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Abstract: Pollen germination in vivo on wet stigmas is assisted by the receptive fluid—stigma
exudate. Its exact composition is still unknown because only some components have been studied.
For the first time, hormonal screening was carried out, and the fatty acid (FA) composition of lipid-rich
(Nicotiana tabacum) and sugar-rich (Lilium longiflorum) exudates was studied. Screening of exudate
for the presence of plant hormones using HPLC-MS revealed abscisic acid (ABA) in tobacco stigma
exudate at the two stages of development, at pre-maturity and in mature stigmas awaiting pollination,
increasing at the fertile stage. To assess physiological significance of ABA on stigma, we tested the
effect of this hormone in vitro. ABA concentration found in the exudate strongly stimulated the
germination of tobacco pollen, a lower concentration had a weaker effect, increasing the concentration
did not increase the effect. GC-MS analysis showed that both types of exudate are characterized by
a predominance of saturated FAs. The lipids of tobacco stigma exudate contain significantly more
myristic, oleic, and linoleic acids, resulting in a higher unsaturation index relative to lily stigma
exudate lipids. The latter, in turn, contain more 14-hexadecenoic and arachidic acids. Both exudates
were found to contain significant amounts of squalene. The possible involvement of saturated FAs,
ABA, and squalene in various exudate functions, as well as their potential relationship on the stigma,
is discussed.

Keywords: Nicotiana tabacum; Lilium longiflorum; stigma exudate; plant reproduction; ABA; plant
hormones; fatty acids; squalene

1. Introduction

In flowering plants, the stigma—the receptive, typically the terminal part of the
pistil—receives pollen, ensuring its germination and directing pollen tubes (PTs) into
the style [1]. Stigmas are divided into dry and wet [2], wet covered with a viscous
liquid—exudate. Stigma exudate has a complex composition that can vary greatly in
different plants, but it always includes proteins, carbohydrates, lipids, and low molecular
weight substances [3]. Wet stigmas appear to fall into two principal types: stigmas with a
lipophilic and hydrophobic surface exudate as the continuous phase, involving holocrine
secretion and stigmas with a mucilaginous secretion of carbohydrates and proteins as the
continuous phase, involving merocrine secretion mechanisms [4]. Martin [5] described
in general terms the composition of stigma exudates of ten plant species from different
taxonomic groups, finding that they all contained a lipid moiety.

In Petunia hybrida, the stigmatic exudate is primarily an oil free substance containing
phospholipids, sterols, and free fatty acids (FAs) [6]; it has a high surface tension, as a single
droplet residing on the stigma. Because of the high adhesiveness of stigma exudate, pollen
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easily sticks to it, and, presumably, a high content of hydrophobic molecules in the exudate
protects pollen from being washed away by rain [6].

In classic studies on stigmas of P. hybrida, Nicotiana tabacum, and other plants with lipid-
rich exudate, the technique of washing out stigma lipids with solvents was conventionally
used [6–11]. The samples obtained were presented as the lipid fraction of stigma exudate;
however, not only the exudate, but also the internalized lipids of stigma cells are washed
out during the incubation of tissues in solvents. In N. tabacum, gas-chromatographic
analysis has shown that such lipid component is formed of a large number of saturated and
unsaturated FAs; major FAs were myristic (14:0), oleic (9–18:1), and an unidentified FA with
a high number of C atoms [11]. The functions that the authors, as a discussion, assigned to
FAs were (1) stigma protection from desiccation and (2) regulation of pollen hydration [12].
The latter has been confirmed in elegant experiments of Wolters-Arts et al. [13]. When
Petunia exudate, rich in lipids, was applied to tobacco flowers with stigmas removed, PTs
developed normally, but Lilium exudate, which contained mainly carbohydrates, could
not support germination [13]. Moreover, pure triglycerides instead of exudate provided
normal development of PTs [13].

A number of classical works analyzed carbohydrate composition of lily stigma exu-
date, so this subject has been studied in some detail [14–16], and the proteome of Lilium
longiflorum and Olea europaea receptive fluid has been also reported [17]. A total of 51 and
57 proteins unique to these plants were identified in stigma exudate. The major group of
exudate proteins includes catabolism enzymes: O-glycosylases, proteases, and lipases. The
authors believe that these proteins cleave polymers of stigma exudate to oligomers and
monomers, thereby facilitating their uptake by growing PTs. Among the low molecular
weight exudate components, reactive oxygen species (ROS) are the most studied [18,19].
In tobacco stigmas, as the pistil matured, the level of both O•2

− and H2O2 in the exudate
decreased markedly [20], whereas in lily, the level of total ROS increased [19].

Although there are already convincing data about ROS in the exudate, little is known
about other physiological regulators—plant hormones—present on the wet stigma. How-
ever, their presence is quite probable, since pollen germination and membrane potential in
plants with wet stigmas were reported to be sensitive to some hormones [21]. A stimulatory
effect of abscisic acid (ABA) on H+-ATPase activity in petunia PT in vitro was mediated by
an increase in [Ca2+]cyt and ROS generation. The authors speculate that ethylene/ABA con-
tent of the stigma may control adhesion, hydration, and germination of pollen grains [22].
Indolylacetic acid (IAA), though sought, was not recovered from the stigmatic exudate
of Streptosolen jamesonii (Solanaceae), which was studied using chromatography [23]. At
the moment, there are data on the content of hormones in the stigma tissues, which are
certainly easier to analyze. Thus, in Vicia faba, ABA content was highest in the ovary,
but style + stigma also contained a remarkable amount of this hormone [24].Stigmas and
anthers of tobacco contained more ABA than the other floral tissues [25], which matched
the results of physiological tests. Extracts of these tissues had a strong inhibitory effect
on seed germination. At the same time, ABA did not inhibit pollen germination and PT
elongation in vitro [25]. Immunolocalization of IAA in tobacco stigmas showed that the
highest signal was observed shortly after fertilization, and it was also high in juvenile stig-
mas. At the stage of fertility, the signal was weak [26]. In a study of Paeonia hybridization,
it was found that during the whole fertilization process, IAA and gibberellic acid (GA3)
contents of self-inbred pollinated pistils were significantly higher than those of hybrid
incompatible pollinated pistils, whereas the ABA content in cross-pollinated pistils was
higher than that of self-pollinated, indicating that high content of ABA was associated with
hybrid incompatibility [27]. Measurement of endogenous hormone content in pistils of two
cucumber lines showed a gradual increase during pollination, and three hormones (zeatin
riboside, IAA and ABA) differed significantly between high-yield and low-strain lines [28].

After analyzing previously published data on the exudate biochemistry, we concluded
that FA composition of exudate without lipids from stigma cells has been poorly studied
before [23]. The hormonal composition of the exudate has also never been studied, appar-



Biomolecules 2023, 13, 1313 3 of 15

ently due to small volumes and low sensitivity of the equipment. Thus, the composition of
FAs and hormones in stigma exudate has become the subject of our study, with tobacco and
lily being suitable subjects with different types of exudate composition. The development
of analytical techniques has allowed us to measure small amounts of substances collected
from the stigma surface by non-invasive water wash.

2. Materials and Methods
2.1. Plant Material and Stigma Exudate Collection

Plants of Nicotiana tabacum L. var. Petit Havana SR1 were grown in a climatic chamber
in controlled conditions (25 ◦C, 16 h light) in vermiculite. The plants were watered with
salt solutions [29]. Cut branches of Lilium longiflorum L. var. White Heaven were purchased
from a local shop.

Stigma maturity was assessed according to flower appearance and was divided into
4 stages(for details and appearance see [19]), where stage 1 was a juvenile stigma, stage 2
was a pre-mature stigma, stage 3 was a fully mature unpollinated stigma, and stage 4 was
a pollinated stigma (the next day after pollination). Exudate was collected from stigmas of
all stages by a “cap method”: A pipette tip containing 10 µL (tobacco) or an Eppendorf test
tube containing 200 µL (lily) of distilled water was applied on the pistil and incubated for
30 min to wash the exudate off the stigma (25 ◦C). Then, the tip/tube containing the drop
was carefully removed, and drops from different flowers of the same stage were placed in a
cryo-tube and analyzed immediately (FAs) or frozen at −80 ◦C (hormones).

2.2. Chromato-Mass-Spectrometric Screening of Fatty Acids

FA methyl esters (FAMEs) were prepared according to a previously described method
with slight modifications [30]. Margaric acid (17:0) (Sigma-Aldrich, Saint Louis, MO, USA,
H3500) was added to exudate as an internal standard. The sample saponification was car-
ried out in a boiling solution of 4% NaOH (Sigma-Aldrich, S5881) in methylalcohol/water
(1:1, by volume). Then, the sample was evaporated to dryness using a rotary vacuum evap-
orator. H2O (1–2 mL) was added to the dried sample, and unsaponifiable FAs were washed
out several times with hexane (Sigma-Aldrich, 439185) until clearness. Then, a few drops
of methyl orange (Aronis, Geel, Belgium 9594) were added to the remaining water-soluble
fraction, and it was acidified with 20% H2SO4 to a pink color. Then, FAs were extracted six
times with hexane. The collected hexane was evaporated, and 3 mL of methanol (Sigma-
Aldrich, 439193) and a few drops of acetyl chloride (Sigma-Aldrich, 00990) were added to
the sample, and it was boiled for 1 h. Then, the sample was again evaporated, 1–2 mL of
H2O and a few drops of methyl orange were added, and FAMEs were extracted six times
with hexane. After that, the hexane was evaporated and 500 µL of benzene was added. The
extract in benzene was pipetted onto a silicagel TLC plate, and a mixture of hexane/diethyl
ether/glacial acetic acid (8:2:0.1, by volume) was used as a mobile phase. When the front
moved to the top of the plate, the plate was removed and airdried for 1–2 min. Then, the
plate was treated with a 0.001% solution of 2′,7′-dichlorofluorescein (Acros, Geel, Belgium
19153) in ethanol and airdried for 5–7 min. The FAME-containing zones were visualized
in UV light (λ = 365 nm). Then, the sorbent from the FAME-containing zone of chromato-
graphic plate was removed using a scalpel and transferred to a Schott glass filter, and the
FAMEs were eluted from the sorbent by washing out with hexane six times. The FAMEs
were analyzed via gas GC-MS on Agilent 7890A GC (Agilent, Santa Clara, CA, USA) with a
quadrupole mass detector Agilent 5975C fitted with a 60 m capillary column DB-23 (inner
diameter 0.25 mm, thickness of stationary phase, (50%-cyanopropyl)–methylpolysyloxane,
250 µm). The prepared FAMEs were separated under the following conditions: carrier
gas, helium at 1 mL/min; sample volume, 1 µL; split ratio, 4:1 (in numerous analyses,
splitless injection was used); and evaporator temperature, 260 ◦C. The oven temperature
program was as follows: from 130 to 170 ◦Cat 6.5 ◦C/min, to 215 ◦C at 2.75 ◦C/min (25 min
hold at this temperature), to 240 ◦C at40 ◦C/min (30 min hold at 240 ◦C). The operational
temperature of the mass detector was set to 240 ◦C, and the ionization energy was set to
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70 eV. To identify individual FAME species, NIST and Wiley search libraries and MSD
ChemStation software, G1701EAE.0200.493 (Agilent, Santa Clara, CA, USA), were used,
and the relative retention time and equal chain length (ECL) value were calculated for each
peak [31]. Quantitative determination and identification of squalene were carried out from
one sample with FAME using GC-MS method, as described [32].

2.3. Chromato-Mass-Spectrometric Screening of Phytohormones

The UPLC-ESI-MS method for the analysis of phytohormones and similar metabolites
was developed. A representative UPLC-ESI-MS chromatogram of the model mixture of
standard samples analyzed with the developed gradient elution system is presented in the
Supplementary Figure S1. This technique allows for 15 min of gradient elution to carry out
the simultaneous separation of different metabolites: polyamine derivatives (spermine),
indole derivatives (IAA, indolebutyric acid (IBA), tryptophan and indigo derivatives),
adenine derivatives, ABA, jasmonic acid, etc. Thus, this technique is convenient for
screening the main phytohormones and structurally similar metabolites in extracts and
other samples.

Sample preparation. Preparations of aqueous solutions of tobacco and lily pistil
exudates were diluted with methanol 1:1 (by volume) before analysis and centrifuged at
15,294× g for 15 min.

Liquid chromatography-mass spectrometry, method 1(UPLC-ESI-MS, registration
of positive ions). The analysis was performed on an ACQUITY UPLC H-Class PLUS
chromatograph (Waters, Milford, MA, USA) equipped with a Xevo G2-XS TOF hybrid
time-of-flight mass spectrometer (Waters, Milford, MA, USA). A sample in a volume of
0.1–1 µL was applied to a Titan C18 column (100 × 2.1 mm, 1.9 µm; Supelco, St. Louis,
MO, USA). The column temperature (T) was 40 ◦C, and the volume flow rate of the mobile
phase was 0.4 mL/min. A 0.1% (v/v) solution of formic acid in deionized water (solvent
A) and a 0.1% (v/v) solution of formic acid in acetonitrile (solvent B) were used as the
mobile phase. Chromatographic separation was carried out in gradient elution mode.
During the analysis, the composition of the mobile phase changed as follows (B, % by vol-
ume): 0–1 min—5→15%, 1–5 min—15→30%, 5–11 min—30→38%, 11–15 min—38→65%,
15–15.5 min—65→95%. The analysis was carried out in the positive-ion detection mode
(range m/z 100–1900). Ionization source parameters were as follows: ionization source
T—150 ◦C, desolvation T—650 ◦C, capillary voltage (V)—3.0 kV, sample entry cone
V—30 V, and nitrogen supply rate 1101 L/h. The obtained results were processed us-
ing the MassLynx 4.2 program (Waters, Milford, MA, USA).

The following standard samples were used to develop the LC-MS separation technique:
Spermine, adenine, salicin,5-methyltryptophan (Serva, Heidelberg, Germany), horde-
nine, kinetin, IAA, jasmonic acid,indigo,2-phenylethyl-glucoside, picloram (4-amino-3,5,6-
trichloropicolinic acid) (Sigma, Burlington, MA, USA), salicylic acid (Laverna, Moscow, Rus-
sia), trans-zeatin (FlukaChemie AG, Buchs, Switzerland, and Sigma, MA, USA),
6-benzylaminopurine, IBA, 2,4-dichlorophenoxyacetic acid (ICN Biomedicals Inc., Irvine,
CA, USA), ABA (Sigma, MA, USA, and MP Biomedicals LLC, Irvine, CA, USA), and GA3
(Honeywell Riedel-de Haën AG, Seelze, Germany). Preparation of a model mixture of
standards: A weighed sample of each standard (within 1–3 mg) was dissolved in 1 mL of a
mixture of methanol–water (1:1, by volume); an aliquot (100 µL) of each standard stock
solution was transferred into a volumetric flask, and the total volume of the solution was
adjusted to 10 mL with methanol–water (1:1, v/v). The obtained solution of the standards
model mixture was used for analysis. Relative standard deviation of the retention times of
chromatographic peaks was ≤3%.

Liquid chromatography-mass spectrometry, method 2 (UPLC-ESI-MS, registration of
positive and negative ions). HPLC-MS analysis was performed on a Waters ACQUITY
UPLC chromatograph (Waters, Milford, MA, USA) equipped with a XEVO QTOF hybrid
quadrupole time-of-flight mass spectrometer (Waters, Milford, MA, USA). The verifica-
tion analysis was carried out in the positive- and negative-ion detection mode (range
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m/z 100–1200). Ionization source parameters were as follows: T—120 ◦C; desolvation
T—250 ◦C; capillary V—3.0 kV; and sample input cone V—30 V.

Conditions for chromatographic separation were as follows: ACQUITY UPLC BEH
Phenyl column (50 × 2.1 mm, 1.7 µm; Waters, Drinagh, County Wexford, Ireland), column
T, 40 ◦C, and mobile phase flow rate, 0.4 mL/min. Mobile phase components were as fol-
lows: 0.1% (v/v) formic acid in water (solvent A) and 0.1% (v/v) formic acid in acetonitrile
(solvent B). All analyzes were performed using a gradient elution mode. The composi-
tion of the mobile phase changed as follows (solvent B, % by volume): 0–1 min—15%,
1–5 min—15→30%, 5–15 min—30→38%, 15–15.5 min –38→45%, 15.5–23 min—45%,
23–23.5 min—45→95%.

Quantitative analysis of ABA in aqueous solutions of tobacco exudate was performed
by the method of external calibration with ABA standard sample (Sigma, MA, USA). In the
working range of concentrations (48–0.048 µg/mL), the calibration curve was approximated
by a straight line with R2 above 0.99999. The relative standard deviation of retention times
and areas of chromatographic peaks of ABA did not exceed 3 and 5%, respectively. The
lowest detectable concentration of ABA is 5 ng/mL. The results were processed using the
MassLynx 4.2 software (Waters, Milford, MA, USA).

2.4. Pollen Collection and Germination In Vitro

For pollen collection, the anthers were removed from the flowers on the eve of opening
(stage 2) and dried in a thermostat for 2 days, after which the pollen was collected with a
specially equipped vacuum cleaner. Dry pollen was stored at −20◦C. Pollen germination
efficiency was assessed after 1 h of cultivation at 25 ◦C in standard medium containing
0.3 M sucrose, 1.6 mM H3BO3, 3 mM Ca(NO3)2, 0.8 mM MgSO4, and 1 mM KNO3 in 25 mM
MES-Tris buffer, pH 5.8 at 2 mg pollen/mL. Before cultivation, pollen was pre-hydrated in
a humid atmosphere for 2 h. Germinated pollen was fixed with 2% paraformaldehyde in
50 mM Na-phosphate buffer, pH 7.4 for minimum 30 min at 4 ◦C. Between 500 and
900 pollen grains from each suspension were examined using microscopy (120×) for
germination. ABA was added at the beginning of incubation from stock solution (1 mM).
To prepare the stock solution, dry hormone was dissolved in a small volume of 70% alcohol,
after which it was adjusted with water to the required volume. The final concentrations
were 0.02, 0.2, and 2 µM. Squalene was added to pollen suspensions from stock solution in
hexane (10% m/v) or diluted in water. The final concentrations were 1 µg/mL–100 µg/mL.

2.5. Data and Statistical Analyses

All experiments were performed in triplicate with at least three independent exe-
cutions. The data are provided as the means ± SEM. Statistical analysis for FAs was
performed using one-way ANOVA followed by post hoc analysis using Tukey’s honest
significant difference (HSD) for unequal N tests. (*—p < 0.05, **—p < 0.01) (STATISTICA 10,
StatSoft, Tulsa, OK, USA). To characterize the saturation level of lipid FAs, the unsaturation
index (UI) was calculated [33].

For pollen germination, significant difference was determined using Origin Lab
software 9.7 (Northampton, MS, USA) according to Mann–Whitney test (*—p < 0.05,
**—p < 0.01).

3. Results

Tobacco and lily are plants with wet stigmas. Visible exudate production in lily starts
earlier, i.e., the stigmas are already moist at stage 1. In tobacco, visible moisture appears at
stage 2; however, earlier studies show that the wash from the stigma at stage 1 contains
active components [20]. Therefore, we considered all stages from both subjects for hormonal
screening. To analyze the FA composition, we collected exudate from stages 2 and 3, since
visually the volume of exudate was stable and the maximum among the stages.
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3.1. Fatty Acids of Tobacco Stigma Exudate

The total lipids of tobacco stigma exudate were represented by 11 types of individual
C14–24FAs. The main ones were palmitic (16:0), stearic (18:0), 9–18:1, and linoleic (9,12–18:2)
acids (Table 1). These four FAs accounted for more than 80% of the total FAs. The relative
content of minor FAs: 14:0, pentadecylic (15:0), palmitoleic (9–16:1), arachidic (20:0), behenic
(22:0), and lignoceric (24:0), ranged from 1.04 to 3.03%. Only 14-hexadecenoic (14–16:1) acid
was present at less than 1%.

Table 1. Fatty acid composition of tobacco and lily stigma exudate from stages 2 and 3 (mass % of the
amount of FAMEs). Statistical analysis was performed using one-way ANOVA followed by post hoc
analysis using Tukey’s honest significant difference for unequal N tests (*—p < 0.05, **—p < 0.01).

Fatty Acid
Exudate

Lily (Lilium longiflorum L.) Tobacco (Nicotiana tabacum L.)

14:0 1.90 ± 0.07 3.03 ± 0.23 *

15:0 3.63 ± 0.26 2.79 ± 0.56

16:0 27.36 ± 3.43 24.08 ± 1.80

7–16:1 8.42 ± 0.69 – (not detected)

9–16:1 – 4.44 ± 0.44

14–16:1 1.78 ± 0.07 0.93 ± 0.02 *

10–17:1 1.78 ± 0.07 –

18:0 16.86 ± 0.68 15.33 ± 1.97

9–18:1 21.34 ± 0.97 38.47 ± 1.59 **

11–18:1 0.56 ± 0.13 –

9,12–18:2 3.01 ± 1.71 6.47 ± 0.56 *

9,12,15–18:3 0.81 ± 0.55 –

20:0 2.69 ± 0.47 1.04 ± 0.10 *

11–20:1 3.01 ± 0.50 –

22:0 1.88 ± 0.93 1.35 ± 0.83

24:0 3.22 ± 1.69 2.08 ± 0.02

25:0 0.58 ± 0.68 –

26:0 1.15 ± 0.47 –

UI 0.453 ± 0.010 0.568 ± 0.030 *

∑VLCFAs, % 12.53 ± 3.25 4.47 ± 1.91 *

ngsqualeneon 1 stigma 17.66 ± 1.19 0.51 ± 0.03 *

Very-long-chain FAs (VLCFA) of total lipids of tobacco stigma exudate accounted for
≈4.47% of the total amount of FAs and were represented by three individual types of FAs.
Almost half of the total VLCFAs was 24:0.

The unsaturation index (UI) of tobacco stigma exudate lipids was 0.568. Such a low
value can be explained by the high proportion of saturated (almost 50%) and monoene FAs
(≈44%), a small amount of dienes (≈6.5%), and absence of other types of polyene FAs.

3.2. Fatty Acids of Lily Stigma Exudate

The total lipids of lily stigma exudate were represented by 17 types of individual
C14–26FAs. The main ones were 16:0, 7-hexadecenoic (7–16:1), 18:0, and 9–18:1 acids (Table 1).
These four FAs accounted for more than 70% of the total FAs. Relative content of minor
FAs: 14:0, 15:0, 14–16:1, cis-10-heptadecenoic (10–17:1), 9,12–18:2, 20:0, gadoleic (11–20:1),
22:0, 24:0, cerotic (26:0), ranged from 1.15 to 3.63% for the above FAs. Vaccenic (11–18:1),
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α-linolenic (9,12,15–18:3), and pentacosylic (25:0) acids were present as less than 1%. VL-
CFAs of total lipids accounted for ≈12.54% of the total amount and were represented by
six individual types. Half of them were 11–20:1 and 24:0 acids.

The UI of lily stigma exudate lipids was 0.453. Such a low value is due to a large
proportion of saturated (more than 50%) and monoene (about 37%) FAs and a small amount
of polyene (≈4%) FAs.

Comparing the composition of FAs in lily and tobacco stigma exudate, one can con-
clude that tobacco exudate contained significantly more 14:0, 9–18:1, and 9,12–18:2, which
is also expressed in a significantly higher UI relative to lily exudate lipid values. Lily
stigma exudate lipids contained significantly more 14–16:1 as well as 20:0, which belongs
to VLCFA.

In addition to FAs, squalene was also found in the analyzed samples, and it was
present in both tobacco and lily stigma exudates (Table 1). The squalene content of the
exudate can be divided by the average weight of the stigma, which was determined in the
experiment: for tobacco, it averages to 2.7 mg, for lily to about 60 mg, that is, per 1 mg of
stigma mass, the content of squalene is 0.18 ng for tobacco, and 0.29 ng for lily.

3.3. Hormones of Stigma Exudate

Original ultra-performance liquid chromatography-electrospray ionization-tandem
mass spectrometry (UPLC-ESI-MS) method was developed to analyze main plant hormones
and metabolites with similar structure. The proposed method (method 1) allows, in 15 min
of gradient elution, the simultaneous separation of a wide range of metabolites: polyamine
derivatives (spermine), indole derivatives (IAA, IBA, tryptophan, and indigo derivatives),
adenine derivatives, ABA, jasmonate, etc. (Figure S1). Thus, this technique can be used for
screening of plant hormones in extracts and other liquids. We used this method to identify
hormones in aqueous solutions of stigma exudates of tobacco and lily at four different
stages (1–4) of stigma development.

The results of screening of tobacco stigma exudate (stage 3) for auxins (IAA, IBA),
cytokinins (6-benzylaminopurine (BAP), trans-zeatin), and jasmonic acid (Figures S2–S7)
showed that these phytohormones were absent in detectable amounts in the studied samples,
as well as GA3, salicylate, and spermine. The exception was ABA, which was identified in
tobacco stigma exudate (stages 2 and 3) based on the similarity with the standard sample in
chromatographic and mass spectrometric characteristics (Figures 1, 2 and S8).

To verify the correctness of the performed identification, a mixture of standards
and aqueous solution of tobacco stigma exudate were analyzed on another device under
different chromatographic conditions (method 2). The obtained results (Figures S9 and
S10) confirm the presence of ABA in tobacco stigma exudate. The structural identity of the
discovered metabolite with ABA was also confirmed by comparing the experimental and
calculated exact monoisotopic m/z values for the most intense ions in the corresponding
mass spectra: for the adduct ion [M + Na]+, the experimental value m/z was 287.1264
(calculated value for C15H20O4Na—287.1259); and for deprotonated [M-H]− molecule, the
experimental value was m/z 263.1263 (calculated value for C15H19O4—263.1283).

Next, a quantitative analysis of ABA in stigma exudates was carried out (Figure 3A).
At stage 3, the content of ABA was significantly higher than at stage 2. At the stages 1 and
4, ABA was absent in the exudate collected from the same plants.

To assess the physiological significance of ABA in the tobacco stigma exudate, we
tested the effect of this hormone in vitro. We calculated that if in the washout of the exudate
from the stigma that we analyzed with UPLC-MS, ABA concentration was about 10 nM
at the stage of fertility (Figure 3A), and in the pure exudate, it is approximately 20 times
higher, i.e., 200 nM. We considered this concentration for in vitro testing, as well as an order
of magnitude lower and higher. The concentration closest to that in the exudate strongly
stimulated germination of tobacco pollen, a lower concentration had a weaker effect,
although the stimulation was also significant (Figure 3B). Increasing the concentration by
an order of magnitude did not lead to an additional enhancement of the effect.
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Phytohormones (including ABA) were absent in detectable amounts in aqueous solu-
tions of lily pistil exudates (Figure S11).

We tested the possible stimulation of germination in vitro with squalene (Table 1,
Figure 4) over a wide range of concentrations, only weak stimulation (5%) was found with
concentration 100 times higher than in tobacco exudate, and lower concentrations were
ineffective. Since squalene is insoluble in water, it was added both in pure form and from a
stock solution, adding the solvent (hexane) into control suspension (Figure S12).
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4. Discussion

For the first time, we analyzed the FA composition of stigma exudate of N. tabacum
and L. longiflorum without admixture of stigma cells. The FA composition of lily exudate,
as well as its stigma, has not been previously studied, since it belongs to the “carbohydrate
type”, that is, it contains mainly oligo- and monosaccharides [15,16,34]; for tobacco and
other species with lipid-rich exudate, the total FA composition of the stigma has been
analyzed [6–11]. Here, we report that the content of saturated FAs in both stigma exudates
was very high, which strikingly distinguished it from the typical composition of plant
membrane lipids, which are characterized by the predominance of unsaturated FAs [35,36].
So, for tobacco exudate, the UI was 0.568, and for lily, it was 0.453, that is, even lower than
in the pollen coat of the same species, which was about 0.7, due to the high content of
16:0,22:0,and other saturated FAs [37]. Such low UIs show a large proportion of saturated
(more than 50%) and monoenoic FAs (37–44%) and a small amount of polyenoic FAs in the
lipids of both stigma exudates. This interesting pattern has been revealed by us for the first
time and may indicate the special functions of exudate lipids associated with a high degree
of saturation.

In the literature, the following functions are attributed to stigma exudate: regulation
of pollen germination [13,38], protection of the stigma from desiccation [11,39], adhesion of
pollen and protection from washing off [6,40], and attraction of pollinators and their nutri-
tion [41–44]. The need for natural exudate lipids or artificial lipids of similar composition
for pollen hydration and germination has been shown in vivo [13,45] and in vitro [46].The
composition of artificial lipids applied to tobacco pistil strongly influenced the rate of
pollen hydration. The fastest hydration was observed in the case of tricaprylin, that is,
triglyceride with saturated FAs [38], which is in good agreement with our data.

We also screened plant hormones in stigma exudate and found a number of important
features. We cannot discuss this result in comparison to other exudates because there are
no data on hormones in these fluids (with the exception of the work of Shuel, who looked
for IAA and confirmed its absence [23]). However, it makes sense to compare the hormonal
composition of the exudate with other floral secretions such as nectar. Here, ABA was
detected in tobacco, but not in lily stigma exudate. Previously, ABA was found in the
nectar of three species of dicotyledonous plants: Brassica napus, Lamium album [47], and
Viciafaba [48]. Nectars of monocots, for example, Cymbidium sp. or Sanseveria trifasciata, did
not contain ABA [47]. These observations confirm the relationship between stigma exudate
and nectar, which was previously traced through the movement of labeled carbon [23], and
also indicate the possible features of the representatives of the two taxa associated with the
hormonal regulation of reproduction.

ABA found in the stigma exudate could play a significant role in controlling pollen
germination. Since we could not obtain stigma exudate without ABA content, and we
considered the complete removal of exudate or stigma as a dubious experiment, we tested
the possible effect of this hormone on pollen of the same species in vitro, and the concen-
tration found on the stigma turned out to be very effective in stimulating germination.
These data are consistent with the accumulation of this hormone during stigma maturation
(stage 2 < stage 3), and its absence in detectable amounts on juvenile stigmas and after
pollination, when pollen germination is finished. These data demonstrate the role of ABA in
germination control in vivo and are also consistent with previously found effects for other
species: ABA, as well as some concentrations of IAA and GAs, activated petunia pollen
germination and cytokinin and ethylene inhibited it [49].Other hormones are absent in the
exudate, but they can be synthesized in the pistil tissues and participate in the regulation
of PT growth at later stages compared to ABA. So, it has been reported that IAA is present
in the pistil tissues and acts as a guiding factor for PT growth in the style [26,50].

The fact that ABA is the first hormone encountered by pollen upon landing on tobacco
stigma exudate is thought to be related to its role in water redistribution in plant cells
and tissues. This hypothesis is consistent with the content of endogenous hormones in
tobacco and petunia pollen: the maximum of ABA was detected before pollen activation;
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later, the content of this hormone decreased [51,52], and the intracellular localization
also changed [51].

It is unclear whether there is a relationship between the accumulation of ABA and
FAs in stigma exudate, but such a relationship has been shown for a number of objects,
including seeds, which naturally accumulate this hormone; additional ABA treatment
promoted the expression of FAD2 and other genes involved in FA biosynthesis, which
resulted in the accumulation of linoleic acid in oil palm mesocarp [53] and upregulated
expression of ABI3, SAD6, FAD2, and KCS1-like genes and enhanced 9–18:1 and 9,12–18:2
accumulation in developing Siberian apricot seeds [54]. Tobacco exudate containing ABA
also contained almost twice as much 9–18:1 and 9,12–18:2 as compared to lily exudate, in
which ABA was absent, but so far this can only be speculated on.

The mechanical functions of the exudate, associated with the adhesion of pollen and
protection from drying [11,39], as well as the preservation of its teardrop shape on the
stigma, most likely determine the FA composition of exudate lipids. It can be assumed that
saturated FAs provide a high surface tension [55] and better protect the liquid from evapo-
ration, allowing it to perform its regulatory functions discussed above. The mechanical
function of lipids has been discussed for nectar, the evaporation of which is reduced due to
the presence of lipids on the surface of the drop [56]. In this, one can trace the similarity
with the stigma exudate. A possible reason for the high proportion of saturated FAs in
the exudate is the low activity of desaturases, which is due to the fact that these lipids
are not embedded in membranes and do not accumulate inside cells, but are produced,
like wax, on the cell surface. Waxes also contain predominantly saturated FAs, but with a
long chain [57].

In the exudates of both species, in addition to lipids and hormones, squalene was
present in appreciable amounts. Data on the presence of this substance on stigmas have
been obtained for the first time. Squalene is a precursor in sterol biosynthesis in plant cells
and participates in their response to ABA [58].A direct link between squalene and ABA is
less likely, since squalene, unlike the hormone, is found in both species. However, such a
connection cannot be ruled out. There are cases reported when an increase in endogenous
formation of squalene [59] or inhibition of enzymes metabolizing squalene [60] led to a
change in the expression of enzymes of ABA biosynthesis and contributed to an increase
in the content of this phytohormone in vegetative plant tissues. In turn, ABA-responsive
elements (ABREs) are present in squalene synthase genes [61], genes for enzymes that
metabolize squalene [62,63], and genes for transcription factors of the basic helix-loop-helix
(bHLH) family, which regulate the synthesis of squalene and triterpenoids [64]. However,
the effect of ABA on squalene biosynthesis is complex and ambiguous. Examples are known
wherein exogenous ABA both enhances [65,66] and suppresses [67,68] the accumulation of
squalene in vegetative plant tissues.

In the tobacco stigma, the functions of ABA and squalene on the stigma appear to
be different, as ABA stimulates pollen germination while squalene does not. It is more
likely that squalene is a precursor of other substances and provides protective, mechanical
properties or controls ROS balance of the exudate. Squalene epoxidase SQE1 was found to
be a mediator that controls ROS production during ABA-dependent stomatal closure and
root hair growth in Arabidopsis [58]. Since, as previously shown for tobacco, ROS balance in
stigma exudate is important for pollen germination in vivo [20], there may be a relationship
between these components of the receptive fluid. Squalene has antioxidant properties, in
particular, the ability to quench free radicals [69], and thus can participate in maintaining
ROS balance during pollination.

5. Conclusions

For the first time, FA and hormonal screening of Nicotiana and Lilium stigma exudate
was carried out. HPLC-MS revealed ABA in tobacco stigma exudate at pre-maturity and
in mature stigmas, increasing at the fertile stage. Testing the physiological significance of
ABA in vitro showed that its main function may be the regulation of pollen germination
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on the pistil surface. GC-MS showed that both in tobacco and lily lipids of the stigma
exudate contain a large percent of saturated FAs. The supposed function of these FAs is a
high surface tension, which would protect the exudate droplet from being washed away,
evaporated, or shaken off. Both exudates were found to contain significant amounts of
squalene. As squalene does not significantly stimulate tobacco pollen germination in vitro,
we hypothesize that it has a number of other functions, including protective, synthetic,
mechanical, or associated with ROS balance on stigma.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13091313/s1, Figure S1: A representative UPLC-ESI-MS
chromatogram (total ion current, base peak ion (BPI) mode, positive ions; method 1) of a model
mixture of standard samples of phytohormones and structurally similar metabolites. Identifica-
tion of chromatographic peaks by retention time: spermine (retention time—0.42 min), adenine
(0.76 min), hordenine (1.65 min), salicylic acid (3.40 min), trans-zeatin (3.76 min), kinetin (5.28 min),
2,4-dichlorophenoxyacetic acid (5.94 min),picloram (6.38 min), 2-phenylethyl-glucoside (7.34 min),
6-benzylaminopurine (7.44 min), indole-3-acetic acid (9.48 min), salicin (10.81 min), ABA (11.86 min),
indole-3-butyric acid (13.01 min), jasmonic acid (13.26 min), 5-methyltryptophan (13.56 min), and
indigo (14.37 min). X—t, min; Y– detector signal, relative intensity (RI), %. Figures S2–S6: Screening
for indole-3-acetic acid (S2), indole-3-butyric acid (S3), 6-benzylaminopurine (S4), trans-zeatin (S5),
and jasmonic acid (S6), in tobacco stigma exudate (stage 3). UPLC-ESI-MS chromatograms (total ion
current (TIC) and BPI modes, positive ions; method 1) of tobacco stigma exudate (lower panel) and a
model mixture of standard phytohormone samples (second panel from the bottom), as well as the
results of filtering these signals to the m/z value of the [M + H]+ ion of the hormone (the third and
fourth panels from the bottom for the exudate and the model mixture of standards, respectively).
X—t, min; Y—detector signal, RI, %; Figure S7: Screening for the presence of major phytohormones
in tobacco stigma exudate (stage 3, sample collected in the summer of 2022). UPLC-ESI-MS chro-
matogram (total ion current (TIC and BPI modes), positive ions; method 1) of exudate (first and
second panel from the bottom), results of filtering the TIC signal by m/z value for the following
ions: m/ z 220.1—[M + H]+ trans-zeatin ion (third panel from the bottom); m/z 176.1—[M + H]+ion
of indole-3-acetic acid (panel fourth from bottom); m/z 226.2—ion [M + H]+ 6-benzylaminopurine
(fifth panel from the bottom); m/z 204.2—[M + H]+ ion of indole-3-butyric acid (sixth panel from the
bottom); m/z 287.1—[M + Na]+ ion of ABA (panel seventh from the bottom). X—t, min; Y—detector
signal, RI, %. The chromatographic peak of ABA has a retention time of 11.82 min; Figure S8: ABA in
the stigma exudate of tobacco (stage 2). UPLC-ESI-MS chromatogram (total ion current, positive-ion
mode) obtained by Method 1 of tobacco stigma exudate. Upper panel—results of signal filtering
by m/z value (value 287.1) of [M + Na]+ ion of ABA; Lower panel—primary signal. X—t, min;
Y—detector signal, relative intensity (RI), %; Figure S9: Screening for ABA in tobacco stigma exudate
(method 2). The UPLC-ESI-MS chromatograms (total ion current, negative ions) of tobacco stigma
exudate (second panel from the bottom) and the model mixture of standard phytohormone samples
(bottom panel) are presented, as well as the results of filtering these signals by m/z value (value 263.1)
[M-H]− ABA ion (third and fourth panels from the bottom for the model mixture of standards and
exudate, respectively). X—t, min; Y—detector signal, RI, %; Figure S10: Mass spectra of the chromato-
graphic peak of the standard sample of ABA (lower panel) and the chromatographic peak with a
retention time of 3.49 min in the chromatogram of tobacco stigma exudate (upper panel). Method 2.
X—m/z; Y—detector signal, RI, %; Figure S11: Screening for the presence of major phytohormones in
lily stigma exudate (stage 3). UPLC-ESI-MS chromatogram (TIC mode, positive ions; method 1) of the
exudate (first panel from the bottom), results of filtering the TIC signal by m/z value for the following
ions: m/z 220.1—ion [M + H]+ trans-zeatin (panel second from bottom); m/z 176.1—[M + H]+ ion of
indole-3-acetic acid (third panel from the bottom); m/z 226.2—ion [M + H]+ 6-benzylaminopurine
(fourth panel from the bottom); m/z 204.2—[M + H]+ ion of indole-3-butyric acid (panel fifth from the
bottom); and m/z 287.1—[M + Na]+ ion of ABA (sixth panel from the bottom). X—t, min; Y—detector
signal, RI, %; Figure S12: Squalene effect on tobacco pollen germination in vitro. Squalene added to
pollen suspensions germinating in vitro in concentration close to the one found in stigma exudate
(1 µg/mL had no effect on germination efficiency, and 100 µg/mL had a weak stimulating effect both
with pure squalene in water and squalene diluted in hexane). *—p< 0.05 (Mann–Whitney test).
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