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Abstract: The loss of ocular surface (OS) homeostasis characterizes the onset of dry eye disease.
Resilience defines the ability to withstand this threat, reflecting the ability of the ocular surface to
cope with and bounce back after challenging events. The coping capacity of the OS defines the
ability to successfully manage cellular stress. Cellular stress, which is central to the outcome of the
pathophysiology of dry eye disease, is characterized by intensity, continuity, and receptivity, which
lead to the loss of homeostasis, resulting in a phase of autocatalytic dysregulation, an event that is not
well-defined. To better define this event, here, we present a model providing a potential approach
when homeostasis is challenged and the coping capacities have reached their limits, resulting in the
stage of heterostasis, in which the dysregulated cellular stress mechanisms take over, leading to dry
eye disease. The main feature of the proposed model is the concept that, prior to the initiation of
the events leading to cellular stress, there is a period of intense activation of all available coping
mechanisms preventing the imminent dysregulation of ocular surface homeostasis. When the
remaining coping mechanisms and resilience potential have been maximally exploited and have,
finally, been exceeded, there will be a transition to manifest disease with all the well-known signs
and symptoms, with a shift to allostasis, reflecting the establishment of another state of balance.
The intention of this review was to show that it is possibly the phase of heterostasis preceding the
establishment of allostasis that offers a better chance for therapeutic intervention and optimized
recovery. Once allostasis has been established, as a new steady-state of balance at a higher level
of constant cell stress and inflammation, treatment may be far more difficult, and the potential for
reversal is drastically decreased. Homeostasis, once lost, can possibly not be fully recovered. The
processes established during heterostasis and allostasis require different approaches and treatments
for their control, indicating that the current treatment options for homeostasis need to be adapted to
a more-demanding situation. The loss of homeostasis necessarily implies the establishment of a new
balance; here, we refer to such a state as allostasis.

Keywords: dry eye disease; homeostasis; allostasis; heterostasis; resilience; coping; stress; apoptosis;
therapy; recovery

1. Introduction

Homeostasis is the concept of balance [1,2], also described as a relatively stable equilib-
rium between interdependent elements [3]. The alteration of such an environment involves
a wide range of molecular events that lead to cellular stress. Stress, as an unspecific reaction
of an organism encapsulating the generalized effort to adapt itself to a critical situation [4],
has become a respected subject of research. As a whole, it represents the designation of a
process stretching a living entities’ comfortable range and homeostasis during exposure
to challenges. It describes the first reaction launching the adaptive response to threats to
homeostasis. From psychology to biology and the single cell, it affects behaviour, reaction,
and survival. It can be a defining parameter of how long a living organism can survive
environmental challenges. Naturally, this is dependent on the vulnerability of the organism
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or cell. Here, resilience comes into the picture, defined in physics as the ability to retake the
original form after deformation or in psychology as the ability to endure challenges and to
bounce back. A similar concept exists in psychology [5]. The ability to withstand external
alteration and deformation is achieved at the cellular level with various coping or defence
mechanisms, which also serve to maintain the homeostasis at the ocular surface. Here,
homeostasis compromises all compartments of the tissues bordering, in one way or the
other, the tear film or the “mare lacrimale” [6]. The vital parameters naturally include the
composition of the fluids that eventually become the tear film, as well as their quantity. The
tissues engaged include the main lacrimal glands and the accessory lacrimal glands, as well
as the lids, the lachrymal pathways, the surface of the cornea, the conjunctiva, and their
underlying tissue. In homeostasis, all vital parts coexist in their own harmonic balance
and contribute to the wellbeing of the other components. They remain in equilibrium in a
volatile balance, which allows reacting to external challenges in a autoregulating way, nei-
ther causing excessive inflammation, pain, nor other pathophysiological events. In dry eye
disease, a vicious circle [7,8] is involved in such challenges to ocular surface homeostasis.
Various systems affecting ocular surface balance can, when dysregulated or activated, con-
tribute to the loss of balance, a model recently outlined in detail at the Dry Eye WorkShop
II (DEWS II) [9,10]. A swing towards pathology opens the gate to dysregulation. Under
this model, the perpetuation of deterioration leads to dry eye disease. However, following
the onset of deterioration leading to the establishment of disease, the current models do
not offer applicable phases following the loss of homeostasis. Although adaption and
rebalancing to new environments are normal processes [11–14], the elements of rebalancing
or establishing a new balance are less well-investigated [15–18]. Moreover, at some stage
during deterioration and following the loss of homeostasis in ocular surface disease, a
new balance may exist to prevent the loss of sight or function. Under such a new balance,
the cell/tissue creates an environment with optimized parameters for damage control,
implying the possible harnessing of these for treatment. Therefore, here, we propose the
following model of dry eye disease in which, following the loss of homeostasis, the phase
of heterostasis begins [19] as the precursor to the phase of allostasis [20]. Allostasis means
“achieving stability through change” [21], implying that (re-)stabilization to a balance is
achieved by adaptive change (Figure 1).
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Figure 1. Illustration of showing that the increasing loss of homeostasis (left Y-axis) with time will lead
to the establishment of a heterostatic phase in which the possibility of recovery decreases constantly
(right Y-axis). At a breaking point, defining the state when the recovery potential is insufficient to
prevent further deterioration and loss of homeostasis, recovery has become impossible. Having passed
this breaking point, the recovery potential is swiftly reduced to zero; the final and complete loss of
homeostasis is a fact, and allostasis is established as a new balance of cellular survival.
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2. From Homeostasis to Heterostasis

Heterostasis [19] describes the process by which a new steady-state is achieved, leading
to allostasis, a different stage of tissue stability [19]. Heterostasis, as a temporary condition,
challenges the balance of the Homeostatic hierarchy of supportive and primary cellular
functions [22]. The transition of homeostasis to allostasis results in a phase of regulatory
unrest in tissues, responding to environmental stress by using the full coping capacity.
Coping capacity is understood as the sum of all availably clinical mechanisms aimed at
regaining and re-establishing homeostasis. Heterostasis is a stage of cellular instability
in responding to environmental challenges. In this phase, regulatory and autobalancing
mechanisms are activated and, eventually, maximized. This can, dependent on the charac-
teristics of the challenge, lead to an alteration and, finally, the exhaustion of all available
coping mechanisms, leading to clinically visible ocular surface damage [23]. When the
normal mechanisms of defending and coping have been exceeded and homeostasis is lost,
a pathophysiological condition is established, heterostasis. As cells, localized at the surface,
unlike living organisms, cannot flee from the environment following the concept of “fight-
or-flight” [24], they will have to follow the concept of “adopt-or-surrender”. Adaption and
the resulting change are the hallmarks of allostasis, a phase in which, by “stability through
change”, a new equilibrium is established [25]. It is the activation of the adaptive pathways
that occurs when eukaryotic cells are exposed to stress [26] that characterizes allostasis. This
condition differs from homeostasis in the current model of dry eye disease (DED) in which
treatment focuses on the restoration of the homeostasis of the ocular surface system [27].
This current model is based on the concept that the re-establishment of homeostasis is
possible, but does not consider its potential impossibility.

Accordingly, dry eye disease is a manifest ocular surface disorder and the target for an
increasing plethora of treatment regimens [28]. The basic and fundamental difference is
that homeostasis and allostasis demonstrate pathology at different levels [29]. This includes
assessing the local matrix metalloprotease (MMP) levels such as MMP-9 [30], a group
of enzymes known to regulate extrasellar matrix turnover and hyperosmolarity [31–33].
This approach, however, considers dry eye pathogenesis as a continuous process, leading
necessarily to autocatalytic deterioration, unless this vicious circle is stopped. The variation
of the analytic values supporting this model, usually deriving from microlitre quantities
and analysed with high-tech precision, is still an issue [34]. This contributes to the on-
going discussion on the representability and difficulties in the validation of measurable
biomarkers [35]. Therefore, there is good reason to consider the variation of the parameters
to be as important as the established numerical value of the thresholds. Naturally, these
thresholds might be relevant, but their value (alone) possibly does not reflect the actual
situation correctly. They may serve best to indicate at which level a variation occurs. Such a
more-dynamic approach could also help to master the diagnostic challenges of DED mainly
concerning the early stages of the disease, where, in the absence of clear clinical signs,
enhanced variation or amplitudes such as blinking frequency or osmolarity are easier to
identify. In the severe stages of the disease, on the other side, the clinical signs are often
very obvious and easier to detect [36], but, at the same time, difficult to reverse. In these
advanced stages of DED, marked by the loss of homeostasis, there is often an inherent need
for the use of immunomodulators [37–40].

3. Heterostasis—Challenging the Coping Capacity, Increasing Cell Stress, and
Touching the Limits of Resilience

The initial phases of dry eye disease are marked by absolute or relative lubrication
insufficiency, challenging homeostasis. This activates the natural defence mechanisms of
the ocular surface such as increased tearing, blinking, etc., which leads to the initiation of
the coping mechanisms and resilience [23,41]. Resilience is the ability to bounce back or
regain the original form and function, withstanding or recovering from external potential
deforming forces found in many aspects of daily life, which has been known for a long
time in psychology [42,43], dentistry [44,45], as well in ophthalmology [46,47]. It has been
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even used to describe the effects of growth factors on corneal re-epithelialization [48]. As
dry eye disease imposes a multicausal challenge, the initial clinical effects often are subtle
and diagnosis is, especially in the early phases, not easily achieved [9,49]. The lubrication
issues of the ocular surface reflect the insufficiency of at least one of its components, i.e., the
medium (tears) or the surfaces. Hence, minor, often barely visible surface alterations, such
as the anatomical dry eye [50] with topical lubrication challenges, can easily supersede
the performance capacity of normal tears and lead to topical desiccation issues, even
more when considering the performance profile of suboptimal tears in the elderly. Age
alone could alter the lubrication balance at the ocular surface as both tear composition,
on the one side, as well as the cellular stress tolerance and adaption capacity deteriorate
with age [51,52]. Any lubrication insufficiency is by its nature an imbalance between
the needs of the surfaces and the quantitative–qualitative matching capacity of the tear
film. Any lubrication insufficiency can have its origin in an anatomical palpebro-corneo-
epithelial anomaly such as corneal scars or a real qualitative or quantitative insufficiency
such as issues with the lipid or mucin layers [53–61]. The hallmark of qualitative tear
film insufficiencies is commonly identified by a shorter tear film (TF) break up time [62],
but can also reveal itself as a distorted/altered TF break up pattern [63]. The instability
of the TF and subjective discomfort are amongst the very early signs of ocular surface
challenge [63,64].

Any early detection or treatment of these initial changes could postpone the onset or
slow down the disease’s progress and ameliorate its pathophysiological impact. As recently
emphasized [23], the persistence of lubrication insufficiencies could determine the Allostatic
Load and the potential of the Homeostatic capacity of the ocular surface to cope with the
challenge. Whereas, for temporary lubrication insufficiencies, the acute leucocytic irritative
response symptom complex (ALIRS) can temporarily handle inflammatory conditions
and retain the coping potential of the ocular surface (Figure 2) [23], things look different
when lubrication deficiencies become constant and chronic inflammatory reactions are
established (CLIRS) (Figure 3).
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Figure 2. Illustration of repetitive minor inflammation, which leads to temporary and self-limited
activation of the acute leucocytic irritative response system (ALIRS). Over time, there is, however, a
limitation of how many times or how frequently this system can be triggered before autoregulation
fails. The failure of autoregulation marks the end to the ALIRS and the beginning of dysregulation.
(van Setten 1999, presented at the founding Meeting of the European Association of Dacryology EAD,
October, 13th, Alicante, Spain 2001).
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Figure 3. The failure of autoregulation marks the end to the ALIRS and the beginning of dysregulation,
i.e., the onset of the chronic leucocytic irritative response system (CLIRS). The activation of the CLIRS
includes constant and increasing inflammation, not to mention the attribute of self-limitation. This
also marks the onset of ocular surface instability, leading to dry eye as a disease. (van Setten 1999,
presented at the founding Meeting of the European Association of Dacryology EAD, October, 13th,
Alicante, Spain 2001).

The most-common clinical sign of dry eye disease is the occurrence of small micro-
lesions in the corneal epithelium. Not only are these evidence of increased friction, but
they also constitute a visible sign of corneal damage associated with dry eye disease. As
damage always launches repair mechanisms, corneal epithelial fluorescein staining (CFS)
is, hence, also a sign of initiated and ongoing wound healing, indicating the presence of a
inflammatory response, cellular replication, and the deposition of extracellular matrix [65],
as well as altered enzymatic activity, such as increased metalloproteinase activity and
plasmin activity [66].

4. Ocular Surface Staining—More than Just Colour

The classification of ocular surface staining according to the Oxford scheme using
corneal fluorescein staining (CFS) is performed by counting the spots (Figure 4), which
are micro-areas considered as lesions, stained with fluorescein, the number of localized
stained spots serving as an indicator of the severity of dry eye disease [49]. Although the
location of the staining is known to differ between different areas of the ocular surface, the
variation of the staining location is not considered as a characteristic or decisive feature
in dry eye pathophysiology. On the other hand, according to hot spot theory (van Setten,
unpublished communications, Figure 5), each and every microlesion, resulting in one
localized stain, counted as one spot, could be considered as a micro-wound. Any lesion
of the cornea or ocular surface leads to local irritation, and an immunological response is
launched, which calms down within the normal autoregulation as soon as the epithelial
defect has disappeared/healed. Current models of dry eye disease consider ocular surface
damage as a constant component, indicating the simultaneous presence of a constant
inflammation/inflammatory response. The constant presence of small lesions and their
healing suggest the ocular surface to be in a constant stage of wound healing. On the
other hand, in situations merely touching the lubrication limits, minor CFS usually means
that the lesions are being autoregulated and can swiftly disappear without a trace within
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less than a day or two. Similarly, the associated inflammation is considered autoregulated
and disappears.
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Figure 5. Hot spot theory (HST) (van Setten, unpublished communications 2023) considers that
each localized epithelial defect is a corneal micro-wound, leading to a local inflammatory reaction,
which intensifies around the lesion and at a depth below it until healing occurs and the epithelium is
completely reconstituted (ECM = Extracellular Matrix).
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Such minor lesions lead to wound healing with the release of inflammatory mediators
such as interleukins IL-α and IL-1β [67]. The interaction of these mediators with their
receptors results in the onset of inflammation, triggering the onset of ocular surface damage
and dry eye flares. Although small lesions heal very quickly in the corneal epithelium, the
details of the associated inflammatory reaction have not yet been clearly defined. However,
the proximity of lesions does matter. Non-transient, persistent corneal epithelial staining,
on the other hand, could indicate the presence of an inflammatory reaction both in the
epithelium and in the anterior corneal stroma underneath, which is in the horizontal
extension larger than the epithelial lesion itself and could, if the lesions are sufficiently
close, easily overlap with the inflammatory zone of the neighbouring epithelial defect. The
density of epithelial defects and the local gathering in one area together are possibly more
important than the absolute number of dots as used in the classification of epithelial lesions
according to Oxford (Figure 6) [68]. It is suggested that, in more-severe stages of dry eye
disease, the number of punctate epithelial defects (equal to dots) has reached a critical
density in that, in each sector, sufficient epithelial damage has occurred to provide the basis
for a continuous inflammatory reaction beyond the surface. Clustering of epithelial defects
at a small area (high fluorescein clustering index (FCI)) could determine the intensity (level)
of the inflammatory reaction in this area. In spite of the swift healing of each and every
individual epithelial lesion, the complete general resolution of any inflammatory reaction
as a common inflammation of the area could be much slower. As soon as there is an overlap
of inflammatory zones around each epithelial lesion, the pooled (combined) inflammatory
reaction underneath the epithelial lesions could contribute to a longer-lasting presence of
inflammatory mediators and pro-inflammatory cytokines in the area. Potentially, here, the
recently detected G protein-coupled receptor GPR-68 [69] could play a decisive role, as well
as the tumour-necrosis-factor (TNF)-stimulated gene 6 (TSG-6) [70]. The swift and efficient
decrease of the number of epithelial stainings and an increase in the distance between them
seem, hence, to be a prerequisite for efficient therapy of dry eye disease, as shown in Area 2
in Figure 7.
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Figure 6. The temporary inflammation under a microlesion, stained well with fluorescein, will
(provided the distance to the neighbouring lesion is sufficiently far away) slowly dissolve unevent-
fully without any remaining inflammation, leading to complete healing of the corneal epithelium.
Complete healing indicates complete re-establishment of the original mechanotolerance. (van Setten
2020) [71,72].
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Figure 7. The uneven distribution of fluorescein staining over the cornea. Evidently, there are
areas with a high fluorescein clustering index (FCI) (Area 1) and those with a lower FCI in different
locations. The likelihood for prolonged and intensified inflammation is considered to be in areas of a
high FCI.

If, instead, the therapy is not efficient, the number of epithelial defects or staining foci
may increase and, with that, the intensity, visualized as a decrease of the distance between
the surface alterations, as shown in Area 1 in Figure 7, with a high FCI.

Above a certain FCI of staining, a temporary irritation of the surface with its neces-
sary autoregulated inflammation (ALIRS) could transit to a more chronic, dysregulated,
continuous inflammation [71] (CLIRS) (Figures 4 and 8).

The challenge of homeostasis and the inherent desire of the cell to re-establish its
internal balance in order to regain its own functionality and the tissue it is part of activates
various coping mechanisms, but also, most importantly, creates cell stress. Cell stress is an
essential cellular biological equivalent of stress resulting from lubrication insufficiencies
and environmental changes. At present, in dry eye disease, this dominantly contributes to
mechano-stimulation such as attrition and friction [71,72], challenging osmotic deviations,
as well as hyperosmolarity.

With the onset of Homeostatic destabilization and imbalance, the cell is pushed outside
its comfortable range. Cellular vulnerability and sensitivity increase with the shift of the
cell towards the border of its comfortable range, reaching its limits when reaching its
maximal coping capacity [41]. Naturally, any cell tries to cope with external challenges
by using all its available regulatory mechanisms. The issue with dry eye disease is that
the causes are multifactorial and that the cells at the surface have to react simultaneously
to a variety of challenges at the same time [73], without having a real chance to recover
completely. Whilst in psychology, coping describes dealing successfully with problems
or difficult situations [74], coping has been defined on a cellular level as the ability to
manage specific external and internal demands that compromise events such as touching,
stressing, wounding, or otherwise challenging the resources of the cell/tissue to potentially
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the maximal extent [23]. Cell stress can be considered as the total challenges exerted by
physical, chemical, and biological external conditions affecting the cell. At the ocular
surface, this includes, amongst others, mechanical forces and environmental conditions,
such as low humidity, temperature, pH changes, radiation, and exposure to toxins. A
cell’s ability to cope with stress depends on its ability to recognize changes and to respond
appropriately with a plethora of mechanisms, such as the upregulation of pro-apoptotic
molecules, the downregulation of anti-apoptotic molecules, and the activation of autophagy,
such as activating protective pathways, producing proteins that can protect the cell against
the stress, or initiating programmed cell death. Autophagy enhances the cells ability
to cope with unfavourable environments [75]. Within homeostasis, regulated cell death
(RCD) is a necessary and normal process [76]. The processes of uncontrolled, premature,
and accidental cell death (an uncontrolled passive process) differ in their regulation and
their mediators with a series of molecular mechanisms and signaling pathways [77]. The
identification of RCG subgroups such as ferroptosis, necroptosis, and pyroptosis could
reflect the cause of cell death [78] and the available coping mechanisms. It is a most likely
the relation between the nature of the challenge and the available coping mechanisms that
determines whether cells mount a protective, adaptive, or destructive stress response [79].
All depends to a large extent on the nature and duration of the stress, as well as the cell
type in question. Cellular resilience, as the sum of all coping mechanisms, describes the
ability of a cell to cope with environmental changes [80] that provoke cellular stress.
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Figure 8. With the increased proximity of the epithelial lesions, i.e., in areas with a high FCI, the
initially temporary inflammation under one microlesion could be exacerbated by the coexisting
inflammation under other lesions nearby. This could lead to a disruption of the tissue’s ability to
dissolve the temporary inflammation. Instead, autocatalytic self-maintenance of an inflammatory
stage could establish in the tissue, resulting in constant inflammation with enhanced sensitivity to
mechanical stress and attrition (van Setten 2021) [72].

5. Cellular Stress and Allostatic Load—Driving Forces in the Loss of Homeostasis

Cellular stress requires adaption for survival. Adaption, comprising key features such
as resilience, coping, and defence, essentially is the response to the exposure to external
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stressors constituting as a total the equivalent of the so-called Allostatic Load [25]. This
load challenges homeostasis, and similarly, “wear and tear” lead to a pathophysiological
disalignment or loss and dys-synchronization of various normally very-fine-tuned pro-
cesses [81]. Dys-synchronization of cellular mechanisms can lead to severe loss of the
efficacy of the processes concerned, potentially jeopardizing the potential of a tissue to
appropriately and effectively react to external stressors, i.e., the Allostatic Load. The impact
of the Allostatic Load may differ according to the differential expression of disparities [43].
The ability to withstand and cope with the Allostatic Load can be summarized under the
term resilience [43]. Long-term stress as part of the Allostatic Load can provoke in neural tis-
sues the loss of plasticity [82]. At the end of the process, when allostasis is established, cells
might react differently to the same stimuli as when they were in Homoeostatic conditions.
This could result from the exposure to the Allostatic Load, causing an effect of “training”
the cells and tissues to satisfy altered external needs [29] and to adapt. The response
patterns to the Allostatic Load naturally differ in cells and tissues from the four response
patterns of Allostatic Load known from psychology—which, however, all ultimately may
lead to chronic disease [82]. Amongst the important similarities, one is the observation
that stress leads to changes in the presence or expression of numerous biochemically mea-
surable parameters of intercellular mediators. Furthermore, there is a difference if stress
factors, i.e., the Allostatic Load, are temporary or constant. Some Allostatic Loads may
essentially not be bad: short-term Allostatic Load can be necessary to keep the system alert
and can be essential and without being a major threat to homeostasis, just like the proposed
immunological nudging [83]. The potentially changing threat to the system comes with
a constant, growing, or always present alternating Allostatic Load, which has the ability
to change the cell’s behaviour in a process called adaption [25]. However, in the process
of adaption, permanent changes may occur, such as described for the hippocampus with
the atrophy of dendrites in response to chronic stress [84,85]. Possibly, there are also links
between chronic stress and ageing [86]. Premature senescence of cells and tissues as a result
of prolonged Allostatic Load certainly are most likely unreversible. The mechanisms of
senescence [87] can contribute to premature ageing and have been associated with various
diseases [88,89]. Similarly, normal senescence can impose a reduced tolerability to an
otherwise normal Allostatic Load. In essence, over time, the increase of the Allostatic Load
would lead to a loss of homeostasis. A constant and/or increasing Allostatic Load can
lead to cellular exhaustion, depriving cells and tissues of their full natural coping potential,
leading to an initially slow, but constant, later rapidly accelerating loss of homeostasis and
the establishment of allostasis (Figure 9).

Adaption, as a response to the Allostatic Load, has. on the other hand, its price, just
as in psychology [90], also for the cell. This price is the change of reactions in accordance
with the demands of the environment, the only way to survive the sum of all challenges.
As pointed out, the characteristics of the chronicity of the environmental challenge are
of particular importance, as this contributes to the prevailing stress on the organism [90].
Stress itself is, hence, one of the key factors resulting from the Allostatic Load, challenging
the coping potential (Figure 10).

As for dry eye disease, the attribute of the reiteration or redundancy of the Allostatic
Load without the option to complete recovery can stimulate the transition from home-
ostasis with only occasional complaints to the state of allostasis with constant complaints
(Figure 11).
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occasional (acute) complaints will become, over time, constant complaints, providing a hallmark of a
new balance of the system, with well-established inflammation, allostasis (van Setten 2023©).

In the new, altered phase of stability, the cells have adapted to the prevailing chal-
lenges, and allostasis is established. In this new phase of balance, the Allostatic Load
causes still may result in constant complaints, but further deterioration has, on the other
hand, temporarily stopped. The residual stress tolerance, altered cellular pathways, and
coping capacity [91,92] decide the further development, i.e., how long allostasis may
be maintained.

6. Stress, Stress Factors, and Stress Tolerance

Stress tolerance is a prerequisite for cells to persist in varying environments. Eukary-
otic cells exposed to stress activate adaptive pathways, allowing them to restore cellular
homeostasis [26]. However, cell stress leads to inflammation [93]. Some inflammation, on
the other hand, is needed to maintain homeostasis and should be considered as physiologi-
cal [22], having about a similar invigorating stimulative circuit-maintenance function as
described for immunological nudging [83]. Excessive inflammation, on the other hand, has
been widely accepted as a driving force in the pathophysiology of dry eye disease [7,8,94,95].
It is less the occurrence of inflammation as such, as more the perpetuation and non-cessation
of inflammation that harbours the pathophysiological impact [96,97]. Accordingly, inflam-
mation has become the target of many treatments for DED [98]. The exact mechanism
for the regulation of this inflammation, as well as its dynamics and location are, however,
still subject to discussion. Here, one of the key actors is nuclear factor kappa B (NF-κB),
which is considered a master regulator of inflammation [99]. Inflammatory reactions are,
by their nature, not static; they move through tissues to accomplish their goal of defence
and tissue reconstruction. It should be kept in mind that that there is a minor, but possibly
significant difference between inflammation as such [100] and inflammatory responses in
dry eye [101]. As suggested for the retina [102], as well as for the ocular surface, immuno-
logical homeostasis seems to be essential. In homeostasis, a plethora of mechanisms are
engaged, amongst others corneal innervation and microbiota [103,104]. Once challenged,
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the maintenance or regain of this balance seems to be dependent on the characteristics of
the causing agents or conditioning factors such as the magnitude, i.e., intensity, character,
continuity, and recurrence (seasonality) [105]. The sum of these external factors challenging
the coping mechanisms identifies the recovery potential and capability of the ocular surface
structures [41]. Especially chronic stress, affecting the endoplasmic reticulum, harbours an
imminent risk for permanent intracellular changes with links to inflammation [106] and a
self-perpetuating inflammatory reaction [95], the very core of the vicious circle of dry eye
disease [7,8].

Insights into the complexity of the cellular mechanisms have been gained by the use
of transcriptomics, measuring the gene expression in cells and tissue. Albeit that bulk
and single-cell transcriptomics have each their specific benefits [107,108], both techniques
allow looking deeply into the very basic events of cellular physiology. Especially the
use of single-cell transcriptomics in neuroscience allows the examination of “cell states”
on a molecular level, as well as cell typing [109]. Furthermore, this technique allows
gaining insights into the diversity of cellular responses in different cell types. This, in
turn, forms the basis of recent models, addressing the issue of how these responses could
contribute to the alteration of cells and their plasticity [110]. Next-generation sequencing
(NGS) [111,112] allows detailed insights into cell physiology with the analysis of hundreds
of genes simultaneously and can be used to distinguish different phenotypes of cells on a
molecular level [113]. This was recently shown for the effect of oxidative stress in retinal
pigment epithelium [114]. This new technique allows the identification of genes that encode
key proteins [115], i.e., genes that are engaged or necessary for cellular physiology and
survival. Its capacity to edit the panorama of cellular reactions to desiccation challenge has
led to new insights into the pathophysiology of, especially, Sjögren’s Syndrome [116–121],
although the application of this technique to the cornea and ocular surface is yet very
limited [122].

Regardless of the details of the dysregulation of homeostasis, it is the accelerating im-
balance that drives the vicious circle further, supporting increasing heterostasis, eventually
finding a new balance within allostasis (Figure 12).
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7. Hyperosmolarity—More than a Numerical Value

Another stress factor, hyperosmolarity itself has been suggested to be a driving force
within the vicious circle [10], albeit that recently, the models on osmokinetics and osmotic
variation [71,123] have given more consideration to the importance of osmotic alterations.
In osmokinetics, both the amplitude and level around which DVO pivots are suggested to
contribute to the intensity of stress provoked [72] and with that, the impact on heterostasis.
Within the current model of ocular surface homeostasis, this would suggest an osmotic
equilibrium in the tear film hovering around the normal osmolarity with values of around
305 mosmol/L [124–126]. This might be the average level without considering the reported
variation between samples taken during various time points of the day [32], which was
later termed the diurnal variation of osmolarity (DVO) [71]. Such normal variation of
osmolarity (<25 mosmol/L per day, unpublished results by the author) apparently falls
within the tolerance area of the normal coping envelope of the ocular surface.

Interestingly enough, osmolarity in lacrimal gland fluid decreases with the flow
rate [31]. An excessive flow rate, such as in the initial phases of dry eye disease, can
possibly cause inflammation in the lacrimal glands and trigger fibrosis [127]. However,
with decreased functionality of the lacrimal glands, tear fluid flow decreases, as evidenced
by decreased Schirmer Test results and, with this, probably, also this dilution effect. Such
a dilution effect had been shown earlier for cytokines such as epidermal growth factor
(EGF) [128]. Alterations in the tear fluid’s composition could enhance the evaporation of a
decreased tear film volume and drive osmolarity to challenging levels. At higher levels
of average osmolarity, any broader DVO could have a significantly higher stress impact
(Allostatic Load factor; see above) as the comfortable range of the cell is exceeded [72,123].
That is, the more the cell experiences osmotic stress, either to the level of osmolarity, the
magnitude of DVO, or the frequency of major changes [123], the more sensitive it becomes
to fluctuations as the time for recovery becomes shorter and, at a certain point, insufficient.
Until then, however, osmolarity provoked stress still leads to temporary inflammatory
reactions (ALRIS) that is managed by normal coping mechanisms [71]. Such coping
mechanisms are, however, apparently, a time-limited resource. Once recovery options are
exceeded, cellular exhaustion might follow, leading to permanent inflammatory reactions.

The response to osmotic stresses is not only a change of water content and turgor in the
cell [129–131]. Osmotic variations also change cellular behaviour and can drive the cell to
another stage of balance, i.e., allostasis. Osmotic changes have been reported to cause mod-
ifications in the cytoskeleton dynamics and molecular crowding in the cytoplasm [132,133].
Elevated external osmotic pressure not only leads to a reduction in the cell volume, but also
to an increase in the cell stiffness in different cell types, that is that if a cell is compressed
by hyperosmotic stress, it becomes progressively more rigid [133]. This, in turn, would
make the cells more vulnerable to the effects of attrition [134], possibly also contributing to
increased sensitivity, perceived as discomfort and pain.

The resilience of the ocular surface is dependent on the coping capacity of the entire
system of the surface, in which both the tear fluid and its components [135–137], as well as
the lids play a decisive role. Coping capacity with osmolarity changes as part of the adaptive
stress responses is dependent on the osmo-adaptation time. If the time for adaption or
recovery is too short, one feature of the stress response is a downregulation or arrest of the
cell cycle [136], which could lead to a further deterioration of the mechanical properties of
the thinned epithelium in eyes with dry eye disease.

The basic cellular mechanisms supporting coping have been suggested [23] to include the
secretion of lipids by the Meibomian Glands, the glycocalyx [138] with mucins [61,139–142],
hyaluronic acid production [71,143–146] and degeneration, epithelial regeneration with
multilayering of the epithelium [48], the elasticity of the epithelium [147], and the regulation
of neuronal regeneration [148–151].

Stress factors challenging the coping mechanisms are often subtle, allowing the cells
to compensate and adjust to the external challenges without exhausting their resources,
maintaining their functional integrity and that of the tissue they are a part of. In the earlier
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model of dry eye disease including temporary acute inflammatory reactions (ALIRS),
the time interval for coping challenge was limited, providing the cells the time needed
to recover and readjust after a period of challenge. An insufficient time of recovery by
repeated exposure to significant external cell stimuli could lead to the final exhaustion
of the cell and the functional disability of the tissue it is part of. Part of the cells’ own
re-adjustment reactions can include the release of mediators to the environment in response
of the cells’ exposure to stress, resulting in inflammatory reactions, leading to additional
changes in the environment of the cell [152–154]. Here, for example, the accumulation of
inflammatory or pre-inflammatory mediators could lead to inflammatory preconditioning.
There is an elevated potential of immediate inflammatory reactions upon additional stimuli,
pre-dispositioning the cell or the tissue to potentially overwhelming inflammatory reactions,
causing at the end the loss of the Homeostatic balance in the tissue concerned. Even after the
cessation of the originally stress-provoking environmental factors, the time for completely
solving the inflammatory alterations in the environment of the cell could require more
time than the recovery of the cell itself. Any premature re-exposure of the cell to stress
under these conditions could have for the cell a far higher detrimental effect and cause
different cellular reactions than at the initial exposure when the original unused and fresh
coping mechanisms were being utilised by the cell to the full extent. This is the essence
of the dynamic models of dry eye disease addressing attrition [72] and osmolarity, i.e.,
osmokinetics [71,123]. In hyper-osmotic conditions, the endoplasmatic reticulum (ER) of
corneal epithelial cells can be disturbed, resulting in pro-inflammatory signaling [155]. This
emphasizes the role of the ER in the cellular response to stress. Similar to osmotic stress,
also mechanical forces can provoke some of the epithelium reactions at the level of the
ER. Overstretching of lung tissue inducing epithelial ER Ca2+ release has been shown to
activate PERK-specific ER stress signaling [156]. Increased friction in dry eye disease [157],
enhanced attrition [133], and the thinning of the epithelium [158] could indeed contribute to
a mechanically provoked PERK activation. Interestingly, epithelial thinning was considered
to be even a result of mechanical friction [158]. On the other hand, also, enhanced epithelial
surface irregularities in dry eye disease [159] could contribute to the uneven distribution of
mechanical forces applied on the surface, for example by the lids.

8. Inflammation—From Necessary Asset to Pathological Threat

In all common models of dry eye disease, inflammation plays a key role. The dif-
ference is, however, the identification of the specific nature of the inflammation. When
homeostasis is challenged, i.e., in the early phase of homeostasis, minor, repeated Home-
ostatic challenges and destabilization can trigger autoregulated inflammation, as part of
the innate corneal immunity [160,161]. Here, it can trigger temporary inflammation in
the cornea, forming the basis for inflammatory flares [162]. Inflammatory reactions of
the ocular surface have been already suggested to negatively affect even the conjunctival
epithelium [163]. Inflammation as an essential part in the pathophysiology of dry eye
disease has been reviewed recently [9,164] and cannot be discussed expressively here.

Inflammation itself is a necessity part of tissue self-maintenance [82] and should be
handled with diligence when therapy is applied. It contributes to the activation of regener-
ative cycle mechanisms, which lead to the substitution of damaged or incapacitated tissue
with new vital tissues with full potential. By its nature, such inflammation occurs in a
certain interval or with a periodical redundancy in order to keep tissues in good condi-
tion [165]. Eliminating dead and dysfunctional, apoptotic, and necrotic cells by apoptotic
processes [166–168] has immunological consequences. Such apoptotic clearance is essential
in tissue homeostasis [169]. Accordingly, in normal systems, well-controlled apoptotic
mechanisms even have an anti-inflammatory effect [170]. Possibly, these mechanisms face
an overload due to exaggerated cell loss and shedding in severe ocular surface damage
such as in severe dry eye. The normal defence system as part of the coping potential,
operating with the principles of immunological nudging, keep the inflammation-triggering
immunological systems in the appropriate states of vigilance, handling the elimination
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of dead and dysfunctional cells [166,167]. Although it can come with immunological con-
sequences [168,171,172], the clearance of apoptotic cells is critical for maintaining normal
immunity [173]. In this context, for dry eye disease, mitogen-activated protein kinase
(MAPK) activation is considered a core mechanism according to DEWS II [10] and, hence, is
part of the processes engaged in the coping mechanisms. Hyper-osmolar stress leads to the
activation of MAPKs, as well as nuclear factor (NF)-κB [174]. This also offers a new window
of therapeutic accessibility. As shown in yeast, the exposure to high osmolarity can induce
via MAP kinase the synthesis of glycerol and, thus, increase the internal osmolarity [175].
Similarly, it was shown that the MAP kinase system can be activated by using hyperosmolar
medium covering the epithelial cells [174].

MAPK regulates various cellular activities including proliferation, differentiation,
apoptosis or survival, inflammation, and innate immunity [176]. Accordingly, the inhibition
of the p38-MAPK pathway has been suggested in the dry eye management associated
with Sjögren’s syndrome [177]. The activation of the MAPK signaling pathway in an
experimental dry eye model has already earlier been the target for the development of new
treatment options [178], all the more as MAPK signaling pathway activation can result in
NLRP3 inflammasome formation [179]. Inflammasomes control parts of inflammation [180]
and are multiprotein signaling platforms that control the inflammatory response [180].
Inflammasomes play an important role in the progression of fibrosis as innate immune
receptors. There are four main members of the inflammasomes, such as NOD-like receptor
protein 1 (NLRP1), NOD-like receptor protein 3 (NLRP3), NOD-like receptor C4 (NLRC4),
and absent in melanoma 2 (AIM2), among which the NLRP3 inflammasome is the most-
studied [181]. As for the pathophysiology of dry eye disease, it is not yet known which
NLRP is of most importance in driving the inflammation during the progress of the disease.

The challenge of homeostasis results in ongoing inflammatory reactions during the
entire progress of DED. As part of the coping system during inflammation, IL-37 suppresses
the expression of several pro-inflammatory cytokine in favour of the expression of anti-
inflammatory proteins. This can be achieved by the regulation of macrophage polarization,
lipid metabolism, inflammasome function, TSLP synthesis, and miRNA function. Extracel-
lularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR), which
transduces anti-inflammatory signals by the suppression of the NF-κB and MAPK and the
activation of the Mer-PTEN-DOK pathways [182]. In the immune system, autophagy is not
only an essential part of tissue remodelling [183], but also a cell response to stress [184]. In
the coping mechanisms of the ocular surface, autophagy plays a key role as its stimulation
has been shown to mitigate the stress-induced inflammation in human corneal cells [185].
Specifically, for trehalose, this is due to p38MAPK inhibition, but not NF-κB. Autophagy in
general is very closely linked to inflammation [186–189] as the crosstalk between autophagy
and inflammatory signaling pathways is essential to balance defence and homeostasis [190].
Furthermore, autophagy is engaged in the regulation of inflammasomes [191] and limits
their activation [192].

9. Summary—Allostasis as a Situational Adaption and a Chance for Survival

Dry eye disease implies a chronic challenge to the homeostasis of the ocular surface.
Homeostasis, as a model of physiological balance, includes a variety of separate regulative
mechanisms and their components, each establishing a functional, autoregulative unit. In
the current model of homeostasis, as state of equilibrium, each parameter is supposed
to maintain a certain value [193], this supporting the functionality of the system. This
includes the resistance to external stress factors and implies a certain, balanced fluctuation
of self-adjustment within the system. This allows the ocular surface to survive and cope
with the events outlined in the vicious circle of dry eye disease [7,8]. However, nominal
normal values hardly can reflect a dynamic system and its autoregulative capacity. The
Allostatic Load requires a well-adjusted system of coping mechanisms to withstand a
shift to an unstable situation of Heterostatic imbalance, which can ultimately lead to the
establishment of an Allostatic phase, allostasis. Allostasis is the situation after adaption
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to challenges with some modifications of the earlier state of balance. Allostasis offers
“stability through change” [194], emphasizing the need to adapt. Therefore, the general
and individual coping capacity of the ocular surface and its regulatory potential is of the
highest pathophysiological relevance. Especially during the early phases of ocular surface
disease, the capacity of coping, an essential part of resilience, is of major importance as the
issue is the activation of the vicious circle of DED. Prior to the entering of any vicious circle,
there is a time of intense activation of all available coping mechanisms dealing with the
imminent dysregulation of the ocular surface’s homeostasis. This phase of coping with
the desiccation challenge offers both a chance for early therapeutic intervention and early
diagnosis. Helping the ocular surface avoid permanently losing its balance by recognizing,
supporting, and enhancing possibly present (but insufficiently effective) compensatory
mechanisms could possibly reverse or slow down the velocity of deterioration. Neither
resilience, nor the coping capacity of the ocular surface are unlimited (Figure 13).
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Figure 13. With increased cell stress, resulting in a decrease of resilience, homeostasis is lost and
heterostasis sets in, leading the system to a new phase of adaption, allostasis. Continued exposure
to stress and a high Allostatic Load leads, finally, to the total exhaustion of an already minimized
coping potential and, eventually, to the death of cells and tissues (van Setten 2023©).

Resilience as the ability to cope is dependent on the magnitude of the stress factors
and can, at the end, decrease to zero when stress leads to a loss of cellular functionality
and, later, cellular and tissue integrity—not allowing any further chance for recovery. At
the final stage of continuous deterioration of DED, then, when even the impaired balances
characterizing the Allostatic phase begin to fail, the definitive loss of the functional integrity
of the ocular surface is imminent. Then, dry eye disease has indeed become a real threat
to sight. Here, in the presence of therapy-resistant ocular surface desiccation, surgical
procedures become the last resort [195,196]. Better models, reflecting more accurately the
dynamics of the pathophysiology, are needed to prevent this. The reconsideration of dry
eye disease as more than a challenge and the loss of homeostasis, but as volatile stages of
lost homeostasis and permanently altered ocular surface imbalance the without possibility
to return could be an important step on this way.
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10. Conclusions

Treating lubrication insufficiencies in time, i.e., in the early initial phases, could,
possibly, significantly extend the time of coping, postponing permanent changes in the
cellular mechanism as a result of desiccation stress, alleviating subjective discomfort and
the decrease of performance abilities. When, during the time of ongoing DED, the optimal
treatment windows during heterostasis have passed and allostasis has replaced home-
ostasis, any treatment will need to address even more immunological mechanisms, but
with significantly decreased hope to potentially restore the primary condition with its
Homeostatic autoregulatory mechanisms. Finally, as the prevalence of DED does increase
with age, this also alters the presence and regulation of inflammation in human tissues.
Hence, the coping mechanisms and the ability to handle inflammation in the context of
dry eye disease obviously could differ between younger and older people. Eventually, the
phenomenon of “inflammaging” [197] could also be considered as a predisposition to enter
a vicious circle of the ocular surface, leading to dry eye disease. In these conditions, the
coincidental higher rate of ectropia or other apposition errors of the lid might be more
important for the development of dry eye disease than has been thus far presumed. The
identification of such Allostatic Load factors could offer an important step to avoid the loss
of homeostasis and the transition to allostasis.
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