatory
cytokines. Zettel et al. reported that TLR4 expression in DC is required for increases in
inflammatory cytokines, and promotes inflammation after liver damage [60]. We speculated
that treatment-related damage to the ocular surface may increase the presence of DCs, and
TLR4 could participate in the activation of DC. These results suggest an increase in activated
DCs in the bulbar conjunctiva of treated patients.
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The TLR4 pathway participates in the activation of inflammasomes, which are pro-
tein complexes of the innate immune system involved in activating the inflammatory
response [61,62]. Briefly, inflammasomes require two steps of activation; the first is a
priming phase in which a sensor such as TLR4 recognizes damage or stress signals [63].
Several receptors have been described to participate in the inflammasome activation phase,
the best known of which is P2RX7 (P2X7), which is significantly up-regulated in patients
treated for glaucoma (Figure 5). The P2X7 receptor is an ion channel activated by ATP.
BAK and preserved prostaglandin analogues activate the P2X7 receptor due to ATP release,
leading to the death of corneal and conjunctival cells [64–66]. In addition, an increase
in NAD+ lowers the ATP threshold for P2XR7 activation; we detected decreased CD38
(logFC = −0.8; p = 0.004), an enzyme that degrades NAD+ [67]. ATP levels are increased
in human corneal and conjunctival epithelial cells exposed to hyperosmotic challenge
and in patients with dry eye [68]. However, those authors did not relate the damage to
activation of P2X7; they suggested another receptor as mediator of the damage in this case.
Interestingly, we did not find any difference in P2X7 levels between patients with dry eye
and controls, but it is highly expressed specifically in patients treated for glaucoma.
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Recently, BTK, a member of the TEC kinases that is overexpressed in treated patients
(Figure 5), was described as an essential player in inflammasome activation in macrophages.
BTK participates in the bonding of the inflammasome components necessary for the activa-
tion of caspase 1 and subsequent secretion of the active forms of IL1 and IL18 [69]. Thus,
we observed high up-regulation of three key inflammasome activators, TLR4, P2X7, and
BTK. Further studies should determine the role of this complex in the pathogeny associated
with use of glaucoma eye drops and their components.

4.3. Study Limitations

RNA sequencing of impression cytology (CIC) provided an overview of the overall
gene expression in the entire cell set at the bulbar conjunctival level in the two study groups
that exhibited similar clinical symptoms. However, a study limitation was that we could
not distinguish the expressions of the different cellular types, except for specific markers.
Another limitation was the small number of patients; nonetheless, we studied several key
genes using various CIC samples collected for the study, comprising 9 controls, 8 dry eye,
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and 30 treated samples (Supplementary Figure S3). We validated this information using
30 samples out of the 140 we collected that were not previously used, in order to increase
technical reproducibility (Supplementary Figures S3 and S4).

5. Conclusions

After a literature review, we acknowledged research about inflammatory markers
in impression cytology samples using NanoString® nCounter technology, which is based
on an inflammatory human code set containing 249 inflammatory genes [70,71]. We also
acknowledged studies in mice and in vitro studies involving corneal cells [72]. Additionally,
we identified studies on microbiome aspects [73], although they were somewhat distant
from the focus of our current investigation. It is worth noting that there are proteomic
studies available on tears from patients undergoing antiglaucomatous treatment [72]. We
also found studies on the damage to the conjunctiva and Tenon’s layer in rabbits, as well
as studies using cell lines or bulk gene expression data related to steroid response [74].
Nevertheless, to the best of our knowledge, this study represents the first analysis of
cytological samples from the conjunctiva of patients, and the first to conduct bulk RNA
sequencing in individuals with glaucoma and dry eye, comparing the findings with those
from healthy subjects.

This additional dimension in the literature contributes to a more comprehensive under-
standing of the ocular environment in individuals receiving such treatment, complementing
our exploration of gene expression in conjunctival cytological samples.

In conclusion, ocular surface disease in patients with dry eye syndrome and those
related to glaucoma treatment exhibit shared clinical symptoms, as previously reported
by our group and others. Although these symptoms have been linked to an inflammatory
response, the exact mechanism triggering this inflammation has not been fully elucidated.
Transcriptome analysis in these patients revealed the involvement of several signaling
pathways in the initiation of the inflammatory response, and these pathways may differ
between dry eye and glaucoma. A deeper understanding of the molecular mechanisms
causing damage could unveil insights into the molecules responsible for mediating the
damage, paving the way for new approaches to enhance the treatment of ocular surface
pathologies in both dry eye and glaucoma.
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