
Citation: Go, E.J.; Lee, J.Y.; Kim, Y.H.;

Park, C.-K. Site-Specific Transient

Receptor Potential Channel

Mechanisms and Their Characteristics

for Targeted Chronic Itch Treatment.

Biomolecules 2024, 14, 107. https://

doi.org/10.3390/biom14010107

Academic Editor: Wendy

M. Campana

Received: 28 December 2023

Revised: 10 January 2024

Accepted: 13 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Site-Specific Transient Receptor Potential Channel Mechanisms
and Their Characteristics for Targeted Chronic Itch Treatment
Eun Jin Go 1, Ji Yeon Lee 2, Yong Ho Kim 1,* and Chul-Kyu Park 1,*

1 Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University,
Incheon 21999, Republic of Korea; navy2474@gachon.ac.kr

2 Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University,
Incheon 21565, Republic of Korea; easy95@gilhospital.com

* Correspondence: euro16@gachon.ac.kr (Y.H.K.); pck0708@gachon.ac.kr (C.-K.P.)

Abstract: Chronic itch is a debilitating condition with limited treatment options, severely affecting
quality of life. The identification of pruriceptors has sparked a growing interest in the therapeutic
potential of TRP channels in the context of itch. In this regard, we provided a comprehensive
overview of the site-specific expression of TRP channels and their associated functions in response
to a range of pruritogens. Although several potent antipruritic compounds that target specific TRP
channels have been developed and have demonstrated efficacy in various chronic itch conditions
through experimental means, a more thorough understanding of the potential for adverse effects
or interactions with other TRP channels or GPCRs is necessary to develop novel and selective
therapeutics that target TRP channels for treating chronic itch. This review focuses on the mechanism
of itch associated with TRP channels at specific sites, from the skin to the sensory neuron, with the
aim of suggesting specific therapeutic targets for treating this condition.
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1. Introduction

Itch, or pruritus, is defined as an unpleasant sensation that elicits an innate scratching
response. Irritants such as insect bites and contact with poisonous plants, leading to acute
itch, can be readily alleviated by scratching. This response may be natural; however, it can
become pathological if immense suffering from chronic itch lasts more than 6 weeks [1].
Chronic itch is classified into four categories: dermatologic, systemic, neuropathic, and
psychogenic [2–4]. Dermatologic itch conditions in atopic dermatitis (AD), psoriasis,
and xerosis stem from skin diseases [3]. Systemic itch arises from organs other than
the skin and always accompanies diseases of organs, such as conditions in cholestatic
pruritus and uremic pruritus [5]. Neuropathic itch results from nerve injury and arises
from diseases of the central or peripheral nervous system [6]. Examples of neuropathic itch
include neuropathy, nerve compression or irritation, multiple sclerosis, and brain tumors.
Psychogenic itch is caused by psychological or psychiatric disorders [7]. Though chronic
itch has been significantly impairing the quality of patients’ lives by interrupting their
sleep or causing anxiety or depression [8,9], an understanding of the molecular and neural
mechanisms of chronic itch remains limited.

Itch has been regarded as a sub-modality or a mild form of pain [10] due to the
similarities in the two sensations [11]. In 2009, Chen et al. discovered itch-specific neu-
rons in mice and claimed that itch and pain are two distinct sensations [12,13]. Though
not identical, the two sensations are closely related, as itch-sensing nerve fibers express
two families of receptors: G protein-coupled receptors (GPCRs) and the transient receptor
potential (TRP) [14,15]. TRP channels are non-selective ion channels primarily located on
the plasma membrane in various cells and are divided into six families: TRPV (vanilloid),
TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), TRPC (canonical), and TRPML
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(mucolipin) [16]. Among the members of the TRP channel family, TRPV1, TRPA1, TRPV3,
and TRPV4 are especially known to be involved in itch transduction [17–19].

In this review, we provide an overview of the current understanding of the mechanisms
of itch, beginning with the initiation of itch at the site of the skin and tracing its progression
to the itch sensory neurons where the sensation is perceived and conveyed. Additionally,
we discuss the role of TRP channels as key players in chronic itch, aiming to suggest specific
therapeutic targets for treating this condition.

2. Mechanism of Itch from Skin to Peripheral Sensory Neuron

During an episode of acute itch, the skin is distributed by a breach or chemical insult
(such as chemical mediators or insect bites), which in turn follows a pruriceptive itch [20].
Free nerve endings of peripheral sensory nerve fibers terminate in the skin and detect
the changes in the local chemical environment. These changes involve various chemical
mediators, including histamine, serotonin, proteases, chemokines, and cytokines released
by keratinocytes and local immune cells [21,22].

The peripheral sensory nerve fibers conveying the itch sensation are broadly classified
into unmyelinated C-fibers and lightly myelinated Aδ-fibers [23,24]. Unmyelinated C-fibers
detect and transmit pruriceptive information more slowly than myelinated Aδ-fibers. Un-
myelinated C-fibers are subdivided into peptidergic and non-peptidergic fibers [24–26].
Peptidergic C-fibers contain large vesicles that release inflammatory neuropeptides such
as substance P (SP) and calcitonin gene-related peptide (CGRP) at both central and pe-
ripheral terminals, whereas non-peptidergic fibers express the purinergic receptor P2 X3
and isolectin B4 (IB4) [26]. Ringkamp et al. reported the involvement of A fibers in itch
perception, demonstrating attenuated itch sensation when the conduction of myelinated
fibers was selectively blocked [23]. Among many subtypes of primary afferent nerves
originating from the distal, a single nerve subtype consisting of an itch receptor is respon-
sible for transducing pruriceptive stimuli to primary afferent dorsal root ganglion (DRG)
neurons and then to the higher centers [27]. In the itch signal transduction, the TRP family
is recognized as a key player. Among the TRP family in mammals, the five subgroups,
the TRP vanilloids 1 (TRPV1), TRPV3, TRPV4, TRPA 1, and TRPM 8, are predominantly
implicated in itch transduction [28].

One of the most commonly studied pruritogen, contributing to the initiation and
modulation of itch sensation, is histamine, secreted by various cells, including T-cells, mast
cells, and keratinocytes [29]. Based on this mechanism, itch is generally classified as either
histamine-dependent or histamine-independent [30]. Acute itch, manifested as changes
in the local chemical environment, can be detected through histamine-mediated mecha-
nisms; however, chronic itch typically involves histamine-independent mechanisms [14].
Understanding how pruritogens interact with specific TRP channels provides insights into
the molecular mechanisms of itch transduction. Furthermore, targeting these interactions
holds potential for developing therapeutic interventions to alleviate itching associated with
various skin conditions.

2.1. Detection of Itch through the Skin

When the skin barrier is damaged due to genetic, inflammatory, and environmental
causes, passive water loss through the skin increases and induces the sensation of itch
through non-myelinated C-fiber activation [31]. The itch–scratch cycle initiation leads to
epidermal damage, perpetuating the itch sensation [31]. Various itch-sensing receptors
are characterized in the skin and immune cells. Histamine receptors H1R, H2R, H3R,
and H4R are distributed across various tissues [32]. H1R binds to Gq/G11 proteins and
activates phospholipase A2 [33], phospholipase Cβ3 (PLCβ3) [34], protein kinase Cδ

(PCKδ) [35], and TRPV1 [35,36], resulting in calcium influx and firing action potentials in
primary sensory neurons. Mas-related G protein-coupled receptors (Mrgprs) are broadly
required for detecting both exogenous pruritogens and endogenous itch mediators from
keratinocytes and immune cells [37]. Serotonin (5-hydroxytryptamine, 5-HT) receptors
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(HTRs) are expressed in the skin by immune cells and sensory neurons, influencing immune
response and sensory perception [38]. In mice, 5-HT is released by mast cells, acting as
a pruritogen at lower doses than histamine [39]. Toll-like receptors (TLRs) are expressed
across keratinocytes, immune cells, and neurons, and they detect pathogen-associated
molecular patterns [40]. Among TLRs, TLR3, TLR4, TLR5, and TLR7 have been known to
mediate itch in mice [41,42]. Protease-activated receptors (PARs), especially PAR2 and PAR4,
have been implicated in itch initiation by detecting various exogenous and endogenous
proteases [43–45]. They are expressed by keratinocytes, immune cells, and neurons [46].
Finally, cytokines-related type 2 immune responses are increasingly recognized for their
role in itch perception. Keratinocytes release TSLP, a major instigator of the T helper
(Th) 2 response, in response to various stimuli, including allergy and proteolytic PAR2
activation [47–49]. High TSLP expression in the skin is reported as a feature of atopic
dermatitis (AD) [50].

2.2. Transduction of the Itch Signal through the Peripheral Sensory Neuron

Two theories for pruriceptive sensory processing in the nervous system have been
postulated: the specificity and pattern theories [51–53]. The former asserts the existence of
specific types of sensory nerve fibers and spinal cord neurons that transmit itch-specific
information to the central nervous system; however, the latter states that the itch sensation
is encoded by many sensory receptors and spinal cord neurons that compose the collective
pattern of neuronal activity, determining the ultimate sensation experienced. Cumulative
evidence increasingly supports the specificity theory over the pattern theory, although
much remains to be learned.

As multiple nerve subtypes are activated, the specific subtypes of sensory neurons
transducing pruriceptive itch become complex. For example, cutaneous C-fibers respond
to both histamine and capsaicin [54,55]. Similar to C-fibers, an evaluation of the sensory
nerves that express MrgprA3-expressing DRG neurons also express receptors for histamine,
gastrin-releasing peptide (GRP) [56], and capsaicin (TRPV1) [57]. Han et al. found that
the ablation of MrgprA3-expressing neurons in the DRG reduced itch behavior without
disturbing pain [17]. Moreover, the expression of TLR7 in primary sensory neurons is
required specifically for inducing itch, excluding pain. [41]. However, given the limitations
of these studies, the potential role of the investigated molecules or neurons in mediating
pain cannot be dismissed [14]. Pruriceptors on free nerve endings in cutaneous primary
sensory neurons are activated by pruritogens and evoke an itch sensation [58]. Besides
pruritogens, various inflammatory mediators, including adenosine 5′-triphosphate (ATP),
thymic stromal lymphopoietin, endothelins, prostaglandins, nitric oxide, histamine, and
serotonin, are released by keratinocytes and directly sensitize or activate primary sensory
neurons to initiate itch signal [59]. Similarly, pruritogenic inflammatory mediators are
also released by innate immune cells, including mast cells, macrophages, neutrophils, and
dendritic cells [60], and the interplay between adaptive immune cells and neurons then
plays a crucial role in initiating the itch signal [61–63].

3. Functional Roles of TRP Channels in the Skin

TRP channels are expressed in various excitable and unexcitable cells [64–69]. Studies
have also revealed that TRP channels are involved in regulating skin physiology [70–75].
Despite the limited studies on TRP channels associated with skin and epidermis in itch,
TRPV3 and TRPV4 channels (Figure 1) have been studied.
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TRPV4 has been observed in the skin, where the efficacy of TRPA1 antagonist A-967079, TRPV1 
antagonist PAC-14028 and SB705498, and TRPV1 agonist capsaicin has been examined. TRPV3 an-
tagonist citrusinine-II, osthole, forsythoside B, verbascoside, isochlorogenic acid A and B, dyclonine, 
trpvicin, and TRPV1 antagonist resolvin D3 are locally administered via intradermal or transdermal 
injection. Sensory neurons express TRPA1, TRPV1, TRPV4, TRPC3, TRPC4, and TRPM8. Systemic 
deliveries of TRPA1 antagonists HC-030031 and A-967079, TRPV1 antagonists resolvin D3 and PAC-
14028, TRPV3 antagonists scutellarein and trpvicin, and TRPV4 antagonists vitexin and cimifugin 
have been investigated for their potential antipruritic effects. These compounds modulate the trans-
mission of itch signals to the brain. 

3.1. Skin TRPV3 in Itch 
TRPV3 is a warm temperature (>33 °C)-sensitive non-selective cation channel ex-

pressed in skin keratinocytes [73,76–78] and poorly detected in DRG neurons or the spinal 
cord [73]. Similar to other polymodal TRP channels, TRPV3 is also activated by chemicals 
such as eugenol, carvacrol, thymol, camphor, and 2-APB [76,79]. Notably, TRPV3 is ex-
pressed in keratinocytes in mice and not in the peripheral or central nervous system, like 
DRG neurons or the spinal cord [73]. Studies using TRPV3 knockout mice showed mark-
edly diminished heat responses, whereas other sensory stimuli were maintained [76]. 
Moreover, hair abnormalities were also observed in TRPV3 knockout mice [76,80]. There-
fore, the physiological role of TRPV3 for thermosensation, hair regulation, and dermatitis 
has been highlighted. 

In the context of itch, in vivo studies using gain-of-function TRPV3 mutation (Gly573 
to Ser or Cys) in DS-Nh mice showed hairless and AD-like symptoms with spontaneous 
scratching [80,81]. AD is an inflammatory skin disease with intractable, chronic itch 
[82,83]. Moreover, gain-of-function TRPV3 Gly573Ser mutant in mice keratinocytes led to 
similarities with the clinical symptoms of human AD, such as skin inflammation, pruritus, 
immune cell infiltration, hyperkeratosis, upregulation of nerve growth factors, and sys-
temic symptoms with elevated proinflammatory cytokines [84]. While TRPV3 Gly573 mu-
tation mice indicated the involvement of TRPV3 in itch, the Gly573 missense mutation 
was also discovered in Olmsted syndrome, which is a rare congenital disease character-
ized by skin hyperplasia, diffuse palmoplantar keratoderma, alopecia, and severe pruritus 
[85]. TRPV3 knockout mice showed skin-related loss-of-function phenotypes, including 
curly whiskers, wavy hair, a thin stratum corneum, and misaligned hair follicles; however, 
they did not show itch-related scratching behaviors [86]. Moreover, TRPV3 lacking 
keratinocytes impaired protease-activated receptor 2 (PAR2) function in response to PAR2 
agonists, leading to reduced neuronal activation and scratching behaviors [87]. Overall, 

Figure 1. Expression of transient receptor potential (TRP) receptors in skin keratinocytes and sensory
neurons concerning pharmaceutical administration routes. The expression of TRPV3 and TRPV4
has been observed in the skin, where the efficacy of TRPA1 antagonist A-967079, TRPV1 antagonist
PAC-14028 and SB705498, and TRPV1 agonist capsaicin has been examined. TRPV3 antagonist
citrusinine-II, osthole, forsythoside B, verbascoside, isochlorogenic acid A and B, dyclonine, trpvicin,
and TRPV1 antagonist resolvin D3 are locally administered via intradermal or transdermal injection.
Sensory neurons express TRPA1, TRPV1, TRPV4, TRPC3, TRPC4, and TRPM8. Systemic deliveries
of TRPA1 antagonists HC-030031 and A-967079, TRPV1 antagonists resolvin D3 and PAC-14028,
TRPV3 antagonists scutellarein and trpvicin, and TRPV4 antagonists vitexin and cimifugin have been
investigated for their potential antipruritic effects. These compounds modulate the transmission of
itch signals to the brain.

3.1. Skin TRPV3 in Itch

TRPV3 is a warm temperature (>33 ◦C)-sensitive non-selective cation channel ex-
pressed in skin keratinocytes [73,76–78] and poorly detected in DRG neurons or the spinal
cord [73]. Similar to other polymodal TRP channels, TRPV3 is also activated by chemi-
cals such as eugenol, carvacrol, thymol, camphor, and 2-APB [76,79]. Notably, TRPV3 is
expressed in keratinocytes in mice and not in the peripheral or central nervous system,
like DRG neurons or the spinal cord [73]. Studies using TRPV3 knockout mice showed
markedly diminished heat responses, whereas other sensory stimuli were maintained [76].
Moreover, hair abnormalities were also observed in TRPV3 knockout mice [76,80]. There-
fore, the physiological role of TRPV3 for thermosensation, hair regulation, and dermatitis
has been highlighted.

In the context of itch, in vivo studies using gain-of-function TRPV3 mutation
(Gly573 to Ser or Cys) in DS-Nh mice showed hairless and AD-like symptoms with
spontaneous scratching [80,81]. AD is an inflammatory skin disease with intractable,
chronic itch [82,83]. Moreover, gain-of-function TRPV3 Gly573Ser mutant in mice ker-
atinocytes led to similarities with the clinical symptoms of human AD, such as skin
inflammation, pruritus, immune cell infiltration, hyperkeratosis, upregulation of nerve
growth factors, and systemic symptoms with elevated proinflammatory cytokines [84].
While TRPV3 Gly573 mutation mice indicated the involvement of TRPV3 in itch, the
Gly573 missense mutation was also discovered in Olmsted syndrome, which is a rare
congenital disease characterized by skin hyperplasia, diffuse palmoplantar keratoderma,
alopecia, and severe pruritus [85]. TRPV3 knockout mice showed skin-related loss-of-
function phenotypes, including curly whiskers, wavy hair, a thin stratum corneum, and
misaligned hair follicles; however, they did not show itch-related scratching behav-
iors [86]. Moreover, TRPV3 lacking keratinocytes impaired protease-activated receptor 2
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(PAR2) function in response to PAR2 agonists, leading to reduced neuronal activation
and scratching behaviors [87]. Overall, these studies suggest a major role of TRPV3 in
pruriceptive itch through skin keratinocytes.

3.2. Skin TRPV4 in Itch

TRPV4 is another temperature (27 and 35 ◦C)-activated channel [88], mainly expressed
in keratinocytes, although less than TRPV3 in keratinocytes and in much higher levels than
those found in DRG neurons [89]. TRPV4 is involved in skin barrier recovery [90], intercel-
lular junction formation in keratinocytes [91], and intracellular calcium concentration; thus,
accelerating barrier recovery after stratum corneum disruption [92,93].

A recent study on human chronic pruritus found increased expression in epidermal
TRPV4 [94], suggesting a crucial role of TRPV4 in pruritus. Several TRPV4 knockout
studies showed the role of TRPV4 in 5-HT- or histamine-induced itch. Reduced scratching
behaviors in response to 5-HT were displayed in TRPV4 knockout mice, compared to
wild-type mice [95]. In global and keratinocyte-specific TRPV4 knockout mice, scratching
responses induced by histaminergic pruritogens, such as histamine, compound 48/80,
and ET-1, were significantly reduced [96,97], suggesting an important role of TRPV4
in histamine-induced itch. Although controversial, the number of non-histaminergic
pruritogen chloroquine (CQ)-induced scratching behaviors was increased in global TRPV4
knockout mice [95]. On the contrary, while one study found that both global or skin-specific
TRPV4 knockout mice showed no effect of CQ-induced scratching [97], another study
showed a significant attenuation in CQ-induced scratching behaviors in global TRPV4
knockout mice [96]. Recently, lysophosphatidylcholine (LPC), a cholestatic pruritogen, was
found to directly activate TRPV4 in skin keratinocytes, triggering micro-RNA-146a release
to activate TRPV1 pruriceptor neurons [98]. This study proposed the critical role of skin
as a sensory organ with a new pathway of pruriception. Furthermore, the involvement of
TRPV4 is supported by the deletion of TRPV4 in macrophages and keratinocytes, which
showed reductions in both allergic and nonallergic chronic itch in mice [99,100]. Thus, the
evidence represents TRPV4 as a potential therapeutic target for both allergic and nonallergic
chronic itch conditions.

4. Functional Roles of TRP Channel in Sensory Neurons

Before the signal transduction of itch from the periphery in the skin to the central
nervous system (i.e., spinal cord and brain), the signals pass through the DRG sensory
neurons. Various TRP channels in sensory neurons are activated by external and internal
itch mediators and metabolic byproducts via GPCRs, TLRs, integrin receptors, and immune
receptors complex [101], and the sensory neurons are depolarized to transmit signals.
Among the TRP channels, TRPA1, TRPV1, TRPV4, TRPM8, TRPC3, and TRPC4 (Figure 1)
are generally known for their itch generation and transduction from sensory nerves such
as DRG neurons.

4.1. Sensory TRPA1 in Itch

TRPA1 is a non-selective cation channel named after cytosolic N-termini with
14 ankyrin repeats and is activated by noxious cold temperature, mechanical sensa-
tion, electrophilic compounds (allyl isothiocyanate, cinnamaldehyde, diallyl disulfide,
and allicin) as well as endogenous reactive oxygen species (hydrogen peroxide and
4-hydroxynonenal) [102]. Besides the physiological role of sensory detection through
thermal and chemical stimuli, TRPA1 also contributes to the chronic [103] and acute
histamine-independent pruritis evoked by CQ [104] and proenkephalin product, BAM8-
22 [104–106]. Overexpression of TRPA1 in mast cells, keratinocytes, and dermal sensory
neurons was found in human and murine AD models [103].

TRPA1 is an essential downstream mediator of GPCR signaling involved in histamine-
independent itch [104]. Pruritogen-sensing GPCRs include the TSLP receptor, the bile
acid receptor TGR5, and the MrgprA3 and MrgprC11, which can modulate TRPA1
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positively [57,107,108]. In response to histaminergic signaling, TSLP released by ker-
atinocytes activates TRPA1 downstream of the TSLP receptor and allows for calcium
entry into the sensory neurons to promote itch signaling [107]. Similarly, a release of the
pruritogenic neuropeptide GRP in response to the bile acids is diminished in pharma-
cological inhibition and genetic ablation of TRPA1 [108]. Thus, TRPA1 is activated and
sensitized by TGR5 by a Gβγ- and PCK-dependent mechanism, and the overexpression
of TGR5 that induces exacerbated spontaneous scratching is prevented with the treat-
ment of a TRPA1 antagonist [108]. Histamine-independent itch mediators such as CQ
and BAM8-22 peptide activate MrgprA3 with Gβγ signaling and MrgprC11 with PLC
signaling, respectively [104]. One study, however, reported the lack of TRPA1 or TRPV1
involvement in the activation of GPCRs with CQ or histamine in inducing membrane de-
polarization and action potential at the peripheral C-fiber terminals of itch nerves [109].
Notably, this study found that, while the increase in intracellular calcium by CQ in nerve
cell bodies dissociated from DRG is strictly dependent on TRPA1, TRPA1 is not required
for the action potential elicited by CQ at the C-fiber nerve terminals [109]. These findings
indicate that TRPA1 plays a distinct role at specific sites in the scratching response.

In addition to its relevance to GPCRs, TRPA1 has also been shown to interact with an-
other ion channel, specifically the Nav1.7 channel. Methylglyoxal, an endogenous reactive
carbonyl compound that plays a crucial role in the pathogenesis of diabetic neuropathy,
has been found to activate both TRPA1 and Nav1.7 channels, leading to the induction
of scratching behavior in response to methylglyoxal treatment [110]. Furthermore, the
physiological role of extracellular microRNAs (miRNAs) as potential disease biomarkers
has also been investigated in the context of itch signaling. Extracellular miR-711 has been
shown to directly bind and activate TRPA1 in TRPA1-expressing heterologous cells and
primary sensory neurons, resulting in scratching behavior in response to intradermal cheek
injection, but not pain-related behavior. Interestingly, this effect was found to be inde-
pendent of TLR7, a known modulator of itch sensation [111]. On the other hand, TLR7
agonist imiquimod (IQ) has been identified as another pruritogen via direct interaction
with TRPA1, inducing itch-like behaviors in both zebrafish larvae and mice [112].

In TRPA1-deficient mice, scratching and general responses to AD seem diminished [113].
Additionally, both TRPA1 and TRPV1 channels are crucial for generating spontaneous
scratching in a mouse ACD model [114]. A proinflammatory role for TRPA1 has been
observed, evidenced by a suppressed cytokine response, epidermal thickening, and re-
ductions in other features of inflammation [113]. Thus, the current understating of the
pathology associated with TRPA1 in the skin requires further investigations. However, its
involvement in pruriception, acting downstream of the GPCRs, makes it a potential drug
target for alleviating the itch.

4.2. Sensory TRPV1 in Itch

TRPV1 is a subfamily of temperature-sensitive TRP channels activated by noxious
temperatures greater than 43 ◦C, capsaicin, and low pH [115]. Furthermore, this channel
can be directly and indirectly sensitized by various pro-inflammatory or pruritogenic
agents, including histamine, proteases, sphingosine 1-phosphate (S1P), and IQ, which
can endogenously mediate phosphorylation of intracellular domains by PKC, PKA, and
other kinases [116,117]. The primary function of TRPV1 is the sensation of pain, with
its expression mostly found in peripheral sensory nerves in the skin and central nerve
endings in the DRG [118]. However, recent findings have reported TRPV1 distribution in
other non-neuronal cells such as epidermal keratinocytes, T-cells, mast cells, leukocytes,
macrophages, and sweat gland cells [119]. Therefore, when developing therapeutics for
this channel, considering the impact on all populations of this channel distributed widely
in various tissues and organs is essential.

TRPV1 is involved in histamine-dependent itch, which is facilitated by the co-expression
of H1R signaling in sensory neurons [35], and histamine-induced scratching behaviors are
abolished in TRPV1 knockout mice [36]. The molecular mechanism of the transduction of
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the histaminergic itch signal to evoke the scratching response has recently been discovered.
It has been found that H1R directly binds to the deSUMOylated TRPV1 C terminus,
facilitated by histamine treatment [120]. TRPV1 sensitization can also be induced by
histamine-independent itch signaling, such as endogenous proteases that activate PAR-1
and PAR-4, which have been implicated in AD [121]. Thus, TRPV1 plays a critical role in
itch signals associated with histamine-dependent and -independent itch.

IQ, an agonist of TLR7, also evokes itch-associated responses with the presence of
TRPV1 [122]. Although research has found sex differences in TRPV1 and TRPA1 knockout
mice regarding IQ-induced psoriatic dermatitis [123], these two channels may play a
role in developing itch sensation. Lysophosphatidic acid (LPA) is another itch mediator
associated with TRPV1 and TRPA1. Either TRPV1 or TRPA1 knockout mice show reduced
LPA-induced DRG neuron activations and scratching responses after intradermal LPA
administration [124]. Moreover, a low concentration of S1P evokes acute itch, whereas a
high concentration causes pain and itch [125]. Studies have revealed that the co-expression
of S1P receptor 3 (S1PR3) with TRPV1 leads to the induction of acute pain and heat
hypersensitivity in response to S1P. However, when S1PR3 and TRPA1 are co-expressed,
they mediate S1P-induced itch responses [120], suggesting that distinct mechanisms are
involved in the signaling of itch and pain, and the interplay between TRPV1 and TRPA1
may play a role in the itch sensation.

Although the downstream signaling of histamine receptor subtypes H1R and H4R
involves TRPV1, TRPA1 is also associated with histamine-induced pruritus transduction
via H4R [126]. Periostin, a fasciclin extracellular matrix protein, potentially involves the
activation of both TRPV1 and TRPA1 in the context of chronic allergic itch conditions [127].
This study revealed that periostin binds to the integrin αVβ3 in DRG sensory neurons,
leading to the release of the neuropeptide NPPB due to TRPV1- and TRPA1-induced neu-
ronal depolarization, which in turn contributes to the itch signal. In TRPV1 and TRPV4
knockout mice, cinnamaldehyde (CA)-induced scratching behavior was diminished, com-
pared to wild-type mice, while TRPA1 knockout mice did not show the similar reduction
in scratching behavior [128]. These findings suggest crosstalk between TRP channels and
GPCRs, and the subsequent itch signaling transduction.

4.3. Sensory TRPV4 in Itch

TRPV4 is another temperature-sensitive TRP channel activated at 27 and 35 ◦C [88].
While TRPV4 is primarily expressed in keratinocytes, research has shown that the expres-
sion of TRPV4 in subsets of DRG sensory neurons is required for both CQ- and histamine-
induced itch transmission [96]. In this study, the knockdown of TRPV4 in DRG neurons
using intrathecal small interfering ribonucleic acid (siRNA) injection significantly reduced
CQ or histamine-induced scratching behaviors compared to mice injected with negative
control. Furthermore, the function of TRPV4 in complexes in DRG neurons and HEK293
cells depends on TRPV1, indicating that TRPV1 facilitates the TRPV4 responses to prurito-
genic agents [96]. Thus, TRPV4 in sensory neurons plays a differential role in regulating
itch signals.

4.4. Sensory TRPM8 in Itch

The activation of TRPM8 is induced by temperatures in the range of 8–28 ◦C and
by natural compounds that can cause cooling sensations, such as menthone, menthol,
and eucalyptol [129]. Cooling by applying cold water or ice has been commonly used to
relieve itch, suggesting that TRPM8 activation can regulate itch transmission [130]. More-
over, cooling and menthol-induced TRPM8 activation can inhibit histamine-dependent
and -independent itch pathways in neurons expressing TRPM8 [131]. Importantly,
a TRPM8 agonist cooling compound, formed by combining with (1R,2S,5R)-N-(2-(2-
pyridinyl)ethyl)-2-ispropyl-5-methylcyclohexancarboxamide and menthoxypropanediol,
show a stronger activation than menthol [132]. The application of a lotion containing
this compound ameliorated severe pruritus in a dry skin-associated chronic itch model,



Biomolecules 2024, 14, 107 8 of 16

indicating that TRPM8 may play a role as an itch modulator. However, further research
is required to identify a specific neural circuit and potential cellular mechanism for
treating chronic itch.

4.5. Sensory TRPC3 and TRPC4 in Itch

TRPC channels are also calcium-permeable nonselective cation channels [133]. TRPC3
is particularly prevalent in DRG neurons, and its role in the histamine-independent itch
pathway has been demonstrated through the reduction in scratching responses induced
by TRPC3 agonist GSK1702934A, as well as endothelin-1 and SLIGRL in TRPC3 knockout
mice [134], highlighting the role of TRPC3 in the histamine-independent itch pathway.
Furthermore, research has demonstrated that TRPC3 is also expressed in MRGPRD-positive
non-peptidergic C fiber nociceptors, where MRGPRD is a GPCR member D that mediates
β-alanine-induced itch sensations [135]. However, the role of TRPC3 downstream of
MRGPRD-positive neurons remains to be further investigated.

In DRG neurons, TRPC4 is co-expressed with serotonin receptor subtype 2B (HTR-
2B) and mediates selective serotonin reuptake inhibitors (SSRIs)-evoked pruritus [136].
Sertraline, a commonly prescribed SSRI medication, elicited a robust itch response when
administered subcutaneously. However, this response was significantly diminished in
TRPC4 knockout mice without affecting the function of TRPA1 or TRPV1. Although TRPC4
antagonists, such as ML204, have been discovered [137], further research for its impact on
itch responses is needed.

5. Antipruritic Compounds Targeting TRP Channels and Future Perspective

Several potential antipruritic compounds have been developed to target various
TRP channels. Table 1 shows a list of published studies in which the effect of antipruritic
compounds is attained through the modulation of TRP channels in diverse itch-related
models. While some of these compounds are applied locally to the skin, others are
delivered systemically. The expression of TRP channels is not limited to the skin or
sensory neurons, as they are present in various tissues throughout the body. Therefore,
systemically applied antipruritic compounds may have off-target effects on TRP channels
in other physiological processes in non-itch-related tissues. For instance, the TRPV1
antagonist AMG-9810 was discontinued in the phase I clinical trial due to the side effect
of hyperthermia, an abnormal rise in body temperature from a failure of the body’s
heat-regulating mechanism [138]. Furthermore, the majority of antipruritic compounds
have been investigated via restricted administration routes. Notably, some compounds
(A-967079 and Resolvin D3) have demonstrated their efficacy through local and systemic
administration (Figure 1).

Table 1. Antipruritic compounds through TRP channels in various itch-related models.

Targets Pharmaceuticals Models Route Ref.

TRPA1

HC-030031
(antagonist)

DNCB-induced AD in mice Intraperitoneal
(100 mg/kg) [139]

Oxazolone-induced chronic dermatitis in mice Intraperitoneal
(60 mg/kg)

[113]

A-967079
(antagonist)

Oxazolone-induced chronic dermatitis in mice Intraperitoneal
(100 mg/kg)

Tacrolimus-induced pruritus in chronic contact
hypersensitivity mice

Topical
(30 mg/kg) [140]
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Table 1. Cont.

Targets Pharmaceuticals Models Route Ref.

TRPV1

Resolvin D3
(antagonist)

Imiquimod-induced spontaneous scratching and
alloknesis in mice

Intraperitoneal
(2.8 mg/kg)
Intradermal
(100 ng/100 µL)
Intrathecal
(10 ng/10 µL)

[141]

PAC-14028
(antagonist)

Df extract-induced AD in mice Oral
(10–30 mg/kg) [142]

Oxazolone-induced chronic dermatitis in mice Topical
(50 µL of 1% cream) [143]

Mild to moderate AD in human Topical
(1% cream) [144]

Capsaicin
(agonist)

Notalgia paraesthetica in human Topical
(8% patch)

[145]

Brachioradial pruritus in human [146]

SB705498
(antagonist) Histamine-induced pruritus in human Topical

(3% cream) [147]

TRPV3

Citrusinine-II
(antagonist)

AEW- and histamine-induced scratching in mice Intradermal, transdermal
(5–10 µM/50 µL)

[148]
Histamine-induced pruritus in mice Intradermal, transdermal

(10 µM/50 µL)

Osthole
(antagonist)

AEW- and histamine-induced scratching in mice Intradermal
(30–300 nM/50 µL)

[149]
Histamine-induced pruritus in mice Intradermal

(300 nM/50 µL)

Forsythoside B
(antagonist)

AEW- and histamine-induced scratching in mice Intradermal
(3–30 µM/50 µL)

[150]Histamine-induced pruritus in mice Intradermal
(0.3–30 µM/50 µL)

Carvacrol-induced pruritus in mice Intradermal
(30–300 µM/50 µL)

Verbascoside
(antagonist) Carvacrol-induced pruritus in mice Intradermal

(300 µM/50 µL) [151]

Isochlorogenic
acid A (antagonist)

Carvacrol-induced pruritus in mice

Transdermal
(1 mM/50 µL)

[152]
Isochlorogenic

acid B (antagonist)
Transdermal
(1 mM/50 µL)

Scutellarein
(antagonist)

Carvacrol-induced pruritus in mice Subcutaneous
(0.2–0.5 mg/kg)

[153]
2,4-dinitrofluorobenzene-induceddermatitis and
pruritus in mice

Subcutaneous
(0.2–0.5 mg/kg)

Dyclonine
(antagonist) Carvacrol-induced pruritus in mice Intradermal

(10–50 µM/50 µL) [154]

Trpvicin
(antagonist)

SLIGRL-induced pruritus in mice Intradermal
(10–100 µM/50 µL)

[155]
Calcipotriol-induced pruritus in mice Oral

(100 mg/kg)
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Table 1. Cont.

Targets Pharmaceuticals Models Route Ref.

TRPV4

Vitexin
(antagonist)

Histamine-, C48/80-, chloroquine-, and
BAM8-22-induced acute, and dry-skin-induced
chronic itch in mice

Intravenous
(7.5 mg/kg)

[156]
AEW-induced dry skin causing chronic itch
in mice

Intraperitoneal
(7.5 mg/kg)

Cimifugin
(antagonist)

GSK101-induced acute and Imiquimod-induced
chronic itch in mice

Intragastric
(75 mg/kg, 100 µL) [157]

DNCB, 2,4-dinitrochlorbenzene; AD, atopic dermatitis; Df, dermatophagoides farina; NP, notalgia paraesthetica;
BRP, brachioradial pruritus; AEW, acetone–ether–water; TRPV, transient receptor potential vanilloid.

As TRP channels have distinct functional roles in specific sites, global knockout studies
may not provide tissue-specific information. Only studies on TRPV4 have demonstrated
the effects of global or conditional knockout of TRPV4, including in skin keratinocytes,
sensory neurons, and macrophages [19]. The use of global knockout studies to investigate
the behavioral aspects of itch may be limited due to the dynamic nature of this process and
the potential for the role of TRP channels to change over time. Therefore, to gain a more
specific understanding of the tissue-specific role of TRP channels in itch, complementary
approaches, such as tissue-specific knockouts and conditional knockouts, are considered.
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