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Abstract: Autophagy is the key process by which the cell degrades parts of itself within the lysosomes.
It maintains cell survival and homeostasis by removing molecules (particularly proteins), subcellular
organelles, damaged cytoplasmic macromolecules, and by recycling the degradation products. The
selective removal or degradation of mitochondria is a particular type of autophagy called mitophagy.
Various forms of cellular stress (oxidative stress (OS), hypoxia, pathogen infections) affect autophagy
by inducing free radicals and reactive oxygen species (ROS) formation to promote the antioxidant
response. Dysfunctional mechanisms of autophagy have been found in different respiratory diseases
such as chronic obstructive lung disease (COPD) and asthma, involving epithelial cells. Several
existing clinically approved drugs may modulate autophagy to varying extents. However, these
drugs are nonspecific and not currently utilized to manipulate autophagy in airway diseases. In this
review, we provide an overview of different autophagic pathways with particular attention on the
dysfunctional mechanisms of autophagy in the epithelial cells during asthma and COPD. Our aim
is to further deepen and disclose the research in this direction to stimulate the develop of new and
selective drugs to regulate autophagy for asthma and COPD treatment.
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1. Introduction

Autophagy is implicated in different physiological and pathophysiological mecha-
nisms in various tissues and organs and may be a target for new therapeutic approaches. It
is involved in various diseases by its pleiotropic action (cancer, metabolic, neurodegenera-
tive, cardiovascular, autoimmune, and pulmonary diseases) [1–3]. Autophagy represents an
evolutionary mechanism involved in homeostasis that enables cell turnover by determining
cell fate through a lysosome-dependent degradation pathway [1]. Autophagy mechanisms
can be stimulated by multiple forms of cellular stress such as oxidative stress (OS), hy-
poxia, heat shock, hormonal imbalance, nutrient deprivation, chemical stress, and pathogen
infections [4–6]. Autophagy is associated with reactive oxygen species (ROS)-mediated
pathological responses in both cell signaling and cell damage. ROS produced by oxidative
phosphorylation are highly reactive metabolites and can act as signaling molecules [7].

There are different autophagic pathways for the selective removal of mitochondria (mi-
tophagy), proteasomes (proteaphagy), ribosomes (ribophagy), peroxisomes (pexophagy),
endoplasmic reticulum (ER) (ER-phagy), lysosomes (lysophagy), lipid droplets (LDs)
(lipophagy), and nuclei (nucleophagy) [8].

The main types of autophagic mechanisms are named macroautophagy, microau-
tophagy, and chaperone-mediated autophagy. Although the autophagy pathways are
morphologically distinct, all three culminate in the delivery of cargo to the lysosome for
degradation and recycling of aged, damaged, and dysfunctional proteins and organelles.
They are mechanistically different from one another in airway diseases [9].
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Macroautophagy, referred to as “autophagy”, is responsible for organelle and microbial
degradation. The macroautophagic process can be divided into four phases: (1) initiation
(protein complexes are recruited to form autophagosome); (2) elongation (the assembly and
stretching of the membranes takes place); (3) isolation (vesicular structures are generated
to form autophagosomes); (4) termination (the intracytoplasmic content is closed in the
double membrane vesicle to form the phagophore); (5) fusion (the autophagosomes fuse
with the lysosome to transport the cytosolic material into the lysosomal lumen to perform
the degradation by acid hydrolases, lipases, and cathepsins) [10–12].

Microautophagy refers to the degradation of cellular components largely without
the formation of the autophagosome, but through lysosomal or endosomal membrane
invagination, protrusion, or septation. Cytoplasmic elements are engulfed in autophagic
tubes prior to fusion and degradation by lysosomal enzymes [13].

Chaperone-mediated autophagy (CMA) is a selective form of autophagy. It transports
single unfolded proteins directly across the lysosomal membrane. The soluble proteins
are selectively sequestered through a protein target complex called the HSC70 chaper-
one complex. Chaperones interact with other proteins to stabilize or help them to reach
their native form and they are activated without being present in the final structure of
lysosomes [14]. The HSC70 complex functions as a protein-folding catalyst and binds
lysosome-associated membrane protein-2A (LAMP-2A) on the lysosomal membrane [14].
Thus, the target protein is translocated to lysosomes to be degraded [9] (Figure 1).
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Figure 1. Overview of different autophagy pathways. The panels describe the three different types
of autophagy including macroautophagy, microautophagy, and chaperone-mediated autophagy.
Macroautophagy, through the formation of a double membrane vesicle surrounding the cytoplasmic
cargo, forms an autophagosome which fuses with a lysosome, causing the degradation of its contents.
Microautophagy induces invagination or fusion with a lysosome to degrade the cellular components.
It engulfs cytoplasmic elements into autophagic tubes before fusion and degradation by lysosomal
enzymes. Chaperone-mediated autophagy transports single unfolded proteins directly across the
lysosomal membrane.

Autophagy pathways generate an accumulation of damaged proteins and organelles
within the cytoplasm, giving rise to mitochondrial dysfunction, genomic instability, and
ROS generation [7].
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Under stress conditions, autophagy operates in different ways. Sometimes it effi-
ciently removes ER, peroxisomes, and damaged mitochondria; in other cases, the cells can
self-digest by supplying nutrients for protein synthesis and thus activating cell survival
mechanisms [15]. Autophagy is regulated by a complex network of signaling cascades
that can be separated into two categories of proteins. The first category is involved in the
suppression of autophagy and includes proteins such as PI3 kinase proteins, Akt1, and
anti-apoptotic family member BCL-2 [16]. The second category includes tumor suppressor
proteins that activate autophagy (Beclin-1, Atg4c, BH-3, and PTEN) [16].

As previously mentioned, autophagy plays pleiotropic roles in different cell biolog-
ical processes, such as metabolic regulation, cellular and tissue remodeling, response to
pathogen invasion, antigen presentation, and in many other processes in various human
diseases [16–18]. In particular, impaired mechanisms of autophagy are observed in the
epithelial cells and the alveolar macrophages in several lung diseases including chronic
obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), in-
terstitial lung disease (ILD), infectious lung disease, acute lung injury (ALI), and lung
cancer [1,19].

2. Oxidative Stress and Dysfunctional Mechanisms of Autophagy/Mitophagy

Various noxae activate ROS production in the lung via different reactions. The exoge-
nous noxae activate oxidases in neutrophils, macrophages, epithelial cells, and endothelial
cells of the lung [20,21]. Although the subtle relationships are not yet clear, it is known that
the interaction of ROS and the autophagic mechanisms are fundamental for the mainte-
nance of cellular homeostasis. These relationships are dysregulated in the lung diseases [7].
Recent studies showed that autophagy is regulated by OS (especially by ROS) [7,22]. The
definition of OS is “an imbalance between pro-oxidants and antioxidants with concomitant
dysregulation of redox circuits and macromolecular damage” [23]. Increased levels of OS
reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and affect the
regulatory mechanisms of cell survival in the lung epithelium [23]. They are involved in
physiological and pathophysiological mechanisms that underlie many diseases, including
pulmonary diseases [22,24].

OS leads to damage of proteins, lipids, and DNA and it induces the production of
free radicals which are subsequently converted through enzymatic and non-enzymatic
processes into ROS [25].

Among the ROS, there are oxygen-free radicals such as superoxide anions (O2•−)
and hydroxyl radicals (•OH). These are very unstable molecules and can be oxidized
by unpaired electrons. The O2

•− radical can react with NO to form a highly reactive
peroxynitrite molecule (ONOO−) or be rapidly converted to hydrogen peroxidase (H2O2)
by superoxide dismutase (SOD). H2O2 can be converted into the harmful •OH in the
presence of Fe2+ through the Fenton reaction. •OH can also generated from O2

•− via the
Haber–Weiss reaction. In the presence of chloride (Cl−) and bromide (Br−) ions, H2O2 is
catalyzed by heme peroxidase or myeloperoxidase to form hypochlorous acid (HOCl) and
hypobromous acid (HOBr), known as very harmful oxidants [26].

The presence of low and controlled levels of ROS inside the cells allows the cor-
rect functioning of processes, such as protein phosphorylation, the activation of various
transcription factors, apoptosis, immunity, and differentiation [27].

Cells deploy two antioxidant defense systems that are the first lines of defense against
oxidants: the enzymatic antioxidant system including superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GSH-Px), heme oxygenase-1, and small-molecular-weight
redox proteins such as thioredoxins, peroxiredoxins, and glutaredoxins, and the non-
enzymatic antioxidant system that includes vitamin C, vitamin E, and glutathione [23].

Enzymatic antioxidants are very efficient in promoting the reduction of H2O2 to H2O
to limit its harmful effects [28]. Instead, non-enzymatic antioxidants work by interrupting
free radical chain reactions [29]. To maintain redox homeostasis, oxidant and antioxidant
systems antagonize each other to counteract the excess ROS, limiting the activation of
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autophagy mechanisms. Autophagy acts as a secondary defense and plays an important
role against OS as the predominant synthesis of ROS is mediated by mitochondria [30].
Moreover, high levels of ROS activate mechanisms of mitochondrial dysfunction that are
involved in the self-removal mechanisms by a process called mitophagy [23].

Autophagy is linked to the antioxidant response, and some transcribed proteins related
to autophagy are regulated by redox status or OS. An example is the autophagy-encoded
receptor p62, also called sequestosome 1 (SQSTM1) or autophagy-related gene 4b (ATG4b)
(the main ATG4 protease for autophagy) [31]. p62 is involved in many signal transduction
pathways, including the Keap1–Nrf2–ARE [Kelch-like ECH-associated protein 1–nuclear
factor (erythroid 2-related factor 2)–antioxidant response element] pathway [32]. The Nrf2–
Keap1–ARE pathway is a redox-sensitive signaling axis involved in the protection of cells
from OS. p62 (an autophagy adaptor protein) enhances the dissociation of Keap-1 (the Nrf2
substrate adaptor for the Cul3 E3 ubiquitin ligase) from Nrf2 and promotes Keap1 degra-
dation through p62-dependent autophagy, stimulating the antioxidant response [33–36].
Furthermore, p62 interacts directly with Nrf2, and the dysregulation of autophagy results
in sustained p62-dependent activation of Nrf2 [33].

It has been demonstrated that the Keap1–p62 complex is recruited to autophago-
somes by LC3 (light chain 3) and then degraded by autophagy [37]. Furthermore, p62 is
involved in a positive feedback loop. In fact, under stress conditions, Nrf2 activation leads
to its further increase by inducing p62 expression and thus maintaining its antioxidant
effect [15,38,39].

3. Molecular Mechanisms of Autophagy

In mammals, autophagy and its mechanisms were discovered in the 1950s. However,
only recently have 32 autophagy-related genes (Atgs) been identified. Sixteen Atg and two
ubiquitin-like conjugation systems are involved in the formation of the autophagosome
vesicle [15].

Autophagy induction is initiated by mammalian target of rapamycin (mTOR), a
serine/threonine kinase that forms two different complex: Tor complex 1 and 2 (TORC1
and TORC2). TORC1 is mainly involved in regulating autophagy. It is activated upon
nutrient deficiency or by 5′-AMP-activated protein kinase (AMPK) (a serine/threonine-
protein kinase) upon high energy consumption. AMPK coordinates the induction of
autophagy by inhibiting the mTORC1 target. Inhibition of mTORC causes the activation
of the UNC51-like kinase (ULK) complex (composed of ULK1/2, Atg 13, FIP200, and Atg
101) that is the primary regulator of autophagy initiation. The activated ULK complex
translocates to the ER forming a complex with various Atg proteins. Furthermore, activated
ULK promotes the formation of the class III phosphatidylinositol-3-kinase complex (class
III PI3K) composed of VPS34, VPS15, Beclin 1, Atg14L, and AMBRA1.

Beclin 1 is a protein involved in the regulation of autophagy. It is a key component
of the PI3K complex that interacts with (1) several cofactors, such as Atg14, resistance to
associated UV radiation (UVRAG), and Rubicon (regulator of the autophagosome size and
number), or (2) Bcl-2 family proteins (autophagy inhibitors) [40,41]. Activation of the PI3K
complex occurs by dissociation of Beclin1 from the anti-apoptotic proteins Bcl-2/xL. It
promotes the conversion of PI to generate phosphatidylinositol-3-phosphate (PI3P) that
is required for phagophore nucleation [9,42,43]. Furthermore, the PI3K complex contains
vacuolar protein sorting 34 (VPS-34 kinase, encoded by PIK3C3) which phosphorylates and
allows the nuclear translocation of transcription factor EB (TFEB), a master modulator of
autophagy and lysosomal biogenesis, promoting its activation [44,45].

Subsequently, the phagophore elongates and closes to form the double-membrane au-
tophagosome through the function of microtubule-associated light chain protein 3 (LC3-I).
LC3-I is a ubiquitin-like protein and its conjugation with phosphatidylethanolamine (PE)
converts LC3-I to LC3-II. Autophagosome maturation involves two distinct conjugations.
The first involves the covalent bond between ATG 12 and ATG5. Subsequently, the
Atg12–Atg5 complex forms a complex with Atg16 to act as an E3-like enzyme to form
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LC3-PE (LC3-II). LC3-PE (LC3-II) induces autophagosome closure by binding to the au-
tophagosome membrane. This mechanism is mediated by Atg4-mediated proteolytic
cleavage of LC3 [46,47]. SNAP29 is an autophagosome protein that interacts with certain
molecules present on lysosomes to form the autolysosome. The content of the autolyso-
some (nutrients and amino acids) and LC3 are degraded by lysosomal acid hydrolases and
released into the cytosol to be recycled [9] (Figure 2).
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Figure 2. Autophagy pathway. ROS and cellular stress may inactivate mTORC1 through AMPK.
Autophagy is negatively regulated by mTORC 1 inhibition that negatively regulates autophagy
through direct phosphorylation of the ULK1 complex. The ULK-1 complex activates a PI3K class
III complex including Beclin-1 phosphorylation and induction of VPS34 kinase activity, promoting
the biogenesis of autophagosomes. The activation of the complex induces isolation membrane
development, elongation, and recruitment of the Atg5–Atg12–Atg16–L1 complex that converts
LC3-I to LC3-II through conjugation with phosphatidylethanolamine (PE). LC3-II binds p62 (an
autophagy receptor) that links cargo proteins with the autophagosome membrane. In the final
step, the autophagosome fuses with a lysosome through SNAP29 to form the autolysosome. Thus,
lysosomal acid hydrolases degrade the autophagic cargo producing degradation products (such as
amino acids) that are subsequently recycled back into the cytoplasm for reuse.

4. Molecular Mechanisms of Mitophagy

The autophagic mechanism that maintains mitochondrial homeostasis and removes
aged and damaged mitochondria is called mitophagy [48]. Mitochondrial depolarization,
hypoxia, and metabolic stress act as triggers for mitophagy, as well as the loss of the
mitochondrial potential (∆ψm). Mitochondrial depolarization induced by mitochondrial
uncoupling agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP) promotes the
accumulation of PTEN-induced putative kinase 1 (PINK1, also known as PARK6) on the
outer mitochondrial membrane, triggering mitochondrial degradation. There are different
signaling mechanisms of mitophagy. The best characterized is PINK1–parkin RBR E3
ubiquitin protein ligase (Park-2)-dependent mitophagy [49].

PINK1 is a mitochondrial targeted kinase that interacts with different substrates to
regulate mitochondrial functions, activate mitochondrial clearance, and participate in mito-
chondrial homeostasis [50,51]. Under normal conditions, PINK-1 translocates to the inner
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mitochondrial membrane where it is cleaved and subsequently degraded. However, if
the mitochondria are damaged or polarized, it accumulates and autophosphorylates in
the external membrane, inducing the (cytosolic) recruitment of Park-2 [9,52]. Park-2 is an
E3-ubiquitin protein ligase that amplifies PINK-1-activated signaling that is involved in
lysosomal degradation and the removal of mitochondria by autophagy [53,54]. Another
signaling mechanism of mitophagy involves the BH3-only protein Bnip3 autophagy recep-
tor through the interaction of its LC3-interacting region (LIR) with Atg8 proteins that act as
mitophagy receptors [55] (Figure 3).
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Figure 3. PINK1/Parkin-mediated mitophagy. (a) In healthy mitochondria, PINK1 does not accu-
mulate on the external mitochondrial membrane; the protein is rapidly imported, processed, and
degraded. (b) In damaged mitochondria following mitochondrial depolarization, PINK1 accumulates,
leading to ubiquitin phosphorylation and consequent mitophagy and Parkin recruitment. Finally,
activated Parkin promotes polyubiquitination which amplifies the signal for autophagy receptor
recruitment and subsequent mitophagy.

Furthermore, mitochondrial depolarization, hypoxia, and metabolic stress act as trig-
gers for mitophagy, as well as loss of the mitochondrial potential (∆ψm). Mitochondrial de-
polarization induced by mitochondrial uncoupling agent carbonyl cyanide m-chlorophenyl
hydrazone (CCCP) promotes accumulation of PINK1 on the outer mitochondrial mem-
brane and recruitment of Parkin to damaged mitochondria, thus triggering mitochondrial
degradation [7,55,56].

Mitophagy can also be triggered by FUN14 Domain-Containing 1 (FUNDC1) pro-
tein located in the outer mitochondrial membrane. Phosphorylation of FUNDC1 occurs
in response to different stress conditions, such as hypoxia or loss of the mitochondrial
membrane potential, in key residues such as Ser13, Ser17, and Tyr18. This phosphorylation
changes the binding affinity of FUNDC1 for LC3 and consequently affects mitophagy [57].

Another mechanism involves cardiolipin, a dimeric phospholipid of the inner mito-
chondrial membrane. Cardiolipin has a high content of unsaturated fatty acids, which gives
it a high susceptibility to high levels of ROS and therefore acts as a trigger of mitophagy [58].
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Cardiolipin can have different oxidation states that will induce cytoprotective mitophagy
or stimulation of mitochondrial death pathways [59].

In the inner mitochondrial membrane, the protein Prohibitin 2 (PHB2) participates in
the mechanisms of parkin-induced mitophagy, acting as a receptor that binds to LC3. PHB2
dysfunction interferes with the occurrence and development of various diseases including
lung cancer [60].

Mitochondrial dysfunction and impaired mitophagy may contribute to the pathogene-
sis of many human diseases including lung disease. In particular, it affects the activity of
airway epithelial cells in COPD and asthma [54,61].

5. Epithelial Cells in Airway Diseases

The respiratory epithelium is a complex system that is finely regulated and in direct
contact with the external environment. It is stimulated by noxious stimuli such as microbes,
allergens, cigarette smoke (CS), and air pollutants such as ozone or particulate matter
(PM) [62]. The epithelium plays a key role in the transportation of gases to and from the
alveoli, in the initiation and orchestration of pulmonary inflammation, immune responses,
and tissue remodeling [63]. The epithelial cells are exposed to lesions and insults from both
the external environment and endogenous signals (e.g., OS) that trigger DNA damage and
ATP depletion [64].

The epithelial layer is formed by ciliated cells, mucus-producing goblet cells, club
cells (Clara cells) as the dominant secretory cells, and basal cells as the key modulators of
respiratory homeostasis. The basal cells are strongly attached to a basement membrane and
to each other through tight junctions (TJs) and adherens junctions (AJs), which contribute
to epithelial regeneration following injury. Under the basal membrane there is the lamina
propria, covered by bands of airway smooth muscle cells, and formed by an extracellular
matrix (ECM) mixture containing a variety of immune cells and fibroblasts [65,66].

The airway epithelium contributes to the host defenses through several mechanisms:
(1) barrier function; (2) mucociliary clearance; (3) production of antimicrobial peptides
(AMPs) and proteins; (4) production of ROS and nitrogen species (RNS); and (5) production
of a multitude of cytokines, chemokines, and growth factors [67,68].

In the apicolateral portion of the epithelial cells, the barrier function is performed
by the apical junctional complex formed by TJs, AJs, and desmosomes linked to the
cytoskeleton, which maintain the structure of epithelial layer. Occludin, the claudin family,
junctional adhesion molecule (JAM), and zonula occludens (ZO) are TJ proteins related to
the actin cytoskeleton. They play a central role in paracellular permeability and epithelial
polarity regulation [69–71]. E-cadherin is the main component of AJs. It is a transmembrane
glycoprotein involved in the adhesion of epithelial cells to the cytoplasmic domain by the
actin cytoskeleton [72]. Furthermore, the cytoplasmic domain binds β-catenin protein
and avoids its translocation into nuclear regulatory pathways affecting proliferation, cell
recognition, polarization, and cell migration [72,73]. Finally, desmosomes are intercellular
junctions giving resistance to the epithelial barrier, and, in this way, control the entry
of external noxae. They are involved in the regulation of epithelial permeability, gene
expression, differentiation, apoptosis, cell proliferation, and immunological responses [74].

As previously mentioned, mucociliary clearance is among the innate defense mech-
anisms and mainly composed of mucus. Mucus is constituted by an extracellular gel
composed of water, mucins, and numerous associated molecules. The key parameters
for mucociliary clearance are mucus viscosity and ciliary function [68,75]. To evaluate
the quality of the mucus, three fundamental parameters are taken into consideration: the
mucin components, the hydro-ionic fluxes, and the rheological properties (physical prop-
erties of the mucus flow). The polymeric mucins mainly secreted in mammalian airways
are MUC5AC and MUC5B, which differentially contribute to the pathogenesis of lung
diseases [76,77].
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Ciliary function can be assessed by correlating dynamic studies such as the cilia
beating frequency or speed of propelling the mucus, and structural features such as cilia
length and number of cilia per cell [78].

Thus, the respiratory epithelium is involved in maintaining pulmonary homeostasis.
Dysfunctions in the bronchial epithelium, triggered by pathogenic noxae or environmen-
tal pollutants, induce increased epithelial permeability and consequent susceptibility to
infections. This is the cause of the persistent inflammation that is characteristic of many
respiratory diseases such as COPD, asthma, cystic fibrosis (CF), and lung cancer, among
others [79–82].

Recently, several scientific groups found that autophagy mechanisms might play
a pivotal role in the pathogenesis of chronic inflammatory lung diseases by promoting
cytokine release, epithelial cell dysfunction, lung fibrosis, and airway remodeling [83–85].

6. COPD and Autophagy/Mitophagy

Chronic obstructive pulmonary disease (COPD) is caused by exposure to inhaled
noxious particles, notably tobacco smoke and pollutants. It is one of the major causes of
morbidity and mortality worldwide [86]. Chronic obstructive pulmonary disease (COPD),
characterized by progressive and irreversible airflow limitation, is caused by airway ob-
struction and destruction of the lung parenchyma [87]. The continuous exposure of the
airways to the external agents promotes inflammatory-oxidative stress that leads to the
eventual irreversible damage of the lung parenchyma and alveolar walls [88]. This damage
is involved in the progression to alveolar emphysema, the primary pathological clinical
feature of COPD strongly related to the age of the patients [89].

The pathogenesis of COPD has been associated with an excessive increase in au-
tophagy and mitophagy, which lead to the programmed cell death of epithelial cells and
emphysema [90]. The activation of mitochondria-selective autophagy, namely the connec-
tion between mitophagy and other regulated forms of cell death, such as apoptosis and
necroptosis, is a driving factor of the COPD phenotype and underscores its importance in
normal lung homeostasis and pathogenesis [91]. Accordingly, it is possible to think that
different or higher levels of autophagy might be associated with different phenotypes of
COPD. Cigarette smoke (CS) is the major risk factor for airway inflammation in COPD
subjects. Its negative effects in the lungs persist even after smoking cessation [92]. They
are triggered inflammatory defense mechanisms for the successful maintenance of home-
ostasis within the respiratory system. In response to stimuli, the lung employs several
defense mechanisms including those of the epithelial barrier, where airway epithelial cells
lining the respiratory tract secrete numerous substances including mucins, lysozymes,
defensins, siderophores, and nitric oxide; or mucociliary clearance is used as that primary
innate defense mechanism, in which motile, ciliated epithelial cells eliminate particles and
pathogens trapped in mucus from the airways. Macroautophagy/autophagy can be critical
for inhibiting spontaneous inflammation and for the response of leukocytes to infection in
the lung [92].

A lot of evidence shows that abnormalities in autophagy may contribute to the patho-
genesis of chronic inflammatory diseases of the lung such as COPD and asthma, exerting a
dual role. Stress, nutrient starvation, and inflammatory stimuli often trigger autophagy in
the cells [93]. Persistent and unregulated autophagy especially affects the epithelial cells
of the lung, promoting lung injury. Such cellular damage and stress, caused by dysreg-
ulated autophagy, drives lung inflammation and injury in COPD by affecting epithelial
cell functions [92]. In fact, autophagy can play a protective as well as a pathogenic role
in lung diseases [94–97]. The mechanisms of autophagy modulate various physiologi-
cal processes in the cells, controlling key cellular events that remove damaged proteins,
molecules, and subcellular organelles. In this manner, autophagy may play a fundamental
role in cellular, tissue, and organismal homeostasis [98]. Therefore, disease states may be
associated with autophagy dysregulation due to alterations in the multicellular biology
of the organism [99]. The specialized functions of autophagy (selective autophagy, such



Biomolecules 2023, 13, 1217 9 of 21

as mitophagy) may directly contribute to the regulation of pathogenesis in pulmonary
diseases. Under pathological conditions, dysregulation of redox homeostasis results in
excessive generation of ROS, leading to OS and the associated oxidative damage to cellular
components. However, this homeostatic regulation of cellular processes may escape to
deal with excessive autophagic targets, leading to cell death. So, in most cases, induction
of autophagy in response to stress acts as a cytoprotective mechanism in the lung [95–97].
Recent studies have shown that OS can accelerate aging by depleting stem cells, accu-
mulating dysfunctional mitochondria, and decreasing autophagy, all of which generate
additional OS [89]. Autophagy controls the accumulation of aggresome bodies that are
primarily comprised of aggregated (misfolded or damaged) proteins which trigger chronic
inflammatory/apoptotic responses leading to senescence and emphysema progression as
showed in pre-clinical studies using both human lung cells and tissues [100–102].

These observations suggest that autophagy augmentation controls lung disease pro-
gression in COPD subjects with emphysema. Furthermore, it was found that changes in
autophagy flux and aggresome pathology can serve as an early prognostic marker for
predicting emphysema initiation or progression. Emerging data suggest that induced
autophagy impairment via Regulator Transcription factor-EB (TFEB) regulates the action
of cigarette smoke, playing a central role in the progression of COPD emphysema [103].
The precise and early detection of aggresome pathology can allow the timely assessment of
disease severity in COPD–emphysema subjects for prognosis-based interventions. The use
of drugs inducing autophagy might reduce alveolar damage and lung function decline, re-
sulting in a decrease in the current mortality rates in COPD subjects with emphysema [104].
However, further studies might be necessary to clarify the potential pharmacological
approach to control the mechanisms of autophagy in the treatment of COPD patients.

A number of studies exploring the roles of autophagy in pulmonary diseases have been
reported [95,105,106]. These data suggest that autophagy and mitophagy can play both
protective as well as detrimental roles in human pulmonary diseases, in a cell type-specific
manner [107,108]. The autophagic mechanisms are important regulatory mechanism in
the lungs and frequently affect the normal or pathological activities of epithelial cells [109].
Mitochondrial dysfunction has been extensively studied in the pathogenesis of chronic
lung diseases, including COPD [110,111], but less explored in asthma.

Autophagy is an ATP-dependent process, and the final cell fate is, at least partly,
dependent on the balance between the demand for substrate removal and cell affordability,
which are limited by energy supply [112]. In fact, energy conditions play a significant role
in facilitating different types of cell death [113]. If autophagy/mitophagy is over activated,
substances and organelles responsible for energy supply are excessively degraded. Intra-
cellular ATP levels are important in switching between programmed cell death (PCD) or
necrosis mechanisms [114,115]. So, lung functions are highly dependent on energy supply
and are sensitive to reductions in ATP levels (through the removal of mitochondria). Thus,
autophagy/mitophagy might contribute to define a switch between PCD and necrosis,
likely explaining the dual role of autophagy/mitophagy in COPD [93].

In contrast, activated autophagy can worsen inflammatory responses [116,117], in-
duce mucus production, and disrupt mucociliary clearance (MCC), affecting the activity
of epithelial cells [118,119]. Microtubule-associated protein 1 light chain (LC) 3 is an au-
tophagosome molecule present in the gene expression profiles of COPD stage 2 versus stage
0 smokers, representing a potential molecular target in these inflammatory diseases [120].
In samples of lung tissues from COPD patients and in alveolar epithelial cells exposed to
CSE, increased expression of LC3B-II was observed, leading to the Fas-mediated induction
of apoptosis through the activation of autophagy [117]. Additionally, it was observed that
cigarette smoke extract (CSE) markedly elevated the LC3-II/I ratio and upregulated inflam-
matory cytokines, including TNF-α, IL-6, and IL-8, in lung tissues of exposed mice [121].
In vitro, CSE increases autophagosome formation, as well as the LC3-II accumulation
in epithelial cells. The silencing of LC3B inhibited autophagy and protected epithelial
cells from CSE-induced apoptosis [122]. Peripheral lung tissues from patients with severe
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COPD showed an increase in p62, LC3, and aggresomes compared with age-matched
non-smokers, suggesting an impairment of autophagy in COPD [121]. The increase in p62
is related to disease severity in peripheral lung tissues of COPD patients. It is strongly
correlated with increased expression of LC3 and BICD1 [123]. Similarly, p62 is increased
in alveolar macrophages from COPD patients and smokers. Furthermore, the numbers
of autophagosomes and mitochondrial dysfunction are increased, with a flux of impaired
autophagy in COPD [123]. In vitro, this is mimicked by exposure of alveolar macrophages
to CSE, resulting in an accumulation of LC3, ubiquitinated proteins, and aggregates, and
with reduced autophagic flux.

In vitro, human bronchial epithelial cells (HBEC) and A549 cells acutely exposed to
cigarette smoke showed an accumulation of polyubiquitinated proteins, indicating im-
paired proteostasis associated with increased ROS generation and cellular necrosis [124].
Furthermore, it was observed that the activation of autophagy in response to smoke has
harmful effects on epithelial cells [118,125–127]. Acute CS exposure only initiated moderate
changes in autophagy, but with chronic exposures, autophagy flux was impaired [100,103].
CS-induced mitochondrial dysfunction and lack of mitophagy also combine to induce cellu-
lar senescence and the progression of COPD. CS increases autophagosome turnover (flux),
inflammation, and mucus production [122] to promote epithelial cell death both in vitro and
in vivo [128,129]. Mitophagy, as with autophagy, has a dual role in COPD [130,131]. Dam-
aged mitochondria generate a series of cellular cascades, leading to lung damage in COPD
by mitochondrial fragmentation, which induces mitophagy initiation. Parkin-dependent
mitophagy serves as a protective strategy by removing fragmented mitochondria to prevent
the spread of the damage in the mitochondrial network [132]. For example, CSE induced
cytoplasmic p53 accumulation and Parkin interaction, thereby inhibiting Parkin translo-
cation to damaged mitochondria. In addition, impaired Parkin translocation to damaged
mitochondria was observed in the lungs of chronic smokers and patients with COPD [130].
Furthermore, inadequate mitophagy induced cellular senescence, which was attenuated by
mitophagy restoration [130]. Likewise, CSE-induced mitophagy was inhibited by PINK1
and PARK2 knockdown, leading to cellular senescence in HBECs [133]. These data support
that mitophagy confers lung protective effects in COPD or CS exposure. Moreover, CS
also induces mitochondrial dysfunction in airway epithelial cells and stimulation of mi-
tophagy, which result in cell death by necrosis (necroptosis) [127]. Most studies, however,
indicate that autophagy mechanisms are impaired in COPD. Therefore, whether activated
autophagy protects the lung or aggravates COPD progression needs further elucidation.
These contradictory findings support the concept that that autophagy has a dual role in
COPD pathogenesis that should be further elucidated.

7. Asthma and Autophagy/Mitophagy

Asthma is a chronic disease of the airway, often of an allergic nature, characterized by
the complex interaction of airway obstruction, bronchial hyperresponsiveness (BHR), and
airway inflammation, generating recurrent episodes of wheezing, coughing, chest tightness,
and breathlessness. Epithelial injury, goblet cell hyperplasia, subepithelial layer thickening,
airway smooth muscle hyperplasia, and angiogenesis promote structural changes or airway
remodeling in the airways of asthma patients. T-helper 2 (Th2) and type 2 (T2) innate
lymphoid cells (ILC2) orchestrate the inflammatory process in asthma through the secretion
of Th2 cytokines (IL-4, IL-5, and IL-13), promoting eosinophilic inflammation in the airway
mucosa [134]. Recently, it was demonstrated that inflammation and remodeling might
be considered parallel aspects of the asthmatic process and not only a consequence of
chronic airway inflammation. Furthermore, asthma can be distinguished into two main
endotypes: T2-high, characterized by increased eosinophilic airway inflammation and
T2-low that presents neutrophilic airway inflammation and exhibits increased resistance to
steroids [135].

Autophagy plays an important role in the atopy and asthma pathogenesis. It is
mainly involved in several key processes of asthma [136] with a detrimental or beneficial
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action, depending on the cell types involved [87]. It is mainly involved in several key
processes of asthma pathogenesis [136] via the regulation of the innate and adaptive
immune responses [137] and it may also promote interleukin (IL)-18 secretion from airway
epithelial cells in response to outdoor allergens [138]. Autophagy plays different roles in
asthma: it is increased in the eosinophilic inflammation and type 2 response, whereas it
is decreased in the neutrophilic asthma phenotype [9]. Autophagy is also a regulator of
TGF-β1-induced fibrogenesis [139] and its inhibition by ATG5 deletion or treatment with
Baf-A1 or 3-MA decreases the fibrotic effect of TGF-β1 [139]. Furthermore, recent studies
in a mouse model demonstrated that autophagy exacerbates the eosinophilic inflammation
linked to a T2-high endotype [140].

In asthma and other inflammatory diseases characterized by high inter-individual vari-
ability, autophagy is evaluated on a case-by-case basis. Autophagy plays a prevalent role in
a variety of airway remodeling processes [131]. In fact, there is a strong correlation between
autophagy activation and airway remodeling in asthma, with a higher expression of Beclin
1 and Atg5 along with reduced p62 in asthmatics compared with non-asthmatics [141].
Similarly, Atg5 is correlated with reduced lung function and airway remodeling in patients
with severe asthma [142].

Genetic mutations and single nucleotide polymorphism (SNPs) in autophagy genes
are also associated with asthma. Human asthma-associated polymorphisms in Atg5 are
correlated with reduced lung function [142] and with promotion of airway remodeling in
patients with severe asthma, as well as in childhood asthma [142,143]. Still, despite some
data indicate a link between atg5 polymorphisms and asthma severity, subsequent studies
did not detect an association of Atg5 gene polymorphisms with asthma severity [144],
suggesting the need to further clarify this pathological association. Human polymorphisms
in Atg5 and Atg7 are not linked to susceptibility to or severity of asthma, but they are
linked with neutrophilic inflammation in the sputum of asthmatic patients, suggesting
a link to non-Th2 asthma [144]. Furthermore, genetic polymorphisms in Atg5 and Atg7
genes were linked to airway remodeling and impairment in respiratory system mechanics
in individuals with pediatric and adult asthma [145–147].

Higher levels of LC3, ATG5, and autophagosome formation were observed in fibrob-
lasts and epithelial cells from lung biopsies of asthmatic patients compared to healthy
control subjects [146]. However, further studies reported higher levels of Atg5, Beclin-1,
and p-62 in the epithelial cells from lung sections of the large airways of asthma patients
than in large airway smooth muscles (ASMs) when compared with healthy controls without
the activation of autophagy [138,148].

In vitro studies showed an increase in the activation of autophagy in epithelial cell cul-
tures treated with allergens or other antigens, suggesting its potential role in a detrimental
disease progression in asthma [134,144]. Increased levels of Atg5 protein expression were
found in airway epithelial cells from patients with severe asthma and correlated well with
subepithelial fibrosis and increased levels of collagen-1 expression [147]. Other in vitro
studies showed that IL-13 stimulates goblet cell formation and mucin 5AC secretion by an
increase in LC3-II/Atg5 autophagic flux in human airway epithelial cells [149].

Mitophagy is a normal physiological process during cell life and functions as surveil-
lance system for the mitochondrial population, eliminating superfluous and/or impaired
organelles [150]. Mitochondrial dysfunction induces the production of excessive ROS and
secretion of various inflammatory cytokines and proteins, leading to the development of
asthma [151]. Mitochondrial dysfunction also affects different cell populations (including
alveolar epithelial cells (AECs), fibroblasts, and immune cells), promoting the fibrotic
process [152] by stimulating AEC-derived cytokines, leading to activation of myofibrob-
lasts [153].

The removal of damaged mitochondria is essential for the maintenance of cellular
homeostasis; in fact, removal defects induce a greater activation of inflammatory pathways
and the consequent establishment of chronic inflammation. Under physiological condi-
tions, PINK-1 translocates to the IMM where it is cleaved and subsequently degraded [154].
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Under challenged conditions, active PINK1 protein accumulates on the OMM through its
interaction with the outer mitochondrial membrane complex (TOM complex), promoting
Parkin recruitment through phosphorylation of both Parkin and ubiquitin [155]. In the
nucleus, excessive production of ROS could activate HIF-1 FOXO3, and NRF2, promot-
ing the transcription of BNIP33/NIX, LC3/BNIP3, and p62 to facilitate mitophagy [156].
Furthermore, the impairment of mitochondrial degradation by mitophagy can lead to the
accumulation of fragmented mitochondria and activation of the mitochondrial apoptosis
pathway [157]. It is well-documented that ROS are key mediators that contribute to oxida-
tive damage and chronic airway inflammation in allergies and asthma [158–161]. All these
studies suggest that the induction of ROS production in the lung might promote asthma
pathogenesis through these mechanisms and through mitochondrial damage. However,
there are limited studies that involved the description of the mechanism of mitophagy
in asthma. Further extensive studies are needed to explore the underlying mechanism
in terms of the mitochondrial dynamics and mitophagy regulation involved in asthma
(Figure 4).
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Figure 4. Dysregulated autophagy/mitophagy mechanisms in COPD and asthma. Exposure to the
environment/cigarette smoke/allergen induces the generation of ROS in airway epithelial cells. These
cells serve as “signaling molecules” that modulate the autophagic/mitophagic cycle process through
the activation of signaling molecules and pathways. Dysregulation of autophagic and mitophagic
mechanisms leads to progression of chronic inflammatory lung diseases such as COPD and asthma
and to the onset of airway inflammation, airway remodeling, apoptosis, airway hyper-responsiveness,
increased fibrosis, mucus secretion, and senescence.

8. Pharmacological Approach in Airway Diseases

The control of autophagy and mitophagy might be considered as potential therapeutic
targets to inhibit the pathogenetic mechanisms of diseases [151]. There is growing evidence
that abnormal autophagy contributes to the pathophysiology of asthma and COPD and
that pharmacological treatments might contribute to the restoration of autophagy by main-
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taining normal cell homeostasis. These benefits might help to control the disease. However,
to date, no drugs specifically targeting the autophagy control have been developed and
used. Furthermore, the role of autophagy in the pathogenesis of asthma and COPD is still
uncertain, and it may reflect different responses in different cell types in response to differ-
ent stimuli in in vitro studies, as well as in in vivo experimental models [9]. However, here,
we report the most relevant data on the effect of some drugs in the control of autophagy in
asthma and COPD.

Autophagy is reduced in several pathological conditions, and several drugs act as
activators of the related mechanisms. They may be indicated in the treatment of patients
with the phenotype of severe non-Th2 asthma or with stable COPD [162]. 3-methyladenine
(3-MA) is an inhibitor of autophagy that acts by influencing the PI3K pathway. It suppresses
the autophagosome formation in both asthma and COPD [136]. Rapamycin and metformin
are autophagy activators; both attenuate AMP-activated protein kinase (AMPK), inhibit
mTOR activation, and reduce the expression of proinflammatory mediators (IL-6 and
CXCL8) in the endothelial cells of the lungs from COPD patients. Rapamycin and met-
formin regulate mitophagy and mitochondrial biogenesis to preserve energy metabolism
in the cells [163,164]. One effect of rapamycin is to increase autophagy by reducing cell
senescence, improving mitochondrial function [116].

The major risk factor for COPD is cigarette smoke. Some data obtained from in vitro
and in vivo studies (COPD patients) showed that cigarette smoke affects the reduction
in expression of the serine/threonine protein kinase mTORC1 in airway epithelial cells.
Inhibition of mTORC1 not only activates autophagy but also inhibits the development
of cellular senescence, improves mitochondrial function, and reduces protein synthesis
and cell proliferation [165] and migration along with aberrant metabolic pathways [166].
However, there are no reports regarding a pharmacological approach using mTORC1
inhibitors in clinical studies of patients with lung diseases [167].

Carbamazepine is an anticonvulsant involved in the activation of the mechanisms
of autophagy through the inhibition of PI3K signaling [168]. It inhibits the accumulation
of aggresomes (insoluble clusters of ubiquitinated proteins that are formed as a cellular
response mechanism to decreased proteasomal activity) in the lungs of mice exposed to
cigarette smoke, preventing emphysema development [102]. However, there are no reports
of the application of carbamazepine in the treatment of COPD in clinical studies.

Chloroquine and hydroxychloroquine inhibit autophagy by blocking lysosomal func-
tion. However, these drugs are nonspecific since they have numerous pharmacological
activities. Therefore, their use as pharmacological approach in the lung is not appropri-
ate [164]. A peptide derived from a region of beclin1 is named Tat-beclin1. It is a potent
inducer of autophagy; it stimulates cell death and decreases protein aggregates in vitro.
The potential therapeutic effect of the Tat-beclin1 peptide has been explored as a candidate
therapeutic to induce autophagy in COPD patients [7]. The increased circulating Beclin1
levels accelerated aging markers in COPD [169]. These data suggest that Tat-beclin1 might
be useful in controlling the complex mechanisms linking defective autophagy and cellular
senescence in the progressive pathogenesis of COPD. Other potential regulators of the
autophagy pathway could be 3, 4, 5-trihydroxyhexanostyrene (resveratrol) and oleuropein,
two natural polyphenolic compounds found in grapes and olive oil, respectively. They
are natural antioxidants that reduce CS-induced OS. In fact, they might have potent anti-
inflammatory and antioxidant functions, and might inhibit autophagic dysfunction to
improve the prognosis of COPD patients [19,170–172]. The treatment of epithelial cells
with Quercetogetin has been proven to inhibit CSE-induced mitophagy and cell death
by reducing the phospho-DRP-1 levels, thus suppressing apoptosis [173]. Furthermore,
Puerarin promotes the inhibition of FUNDC1-mediated mitophagy through the activation
of the PI3K/AKT/mTOR signaling pathway and reducing CSE-induced apoptosis in hu-
man epithelial cells [174]. Lastly, the phosphodiesterase 4 inhibitor Roflumilast has been
found to protect epithelial cells from CS-induced mitophagy-dependent cell death [175].
Drugs currently used in the treatment of asthma such as dexamethasone, montelukast,
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and anti-IL-5 and anti-IgE antibodies are involved in the inhibition of autophagy [136].
However, since these drugs are not specific for autophagy treatment, they can play a dual
role in the modulation of autophagy.

It was observed that statins can have a beneficial effect in patients with asthma, improv-
ing the symptoms and inflammation in asthma control [176]. However, the mechanisms of
statin action are not clear. For examples, atorvastatin is a statin that showed the capacity
to induce or inhibit excess autophagy [177]. It was observed that statins have a benefi-
cial effect in non-Th2 smoking asthmatic patients [178], although it is not clear whether
this benefit is mediated through increased autophagy. Furthermore, statins enhance the
anti-inflammatory capacity of inhaled corticosteroids in asthmatic patients through ef-
fects on the mechanisms of autophagy [179]. Finally, statins can have beneficial effects by
attenuating the neutrophilic inflammation in patients with COPD [180] (Table 1).

Table 1. Potential autophagy-related pharmacological treatments.

DRUG Autophagy Target

3-methyladenine (3-MA) PI3K inhibition
Rapamicyn mTORC1 inhibition
Metformin mTORC1 inhibition

Carbamazepine PI3K inhibition
Chloroquine and hydroxychloroquine inhibitor of toll-like receptors

Hydroxychloroquine inhibitor of toll-like receptors
Tat-beclin1 PI3K CIII complex
Resveratrol AMPK activation
Oleuropein AMPK activation

Quercetogetin phospho-DRP-1 inhibition
Puerarin FUNDC1 inhibition

Statin Not clear

Activators (such as the mTOR inhibitor rapamycin) and inhibitors (chloroquine/
hydroxychloroquine) of autophagy have been evaluated in the treatment of cancer [181,182].
However, few compounds have been considered to control the processes of autophagy in
clinical applications. New therapeutic approach for lung disease treatment might include
combinations of antioxidants or autophagy inhibitors/activators.

9. Conclusions and Perspectives

Globally, chronic inflammatory lung diseases are steadily increasing in adults and
children and are among the leading causes of mortality. Autophagy represents an evolu-
tionary mechanism involved in homeostasis, and mitochondria are the most intricate and
dynamically responsive sensing systems of the cell. Specific signatures and mechanisms of
autophagy/mitochondrial dysfunction are associated with lung disorder pathophysiology
and clinical phenotypes that are becoming increasingly important.

Recent studies have demonstrated that restoring the normal physiological values
related to autophagy can lead to a benefit in the progression of respiratory diseases such
as COPD and asthma. However, this great potential does not yet exist as drugs that are
specific for the modulation of autophagy despite regulating its mechanisms. Indeed, drugs
such as rapamycin, dexamethasone, statins, and others are used to treat COPD and asthma,
but they were not developed for the purpose of treating autophagic dysfunction.

This review aims to bring together the knowledge obtained to date to have a brief
but effective glimpse of what we know and how we can use it to find new effective
therapeutic targets.
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