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Abstract: Background: While extensive research highlighted the involvement of metabolism and im-
mune cells in female reproductive diseases, causality remains unestablished. Methods: Instrumental
variables for 486 circulating metabolites (N = 7824) and 731 immunophenotypes (N = 3757) were
derived from a genome-wide association study (GWAS) meta-analysis. FinnGen contributed data on
14 female reproductive disorders. A bidirectional two-sample Mendelian randomization study was
performed to determine the relationships between exposures and outcomes. The robustness of results,
potential heterogeneity, and horizontal pleiotropy were examined through sensitivity analysis. Re-
sults: High levels of mannose were found to be causally associated with increased risks of gestational
diabetes (GDM) (OR [95% CI], 6.02 [2.85–12.73], p = 2.55 × 10−6). A genetically predicted elevation in
the relative count of circulating CD28−CD25++CD8+ T cells was causally related to increased female
infertility risk (OR [95% CI], 1.26 [1.14–1.40], p = 1.07 × 10−5), whereas a high absolute count of NKT
cells reduced the risk of ectopic pregnancy (OR [95% CI], 0.87 [0.82–0.93], p = 5.94 × 10−6). These
results remained consistent in sensitivity analyses. Conclusions: Our study supports mannose as a
promising GDM biomarker and intervention target by integrating metabolomics and genomics.

Keywords: immunophenotypes; metabolites; gestational diabetes; Mendelian randomization; mannose;
single-nucleotide polymorphisms

1. Introduction

In the context of global trends of delayed childbearing and declining fertility rates,
reproductive health and the challenges related to pregnancy have become significant
concerns [1]. However, drug development in this area faces persistent obstacles due to
ethical and fetal safety constraints. It is crucial to identify biomarkers for the early detection
of individuals at risk of female reproductive diseases. Equally important is the requirement
for modifiable biomarkers that can be targeted for preventive or therapeutic interventions.

In recent years, many high-throughput technologies, including genomics, transcrip-
tomics, and metabolomics, have been widely applied in reproductive research. Among
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them, the metabolome offers highly predictive phenotype information, as it represents the
downstream products of interactions among genes, transcripts, proteins, and metabolites.
Consequently, blood metabolites serve as practical markers for personalized medicine and
disease process monitoring [2,3]. A comprehensive review of the literature on biochemical
biomarkers, which included nine metabolomics studies, has highlighted the critical role of
histidine metabolism in early miscarriage [4]. In our experimental study, mice administered
with fructose-1,6-bisphosphate (FBP) showed a significant increase in plasma and uterine
FBP levels [5]. This increased FBP led to the activation of COX-2+ decidual macrophages,
effectively reducing pregnancy loss by promoting decidualization, trophoblast invasion,
and maternal–fetal immune tolerance [5]. A cross-sectional study revealed that pregnancy,
as physiological, and polycystic ovary syndrome (PCOS), as a pathological state, mutually
hold the risk for developing glucose metabolism irregularity [6]. Gestational diabetes
(GDM) is characterized by glucose intolerance during pregnancy, impacting approximately
14.7% of all pregnancies [7]. It not only poses a serious threat to maternal safety, leading to
conditions like preeclampsia (PE) or eclampsia, but also poses long-term cardiovascular
disease (CVD) and type 2 diabetes (T2D) susceptibility in mothers and offspring [8]. A
previous study suggested lysophosphatidylcholine, oleic acid, and 1,25-dihydroxyvitamin
D3-26,23-lactones were closely linked with the initiation and development of GDM and
PE [9]. However, the causal relationship between plasma metabolites and female reproduc-
tive diseases is still pending.

While observational and experimental studies have indicated links between immune
dysfunction and various female reproductive diseases such as endometriosis [10], ectopic
pregnancy [11], female infertility [12], premature rupture of membranes [13], postpar-
tum hemorrhage [14], and preterm labor and delivery [15], establishing definitive causal
associations is challenging due to small sample sizes and limited insights about pathophys-
iological mechanisms.

Mendelian randomization (MR) analysis, a method in genetic epidemiology, leverages
the extensive data from publicly available large-scale genome-wide association studies
(GWASs) to pinpoint genetic variants linked to specific traits or diseases [16]. The fixed
nature of genetic variants, which are randomly allocated at conception and relatively
unaffected by environmental factors, allows MR to provide an unbiased estimation of causal
effects [17]. To identify potential circulating biomarkers of immunity and metabolism in
these disorders, we perform a bidirectional two-sample MR analysis to identify causal
associations between genetically determined metabolites, immune traits, and 14 female
reproductive disorders.

2. Material and Methods
2.1. Study Design and Ethical Approval

An overview of the general design is shown in Figure 1. The study methods were
compliant with the Strengthening the Reporting of Observational Studies in Epidemiology–
Mendelian Randomization (STROBE-MR) checklist.

FinnGen is a public–private partnership project covering the entire population of
Finland, exploring the causes of diverse diseases and promoting population health [18].
It offers summary data for 14 female reproductive illnesses, with relevant GWAS sum-
mary statistics presented in Supplementary Table S1. To address potential bias arising
from sample overlap, GWAS data for exposure and outcome were sourced from distinct
cohorts. All summary statistics utilized in this MR analyses were extracted from previously
published studies, for which ethical approval and individual consent were obtained for all
original studies.
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Figure 1. Schematic view of the study design. Abbrev: MR, Mendelian randomization; SNP, single-
nucleotide polymorphisms; PCOS, polycystic ovarian syndrome; GDM, gestational diabetes; EMS, 
endometriosis; PROM, premature rupture of membranes; PPH, postpartum hemorrhage; PE, pre-
eclampsia.  

Figure 1. Schematic view of the study design. Abbrev: MR, Mendelian randomization; SNP, single-
nucleotide polymorphisms; PCOS, polycystic ovarian syndrome; GDM, gestational diabetes; EMS, en-
dometriosis; PROM, premature rupture of membranes; PPH, postpartum hemorrhage; PE, pre-eclampsia.
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2.2. Genetic Instruments for Metabolites and Immune Traits

Shin et al.’s study provided GWAS summary statistics of serum metabolites [19],
which comprised a total of 7824 samples from the German KORA F4 study and British
Twins UK cohort [20]. A total of 486 metabolites were selected for our genetic investiga-
tion, which could be further divided into eight major categories including amino acids,
carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, peptides, and xenobiotic
metabolism [21]. A large dataset with over 2.1 million single-nucleotide polymorphisms
(SNPs) served as the foundation for the GWAS meta-analysis after stringent quality control.
A detailed description of the methods was published previously [22].

The GWAS catalog offers public access to GWAS summary statistics for immunological
traits (accession numbers GCST90001391 to GCST90002121) [23,24]. There was no subject
overlap between cohorts in the initial GWAS on immunological characteristics, which
was conducted using data gathered from 3757 European people. After controlling for
confounders (i.e., sex and age), relationships were explored for over 22 million SNP geno-
types using high-density arrays and imputed using a Sardinian sequence-based reference
panel [25].

2.3. Instrumental Variables (IVs) Selection

The threshold of the statistically significant level of IVs for every immunopheno-
type and serum metabolite was adjusted to p < 5 × 10−6 to identify SNPs strongly
associated with the traits of interest due to a limited number of SNPs detected with
the threshold at p < 5 × 10−8 [26]. In MR research, this statistical threshold relaxation
was often employed to incorporate a broader set of genetic instruments [27]. Then,
we carried out clumping (R2 < 0.001 within a 10,000 kb window) to obtain independent
SNPs based on the 1000 Genomes Project’s linkage disequilibrium (LD) reference panel
(https://www.internationalgenome.org/data, accessed on 1 July 2023) [28].

Instrumental SNPs were chosen after eliminating palindromic variants with a middle
allele frequency (MAF). Due to their low confidence level, SNPs with a MAF less than
0.01 were likewise eliminated from the original GWAS. For each IV, the F statistic and the
proportion of explained variance (R2) were computed in order to assess the effectiveness
of the genetic instruments and prevent weak instrumental bias [27,29]. For the purpose of
choosing robust instrumental variables, an F statistic of more than 10 was regarded as a
common criterion. Any immune traits and serum metabolites with an F statistic of less
than 10 were subsequently excluded from the analysis [30].

2.4. Statistical Analysis

In our primary analysis, the inverse-variance weighted (IVW) approach was utilized
for multiple variants, which predicated on the IVs meeting criteria of relevance, indepen-
dence, and exclusivity and the assumption that genetic variations affect outcomes solely
through the exposure being studied. For a single genetic variant identified, the Wald ratio
estimator was adopted. Since there are multiple tests in this study, significant associations
between metabolites, immune traits, and 14 female reproductive diseases were identified
after adjusting for multiple testing with Bonferroni correction [31].

Subsequent validation of these associations was conducted using alternative MR esti-
mation methods (the MR-Egger, weighted median, weighted mode, and simple mode) [32],
complemented by heterogeneity and pleiotropy analyses. The ‘Circlize’ R package (v0.4.15)
was used to generate Circos plots to compare association analysis data [33]. Due to varied
experimental conditions, analytical platforms, and study subjects, heterogeneity might
cause bias in causal effect estimates. To address this, Cochran’s Q test was performed to
test for heterogeneity [34]. When using IVW for causal analysis, potential confounders
and biases due to genetic variability are a concern. To assess pleiotropy, the IVW model
and MR-Egger intercept test were applied. An intercept value near 0 (<0.1) and p > 0.05
suggests minimal pleiotropy. We further evaluated horizontal pleiotropy and potential
outliers using MR-Egger regression and the MR-PRESSO global test using the MR-PRESSO

https://www.internationalgenome.org/data
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software (v1.0) [35]. Subsequently, we implemented a leave-one-out analysis, a strategy
designed to determine whether results were affected by one SNP [36]. Funnel and scatter
plots were employed to visually evaluate the symmetry and estimate the effects.

Additionally, we conducted reverse MR analyses, treating GDM, ectopic pregnancy,
and female infertility as exposures and the biomarkers as outcomes. This approach enabled
us to assess potential feedback loops between disease risk and biomarker levels, which
are crucial for identifying and mitigating false positive results. All MR analyses were
carried out using the ‘TwoSampleMR’ [28] R package (v0.5.7). Multivariate MR analysis
(MVMR) as a sensitivity analysis to correct for measured confounders was performed using
‘MVMR’ [37] (v0.4) and ‘TwoSampleMR’ [28] R package.

2.5. Colocalization Analyses on Exposure with Outcome

To further validate correlations identified in the MR analyses, we conducted colocal-
ization analyses, employing a Bayesian approach with the ‘coloc’ R package (v5.2.3) [38].
As the reference variant, the variant with the lowest p-value and the strongest correlation
with the exposure in the MR study was chosen, which includes variants ±1 Mb of the
reference SNPs. The study examined five hypotheses that are mutually exclusive: (1) there
is no causal SNP for either trait (H0); (2) only trait 1 has a causal SNP (H1); (3) only trait 2
has a causal SNP (H2); (4) both traits have a causal SNP, but the two causal SNPs are
distinct (H3); and (5) both traits have a causal SNP and share the same SNP (H4) [39]. A
primary focus was directed towards the last hypothesis, H4, and its assessment was based
on posterior probability (PP), or PPH4. We identified substantial evidence of colocalization
at PPH4 ≥ 0.75 [40] and visualized the colocalization results using the ‘LocusCompareR’ R
package (v1.0.0) [41]. All analyses were conducted using R software (version 4.2.3).

2.6. Metabolic Pathway Analysis

After MR analysis, the MetaboAnalyst 5.0 software (https://www.metaboanalyst.
ca/MetaboAnalyst/faces/home.xhtml, accessed on 1 September 2023) [42] was used to
perform a metabolic pathway analysis for the metabolites that were detected by IVW at
p < 0.05. The underlying metabolite groups or pathways that could be pertinent to the
biological process of female reproductive disorders were found using functional enrichment
analysis and the pathway analyses module.

3. Results
3.1. Strength of the Instrumental Variables (IVs)

This study explored the causal relationships between 731 circulating immunopheno-
types, 486 metabolites, and the risk of female reproductive disorders. The 486 metabolite
IVs that were selected range in size from 1 to 132 SNPs, while the 731 immunophenotype
IVs range from 1 to 93 SNPs. Meanwhile, all IVs were found to be adequately effec-
tive for the MR analysis of the 486 metabolites and 731 circulating immunophenotypes
(F statistic > 10), as indicated by the minimum F statistic of 19.355 for these IVs. Specifically,
the 731 immunophenotypes comprise morphological parameters (MP), relative cell counts
(RC), absolute cell counts (AC), and median fluorescence intensities (MFI). Specifically, the
MP feature included cDC and TBNK panels, while MFI, AC, and RC encompassed B cells,
mature T cell stages, monocytes, myeloid cells, TBNK (T cells, B cells, natural killer cells),
and Treg panels. For MR analysis, we employed 1518 SNPs for AC, 4649 SNPs for MFI,
361 SNPs for MP, and 2398 SNPs for RC following the selection and harmonization of IVs.
These IVs did not exhibit significant heterogeneity, according to Cochran’s Q test findings.

3.2. Identifying the Causal Effect of Immunophenotypes on Female Reproductive Disorders

IVW analysis demonstrated a strong causal association between an elevated
CD28−CD25++CD8+ T cell RC and an increased risk of female infertility (odds ratio
(OR) = 1.26, 95% confidence interval (CI) = 1.14–1.40, p = 1.07 × 10−5). This association
remained statistically significant even after Bonferroni correction (Figure 2A). Additionally,

https://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml
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Figure 2B illustrates a potential inverse correlation between a raised natural killer T (NKT)
cell AC and an increased probability of ectopic pregnancy (OR = 0.87, 95% CI = 0.82–0.93,
p = 5.94 × 10−6). The most detrimental and protective serum immune trait factors for
14 female reproductive diseases were summarized in Supplementary Table S2.
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Figure 2. The causal impact of immune traits on female infertility and ectopic pregnancy. (A) The
volcano plot illustrates the link between 731 immune traits and female infertility risk. The X-axis
represents the logarithmic OR (odds ratio) with a base of e, the Y-axis represents the logarithmic
p-value with a base of 10, and p < 0.05 is considered statistically significant. (B) The volcano plot
illustrates the link between 731 immune traits and ectopic pregnancy risk. The X-axis represents
the logarithmic OR with a base of e, the Y-axis represents the logarithmic p-value with a base
of 10, and p < 0.05 is considered statistically significant. (C) The forest plot shows the causal
association between CD28−CD25++CD8+ T cell relative count (RC) and female infertility. (D) The
forest plot shows the causal association between the NKT absolute count (AC) and ectopic pregnancy.
OR: odds ratio; CI: confidence interval. NKT: natural killer T cells; OR: odds ratio; SNP, single-
nucleotide polymorphisms.

The outcomes of the weighted mode, weighted median, simple mode, and MR-
Egger analysis are shown in Figure 2C,D. Significant outliers were eliminated using
the MR-PRESSO in the sensitivity analysis. In addition, there was no discernible het-
erogeneity according to Cochran’s Q test. Significant horizontal pleiotropy was not
found using the ‘leave-one-out’ approach, forest plots, or the MR-Egger intercept test
(Supplementary Figures S1 and S2). The results’ stability was demonstrated by the scatter
plot (Supplementary Figures S1 and S2).

3.3. Identifying the Causal Effect of Metabolites on Female Reproductive Disorders

Utilizing comprehensive metabolomics data, we explored the causal relationship
between genetically predicted metabolic characteristics on the liability of 14 female re-
productive disorders. The most detrimental and protective serum metabolite factors for
14 female reproductive diseases were summarized in Supplementary Table S3. Through
IVW analysis, our data exhibited that an increased level of mannose had a causal effect
on a higher risk of GDM (OR = 6.02, 95% CI = 2.85–12.73, p = 2.55 × 10−6) (Figure 3A).
This relationship remained significant even after Bonferroni adjustment (Figure 3A). For-
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est plots to visualize the causal effect of every SNP (rs10736, rs11676911, rs12218544,
rs12414366, rs1260326, rs13116473, rs435315 and rs7747345) on the risk of GDM were
produced (Supplementary Figure S3). Additional methods yielded consistent results,
including weighted mode (OR = 9.79, 95% CI = 5.05–18.99; p = 2.65 × 10−5), weighted me-
dian (OR = 6.02, 95% CI = 3.10–11.69, p = 1.12 × 10−7), and MR-Egger analysis (OR = 11.47,
95% CI = 2.56–51.42, p = 0.02) (Figure 3B). The results’ stability was further demonstrated
by scatter plots (Figure 3C).
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Figure 3. Mendelian randomization (MR) results for the relationship between serum mannose
levels and gestational diabetes. (A) The volcano plot illustrates the link between 486 metabolite
traits and gestational diabetes risk. The X-axis represents the logarithmic OR with a base of e, the
Y-axis represents the logarithmic p-value with a base of 10, and p < 0.05 is considered statistically
significant. (B) IVW Mendelian randomization estimates, MR-Egger estimates, followed by four
additional MR methods (the MR-Egger, weighted median, weighted mode, and simple mode) for
the association between mannose and gestational diabetes. IVW, inverse-variance weighted; MR,
Mendelian randomization; SNP, single-nucleotide polymorphisms. (C) Forest plot shows the causal
association between mannose and gestational diabetes using different methods. OR: odds ratio;
CI: confidence interval.

IVW estimates for the associations between serum metabolites, immune traits, and
GDM are shown in Figure 4. The sensitivity analysis results for mannose on GDM are
shown in Supplementary Figure S3. The test results from the MR-Egger (p = 0.37 > 0.05)
and MR-PRESSO methods (p = 0.17 > 0.05) yielded p-values greater than 0.05, and the
intercept of the MR-Egger regression was near 0 (<0.1), indicating an absence of evidence
for horizontal pleiotropy and outlier variants (Supplementary Figure S3). According to
the reverse MR analysis, there was no noticeable causal association between GDM and
mannose, as shown in Supplementary Table S4.
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To ascertain whether the observed causal effect of mannose on GDM was a direct
or indirect influence, we subsequently performed MVMR, adjusting for sex hormone-
binding globulin levels (SHBG) [43], waist circumference [44], and cardiovascular disease
(CVD) [45] (Supplementary Table S5). Multivariate analyses consistently demonstrated
the persistent statistical significance of the association between mannose and GDM risk,
further substantiated by corroborative findings from the forward univariable analysis. Fur-
thermore, possible horizontal pleiotropy was not detected by the intercept term generated
from MR-Egger.
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Moreover, colocalization analysis revealed a higher posterior probability (PPH4 = 0.99),
indicating that mannose and GDM shared a common causal signal within the 1 Mb locus
surrounding rs1260326 (p = 1.30 × 10−7) (Figure 5). Collectively, the combination of MR
and colocalization analysis reveals mannose may serve as a promising biomarker and
therapeutic target for GDM.

Biomolecules 2024, 14, x FOR PEER REVIEW 9 of 16 
 

locus surrounding rs1260326 (p = 1.30 × 10−7) (Figure 5). Collectively, the combination of 
MR and colocalization analysis reveals mannose may serve as a promising biomarker and 
therapeutic target for GDM. 

 
Figure 5. Colocalization analysis of mannose and gestational diabetes (GDM). Positive (PPH4 > 99%) 
colocalization results (A). When most points are located on the diagonal, it indicates GDM, GWAS, 
and mannose signals are likely colocalized. Variants are colored by their r2 value, and the risk variant 
is labeled and uniquely colored purple. SNP, single-nucleotide polymorphisms. −log10(p) associa-
tion p-values for biomarker and −log10(p) association p-values for expression in GDM variants (B) 
and mannose SNPs (C), 1 Mb range. 

3.4. Metabolic Pathway Analysis 
The analysis of metabolic pathways revealed three significant pathways primarily 

associated with GDM and female infertility (Supplementary Table S6). Among these, ‘Ar-
ginine and proline metabolism’ appeared to be the most significantly implicated in the 
development of GDM (p = 0.000135). For female infertility, the most significant pathways 
were ‘Caffeine metabolism’ (p = 0.000277) and ‘Biosynthesis of unsaturated fatty acids’ (p 
= 0.00311). Moreover, IVW estimates for the associations between serum metabolites, im-
mune traits, and infertility are shown in Figure 6. 

Figure 5. Colocalization analysis of mannose and gestational diabetes (GDM). Positive (PPH4 > 99%)
colocalization results (A). When most points are located on the diagonal, it indicates GDM, GWAS,
and mannose signals are likely colocalized. Variants are colored by their R2 value, and the risk variant
is labeled and uniquely colored purple. SNP, single-nucleotide polymorphisms. −log10(p) association
p-values for biomarker and −log10(p) association p-values for expression in GDM variants (B) and
mannose SNPs (C), 1 Mb range.

3.4. Metabolic Pathway Analysis

The analysis of metabolic pathways revealed three significant pathways primarily
associated with GDM and female infertility (Supplementary Table S6). Among these,
‘Arginine and proline metabolism’ appeared to be the most significantly implicated in the
development of GDM (p = 0.000135). For female infertility, the most significant pathways
were ‘Caffeine metabolism’ (p = 0.000277) and ‘Biosynthesis of unsaturated fatty acids’
(p = 0.00311). Moreover, IVW estimates for the associations between serum metabolites,
immune traits, and infertility are shown in Figure 6.
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4. Discussion

In this MR study, we harness the power of circulating biomarkers associated with both
metabolism and immunity to investigate their potential causal roles in the development
of 14 female reproductive diseases. Our results reveal mannose plays a causative role in
the heightened risk of GDM. Furthermore, our study demonstrates a causal relationship
between genetically predicted higher levels of circulating CD28−CD25++CD8+ T cells
and an increased risk of female infertility. Conversely, an increased count of circulating
NKT cells is linked to a lower risk of ectopic pregnancy (Figure 7). Rigorous sensitivity
analyses affirm the reliability of our MR findings, along with the 95% CI for the effect
excluding 0, indicating a statistically significant and potentially meaningful association.
Despite the CI for the association between mannose and GDM being relatively wide
(2.85–12.73), its clinically significant impact on maternal and offspring health underscores
crucial implications for GDM prevention and management [46].
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counts (AC) correlating with reduced ectopic pregnancy risk.

A growing number of studies have explored the genetic and metabolic basis of
GDM, spurred by its rising prevalence and role in the global upswing of T2D. Strides
in metabolomics have yielded valuable insights in comprehending the pathogenesis of
GDM. For instance, Li et al. identified 36 serum metabolites potentially linked to GDM, in-
cluding sterol lipids, fatty acyls, prenol lipids, sphingolipids, and glycerophospholipids, as
detected using LC-MS [47]. Another recent study highlighted alterations in the metabolism
of glycine, serine, arginine, and proline in GDM patients [48]. Unlike these observational
studies, our MR approach, employing genetic variants as instrumental variables and lever-
aging GWAS summary statistics, revealed no direct causal link between GDM risk and
lipid or amino acid metabolite levels. Crucially, a significant causal relationship was found
between genetic variants, serum mannose levels, and GDM.

Mannose, a bioactive monosaccharide, is a key player in glycosylation processes and
energy metabolism. Our findings align with prior research showing increased mannose
levels in GDM patients’ fasting blood and amniotic fluid [49]. However, the earlier study
fell short of establishing a direct causal relationship. Notably, elevated serum mannose
levels strongly indicate future risk for various chronic diseases, such as PCOS [50], T2D [51],
CVD [52], and albuminuria [51], potentially contributing to their development rather than
serving solely as a novel biomarker. Several research studies illuminate the possible mech-
anisms behind mannose’s association with these diseases. According to recent research,
circulating mannose levels are positively associated with obesity-independent insulin resis-
tance due to mannose’s interference with insulin receptor function or its role in glycation
end product [53]. Another potential pathway could be through the impact of mannose on
the gut microbiome [54], further increasing GDM risk.

Dietary habits during pregnancy, particularly high sugar intake and low fruit and
vegetable consumption, are also implicated in increased GDM risk [55]. This suggests that
dietary modifications and mannose-targeted therapies could be effective GDM management
strategies. Moreover, the impact of environmental factors [56–58] must be considered in
the broader context of GDM etiology. Given these findings, future research should focus on
larger sample sizes and more diverse populations to validate the observed relationships
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and to explore the underlying mechanisms. Such research is imperative for advancing
the development of more effective preventative and therapeutic strategies for GDM and
related metabolic disorders.

Female infertility affects 10% of women of reproductive age globally, resulting in a sub-
stantial decline in childbirth rates and contributing to significant population decreases [59].
A recent cross-sectional study found lower serum CD8 T cell levels in infertile patients
compared to controls [60] and another identified T% and CD4+ T% as independent risk
factors for PCOS [61]. Our study, utilizing genetic data, examined the causal relationship
between circulating immune traits and infertility, thus minimizing biases from confounding
factors. Contrasting with a previous study that found a significant association between
epiandrosterone sulfate (EPIA-S) levels and PCOS [62], our stringent analysis did not
establish a causal relationship between 486 serum metabolites, 731 immune cell traits,
and PCOS.

Ectopic pregnancy is the leading cause of maternal morbidity and mortality rate with
elusive etiology [63]. NKT cells, a unique subset of NK cells, are crucial in maintaining
pregnancy and modulating immune system modulation during gestation [64]. Previous
studies have shed light on the immune response in ectopic pregnancies. For instance,
elevated CD69 staining and increased numbers of CD56+ and CD3+ cells were observed
in ruptured ectopic pregnancies, highlighting the active participation of immune cells in
this condition [65]. Moreover, the presence of Chlamydia trachomatis (anti-CT) Hsp60
immunity has been identified as a predominant feature in ectopic pregnancies [66]. Li et al.
proposed that the joint detection of serum levels of progesterone, β-HCG, CA125, and the
CD3+ T cell percentage could serve as reliable indicators for the early diagnosis of ectopic
pregnancy [67]. However, the causal link between infectious agents and the resulting
immune response and ectopic pregnancies has not been established previously. Our reverse
MR analysis showed no potential reverse causal association between ectopic pregnancy
and NKT cells AC. This suggests that the observed associations between NKT cells and
ectopic pregnancy are likely unidirectional. As suggested by Li et al. [67], the investigation
of new serum markers could lead to earlier diagnosis, timely medical treatment, and
prevention. Thus, further research in larger prospective studies is imperative to unravel
their implications for the early detection and management of the condition.

Our investigation has several innovations. Firstly, it utilizes peripheral blood immune
cell signatures and metabolites as exposures, illuminating their potential causal links with
reproductive diseases and underscoring profound implications for clinical research. Sec-
ondly, the adoption of a two-sample bidirectional MR approach minimizes the potential for
confounders or reverse causality. The methods applied to evaluate the causal relationship
between IVs and outcomes are valid, including IVW, weighted median, and MR-Egger.
Thirdly, in contrast to preceding MR analyses involving single-exposure factors, the evalua-
tion of 486 blood metabolites and 731 immune traits requires substantial computational
resources and presents intricate analytical challenges. The analytical framework outlined
in our study may serve as a valuable reference for analogous research endeavors.

A few drawbacks, however, exist in our study. Firstly, despite our rigorous application
of various MR methodologies to address pleiotropy-induced confounding, the inherent
nature of MR studies means that residual biases cannot be entirely eliminated. Secondly, the
power of the IVs depends largely on the sample size of GWASs. Therefore, further research
with larger and more diverse populations is crucial to reinforce the observed causal associ-
ations. Thirdly, MR studies often reveal the lifetime influence of risk variables on health
outcomes, making it challenging to separate causes at different phases of the development
of a disease. Consequently, additional research and mechanistic validations are essential to
elucidate the roles of these factors in the pathogenesis of female reproductive disorders.

5. Conclusions

In conclusion, our MR study provides new insights into the associations between
serum metabolites, immune traits, and female reproductive disorders. We discovered a
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significant link between elevated mannose levels and increased susceptibility to GDM,
suggesting its potential as a biomarker. Additionally, increased NKT cells AC were found
to have a protective effect against ectopic pregnancy, while higher levels of circulating
CD28−CD25++CD8+ T cells RC were causally associated with an increased risk of female
infertility. These findings pave the way for developing early diagnostic tools and targeted
treatments in reproductive health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom14010116/s1, Table S1: The GWAS data source of 14 female
reproductive diseases; Table S2: The most detrimental and protective immune cell traits factors for
14 female reproductive diseases; Table S3: The most detrimental and protective serum metabolites
factors for 14 female reproductive diseases; Table S4: The reverse Mendelian randomization estimates
between gestational diabetes and mannose; Table S5: The Multivariable Mendelian randomization
estimates between gestational diabetes and mannose; Table S6: Metabolic pathway associated with
gestational diabetes, and female infertility; Figure S1: Two-sample MR sensitivity analysis for serum
immunophenotypes putatively causally associated with female infertility; Figure S2: Two-sample
MR sensitivity analysis for serum immunophenotypes putatively causally associated with ectopic
pregnancy; Figure S3: Funnel plot (A), forest plot (B), and leave-one-out plot (C) of the causa effect of
mannose on gestational diabetes risk. IVW: Inverse-variance-weighted.
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