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Abstract: Computational prediction of cell-cell interactions (CCIs) is becoming increasingly important
for understanding disease development and progression. We present a benchmark study of available
CCI prediction tools based on single-cell RNA sequencing (scRNA-seq) data. By comparing prediction
outputs with a manually curated gold standard for idiopathic pulmonary fibrosis (IPF), we evaluated
prediction performance and processing time of several CCI prediction tools, including CCInx, CellChat,
CellPhoneDB, iTALK, NATMI, scMLnet, SingleCellSignalR, and an ensemble of tools. According to
our results, CellPhoneDB and NATMI are the best performer CCI prediction tools, among the ones
analyzed, when we define a CCI as a source-target-ligand-receptor tetrad. In addition, we recommend
specific tools according to different types of research projects and discuss the possible future paths in
the field.

Keywords: cell-cell interactions (CCIs); single-cell RNA-seq (scRNA-seq); idiopathic pulmonary
fibrosis (IPF); CellPhoneDB; NATMI; scMLnet; CellChat; iTALK; SingleCellSignalR; LIANA

1. Introduction

Cell-cell interactions (CCIs) refer to biochemical or physical interactions between cells,
which play a significant role in the function, development, and homeostasis of multicellular
organisms. They include both structural interactions (such as cell adhesion processes and
cell-extracellular matrix interactions) and cell-cell communication processes. In cell-cell
communication, a ligand secreted by one cell (for example, growth factors, chemokines
and cytokines) binds a receptor molecule of another cell and triggers signaling cascades
able to alter gene expression [1]. Cell-cell communication can occur through different
mechanisms, including autocrine, paracrine, juxtacrine, and endocrine signaling. Autocrine
signaling refers to the case where a cell secretes a ligand that binds to a receptor on its
own surface. In paracrine signaling, a “source cell” secretes a ligand that reaches a nearby
“target cell” and binds to one of its receptors. Juxtacrine signaling refers to cell interactions
where cells physically interact through the formation of cell junctions that allow them
to share molecules, ions, and electrical signals. Endocrine signaling involves molecules
such as hormones that are shared between different organs through the bloodstream. The
study of CCIs has proven important in understanding biological mechanisms such as
cell differentiation and development [2], tissue and organ homeostasis [3], and multiple
areas of disease research, such as immune interactions in the response to disease [4] or the
effects of aging, infection, and injuries on multicellular organization [1]. Our own studies
have found that neovascularization induced by PDGF-D overexpression in mouse retinal
pigment epithelial cells is linked to an increase in CCIs, which may have implications for
the treatment of neovascular disease [5].

Traditionally, the study of CCIs was limited to in vitro experiments that contained
one or two cell types and a few selected genes [6]. The advent of single-cell RNA sequenc-
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ing (scRNA-seq) [7,8] has opened up the possibility of inferring cell-cell communication
through the coordinated expression of all ligand-receptor pairs between single cells. The
current state-of-the-art methods for CCI prediction make use of scRNA-seq data and ligand-
receptor (L-R) databases, where scRNA-seq data provides gene expression of each cell as an
indirect measure of their protein expression, whereas L-R databases give information about
potential L-R interactions. Thus, CCIs can be found by measuring the expression level of
ligands from source cells and receptors from target cells (Figure 1). Multiple tools for CCI
prediction have been published, using different L-R databases, computational methods to
estimate expression coordination, and tools for analysis and visualization. Some of these
tools, such as CellPhoneDB and CellChat, have already been applied in diverse biomedical
studies [5,9,10].
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performed a comparison of 15 CCI prediction tools [12]. In the absence of a gold standard, 
the authors compared the CCI predictions to spatial transcriptomics data. Dimitrov et al. 
built the LIgand-receptor ANalysis frAmework (LIANA), a resource that evaluates 
scRNA-seq data through five prediction tools, two additional prediction methods, and 
their ensemble, as well as a compendium of 16 different L-R databases. They compared 
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their report focused on the overlap between the highest ranked predictions (which is low), 
robustness to noise (adequate), and enrichment of CCIs among spatially adjacent cell 

Figure 1. General workflow of cell-cell interaction prediction using single-cell RNA-seq data.
(a,c) Samples are analyzed by scRNA-seq to obtain gene expression of each cell, and then cells
are clustered as different cell types by using cell markers. (b,d) Curated ligand-receptor databases are
created by collecting ligand-receptor information from the literature and already published databases.
(e) Cell-cell interactions (CCIs) are predicted by using some scoring functions and thresholds based
on the gene expression matrix and cell type annotation. Eventually, CCIs among cell types can be
visualized by network, heatmap, or Circos plots, among other visualization tools.

Given the increase on the number of CCI prediction tools, it is important to quantita-
tively assess their performance, speed, and usability, among other features [11]. Liu et al.
performed a comparison of 15 CCI prediction tools [12]. In the absence of a gold standard,
the authors compared the CCI predictions to spatial transcriptomics data. Dimitrov et al.
built the LIgand-receptor ANalysis frAmework (LIANA), a resource that evaluates scRNA-
seq data through five prediction tools, two additional prediction methods, and their ensem-
ble, as well as a compendium of 16 different L-R databases. They compared all possible
method-database combinations but also lacked a gold standard and, therefore, their report
focused on the overlap between the highest ranked predictions (which is low), robustness
to noise (adequate), and enrichment of CCIs among spatially adjacent cell types (present
for some datasets only) [13]. Shan et al. created a gold standard of 728 pairs of CCIs [14]
and performed a benchmark comparison of the tools from LIANA. However, their study
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was limited to predictions of “source cell-target cell” interactions, and it did not consider
the “source cell-target cell-ligand-receptor” model. Therefore, there is still no compre-
hensive benchmark study of CCI prediction tools using a curated gold standard made of
high-quality experimental CCIs. Such a gold standard-based benchmark could offer better
recommendations regarding methods and tools [6].

We have performed such a benchmark study of available CCI prediction tools on
idiopathic pulmonary fibrosis (IPF) scRNA-seq data. We compared the output of each tool
under evaluation to a gold standard of manually curated CCIs, which was especially de-
signed for IPF as well. Then, we evaluated their prediction performance and computational
time. Our goal is to go one step beyond previous method comparison efforts in the follow-
ing ways: (i) generating a manually-curated gold standard for one specific disease (IPF);
(ii) going beyond the “source-target” model to the “source-target-ligand-receptor” model;
and (iii) building open jupyter notebooks to facilitate usage of each tool and a workflow
to easily replicate our performance study. Therefore, we have created a benchmark study
that is transparent and reproducible, as well as easy to improve by adding future methods,
tools, databases, or scRNA-seq datasets from a completely different disease or biological
system. This way, we consider that our work is an improvement over previous efforts in
order to find the best tools for CCI prediction.

2. Materials and Methods
2.1. Tool Selection

We collected tools from the literature containing the keywords ‘cell-cell interaction/cell-
cell communication’ and ‘single-cell RNA sequencing’. Some tools were excluded from our
benchmark based on the following criteria: (1) not freely available; (2) no code available;
(3) required datasets of two cases (disease/control); (4) required more than expression
matrix and cell annotation; for example, genes of interest or spatial data; (5) no detailed
source-target or ligand-receptor output; and (6) could not be installed or run success-
fully (including unresolved errors). We evaluated 16 published tools and 9 of them were
excluded (all tools and reasons for exclusion can be found in Supplementary Table S1).
Therefore, seven prediction tools were qualified for our benchmark (Table 1).

Table 1. CCI prediction tools in our study.

Tool Language Method Database Output Reference

CellChat
(v.1.1.3) R

CCI probabilities are
calculated using
the law of mass action, based
on average expression of
ligands/
receptors by cell groups
and cofactors

Curated ligand/receptor
database
including subunits
and cofactors

CellChat object
containing all the
inferred CCIs
with their
probabilities

Jin et al. [15]

iTALK
(v.0.1.0) R

CCIs are identified by
differentially expressed
ligands/receptors
between clusters

Manually curated
ligand/receptor database

All CCIs with
their mean
ligand/receptor
expression

Wang et al. [16]

SingleCell
SignalR
(v.1.8.0)

R

LRscore, a regularized score,
is utilized to assess the
confidence in predicted
ligand-receptor interactions
by controlling
false positives

Curated ligand/receptor
database with existing
sources and manual additions

All CCIs with
their regularized
LRscore

Cabello-Aguilar et al. [17]
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Table 1. Cont.

Tool Language Method Database Output Reference

CCInx
(v.0.5.1) R

CCIs are predicted using
ligand/receptor expression
magnitude to rank nodes

Bader Lab’s ligand/
receptor database

Node and edge
list of all CCIs

https://github.com/
BaderLab/CCInx
(accessed on
19 November, 2021)

scMLnet
(v.0.1.0) R Fisher’s exact

test and correlation

Curated ligand/receptor/TF/
target database with prior
studies and databases

Ligand-receptor,
receptor-TF and
TF-target
interactions

Cheng et al. [18]

CellPhoneDB
(v.2.0.0) Python

CCIs are enriched by
empirical shuffling and
statistical test

Curated ligand/receptor
database (including complex
information) with prior
studies and databases

Table with
information of
ligand-receptor
pairs by cell
pairs, and their
p-value

Efremova et al. [19]

NATMI Python

Edge weights of CCIs are
calculated by normalized
expression level of
ligands/receptors

connectomeDB2020 (a
database of manually curated
ligand-receptor pairs with
literature support)

Table of
ligand-receptor
pairs, their
expression level
and edge weights

Hou et al. [20]

The final set of tools includes tools belonging to all categories in the classification built
by Armingol et al. [1]: There are “Differential combination-based tools”, which find the
genes that are differentially expressed between cell clusters to then determine CCIs, such
as “iTALK”. “Network-based tools”, which build networks and use network properties
such as centrality, such as “NATMI”. And “Expression permutation-based tools”, which
compute an interaction score for each L-R pair and then evaluate the interaction significance
using permutation strategies. Interaction scoring methods include: identifying L-R pairs
whose expression is higher than a threshold, computing the product of L-R expression
levels (CellPhoneDB, SingleCellSignalR), using a Hill-function-based mass action model
(CellChat), or computing correlation of expression of ligands and receptors across multiple
samples [6]. Most tools include different types of visualizations including: Sankey diagrams,
heatmaps, dot plots, Circos plots, bipartite networks, alluvial plots, and others. A summary
of each tool’s visualization capabilities can be found at Supplementary Table S2. Some of
the tools, such as CellPhoneDB, CellChat, and SingleCellSignalR, generate p-values. All
tools in our benchmark predict CCI between cell clusters (SoptSC, a method not included
here, works with individual cells). Most methods use pairwise interactions, except for
CellChat, which accepts interaction mediator proteins, and CellPhoneDB, which accepts
protein complex data. Such methods verify that all complex subunits are simultaneously
expressed. Another tool not present in our benchmark, scTensor, reportedly predicts higher-
order interactions involving more than two cell clusters, while one of our benchmark tools,
scMLnet, includes intracellular interactions in target cells.

We have written open and reproducible jupyter notebooks with tutorials for all the
available tools, which can be downloaded from our website (https://github.com/mora-
lab/cell-cell-interactions/tree/main/interaction-prediction-tools, accessed on 19 November
2021). In addition, we have also included an ensemble of multiple methods through a tool
called LIANA [13]. LIANA allows us to run SingleCellSignalR, CellPhoneDB, CellChat,
Connectome, iTALK, and NATMI, together with any of the databases used by each of the
tools, and compute a combined ranking. Here we used LIANA v.0.1.12 with default settings,
which includes an ensemble of five methods (Connectome, NATMI, CellPhoneDB, Single-
CellSignalR, and iTALK) plus an ensemble of five databases (CellPhoneDB, CellChatDB,
ICELLNET, connectomeDB2020, and CellTalkDB) [13]. Such an ensemble became the eighth
evaluated tool of our study.

https://github.com/BaderLab/CCInx
https://github.com/BaderLab/CCInx
https://github.com/mora-lab/cell-cell-interactions/tree/main/interaction-prediction-tools
https://github.com/mora-lab/cell-cell-interactions/tree/main/interaction-prediction-tools
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2.2. Gold Standard

Several authors have pointed out the difficulty in generating gold standards for CCIs
and the necessity to appeal to more indirect validation methods [13,14]. Our approach has
been to generate a gold standard (i.e., a list of source-target and ligand-receptor interactions)
for one specific disease. Such a disease-specific gold standard can be regarded as the
biological ground truth when compared to predicted CCIs from tools that have received
scRNA-seq data for the same disease as an input [21]. We have chosen idiopathic pulmonary
fibrosis (IPF) as our common phenotype for both the gold standard and the input scRNA-
seq. IPF is a chronic and progressive lung disease caused by fibroblast proliferation and
extracellular matrix remodeling. Although the pathogenesis of IPF is still not completely
understood, some experiments have revealed that chemokines such as Transforming growth
factor beta 1 (TGFβ1), platelet-derived growth factor (PDGF), vascular endothelial growth
factor (VEGF), and fibroblast growth factor (FGF) contribute to IPF through CCIs among
epithelial cells, fibroblasts, macrophages, and T cells [22].

We have created an IPF-specific manually curated gold standard based on the liter-
ature of pathogenesis of IPF, including source-target and up-regulated ligand-receptor
information. In total, we collected 250 CCI pairs among eight cell types (alveolar type
1 cell, alveolar type 2 cell, macrophage, fibroblast, endothelial cell, mast cell, mono-
cyte, and T cell). The gold standard can be found on our website (https://github.com/
mora-lab/cell-cell-interactions/blob/main/benchmark-workflow/data/, accessed on 19
November 2021). Cell type ontology identifiers were collected from the Cell Ontology
(https://www.ebi.ac.uk/ols/ontologies/cl, accessed on 16 March 2022).

To evaluate our strategy, we compared the number of experimentally-supported
disease-related CCIs in our dataset to that in CITEdb. CITEdb includes information on
87 diseases, ranging from 1 to 23 interactions per disease, including zero for IPF, as shown
in Supplementary Table S3. In opposition, our gold standard has 250 interactions (source-
target-ligand-receptor model) or 49 interactions (source-target model) for IPF only. There-
fore, we suggest that our “targeted” approach might be better for benchmarking purposes.

2.3. scRNA-seq Data Pre-Processing

We searched for scRNA-seq datasets of IPF at the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/, accessed on 16 March 2022). Such datasets were required to
have both the expression matrix and cell type annotation (if not, their articles should provide
information of cell type markers). We found four datasets (GSE122960 [23], GSE128033 [24],
GSE135893 [25], and GSE136831 [26]) with 56 IPF samples in total (Supplementary Table S4).
We downloaded processed data from datasets GSE135893 and GSE136831 as they provided
Seurat objects that already had meta-data of cell types. Datasets GSE122960 and GSE128033
only provided the raw expression matrix, so we downloaded and processed the expression
matrix following the standard Seurat procedure [27], i.e., normalize, integrate and scale
data, run PCA analysis, find neighbors and clusters, and annotate cell type with marker
information from their paper. We only kept cell types that exist in the gold standard.
Finally, all datasets were divided into subsets by their sample metadata. For convenience,
all datasets were stored as Seurat objects, with metadata cell.type as active.ident to fit
all R prediction tools. Such Seurat objects were transformed into matrix and metadata
files for the Python tools CellPhoneDB and NATMI. The code corresponding to this data
pre-processing workflow can be found at our website (https://github.com/mora-lab/cell-
cell-interactions/blob/main/benchmark-workflow/R, accessed on 19 November 2021).

2.4. Benchmark Workflow
2.4.1. Run CCI Prediction Using All Tools, and Collect Prediction Results and Computation
Time Information

We ran all tools, for each sample, using their default parameters. Regarding thresh-
olds, CellChat, scMLnet, and CellPhoneDB were set to choose interactions with prediction
p-value < 0.05; SingleCellSignalR includes an index called LRscore, which identifies inter-

https://github.com/mora-lab/cell-cell-interactions/blob/main/benchmark-workflow/data/
https://github.com/mora-lab/cell-cell-interactions/blob/main/benchmark-workflow/data/
https://www.ebi.ac.uk/ols/ontologies/cl
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/mora-lab/cell-cell-interactions/blob/main/benchmark-workflow/R
https://github.com/mora-lab/cell-cell-interactions/blob/main/benchmark-workflow/R
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actions when the score is larger than 0.5; NATMI identifies interactions when detection
rates of ligands and receptors are higher than 0.02. Since iTALK and CCInx list all possible
interactions with no specific threshold recommended, we chose a number of interactions
equal to the maximum amount of predicted interaction pairs among sample outputs from
the other five tools. We applied the same rule of thumb to the ranked results from LIANA.

The total number of cells in our study is 138,248. Therefore, that was the maximum
number of cells tested during our computations of processing time. The processing time
for R tools was calculated using the function proc.time(), while Python tools used the bash
command time (only prediction processes were counted). At the same time, cell counts of
each dataset were extracted to generate a plot of processing time vs. cell count. Note that
not all data could successfully be predicted by all tools. Unresolved error outputs were
ignored whereas outputs with 0 predicted interactions were regarded as the sample data
not having any significant interaction. To distinguish between the two cases during time
processing computations, we wrote functions that produce NA as processing time result
for “error outputs”, while extracting the real processing time for “0 interaction outputs”.

2.4.2. Convert Different Outputs to a Unified Format

After prediction, all interaction outputs from both R and Python tools were trans-
formed into the format ‘source-target-ligand-receptor’, except for CellPhoneDB, whose
outputs do not provide specific role information of protein A and B. Therefore, interac-
tions predicted by CellPhoneDB were considered as ‘source-target-ligand-receptor’ or
‘target-source-receptor-ligand’ in the following steps. The output of scMLnet consists of
ligand-receptor, receptor-TF, and TF-target gene information, but we only kept ligand-
receptor pairs for later analysis. Since the databases of CellChat and CellPhoneDB include
not only single proteins but also complex information, we separated all pairs from the
output that include a complex into pairs of single proteins. For example, the TGFB1-TGFBR
complex was divided into TGFB1-TGFBR1 and TGFB1-TGFBR2.

2.4.3. Build Set of All Possible Interaction Pairs

For statistical purposes, we created a set of “all possible pairs”, defined as all possible
source-target-ligand-receptor combinations derived from all cells and proteins from the
gold standard. To that set, we added the set of all source-target-ligand-receptor interactions
from prediction outputs of all tools and removed all duplicated pairs.

2.4.4. Calculate True and False Positives, and True and False Negatives

Prediction outputs for each sample were compared with the gold standard and the
set of all possible pairs. We computed the following metrics: True positives (TP), which
are interactions that appear in both the prediction and the gold standard; false positives
(FP), which are interactions that appear in the predictions but are not present in the gold
standard; true negatives (TN), which are interactions that appear in the “all possible” set
but do not appear in the predictions or gold standard; and false negatives (FN), which
mean interactions that appear in the gold standard but are not present in the predictions.
It is important to note that our TN data is, essentially, a subset of CCIs among our set
of cells, ligands and receptors that: (i) has never been reported in the literature, (ii) has
been reported in contexts different to IPF, or (iii) might be reported but were missed by
us during the construction of the gold standard. There are other approaches to define
negative data, such as negative interactions generated from sequence-based computational
methods [28] or from high-throughput protein-protein interaction methodologies such
as Y2H [29]. Both of them could be used to extract sets of non-interacting ligands and
receptors; however, none of them is specific to the cell-cell interaction pairs under our
analysis. For CellPhoneDB, both cellA-cellB-protA-protB and cellB-cellA-protB-protA pairs
were compared with the gold standard.
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2.4.5. Compute Performance Metrics

We studied five different metrics: Precision, Sensitivity, Specificity, F1-score, and MCC.
Precision determines what percentage of our predictions were in the gold standard and it
is useful when we need to control the false positives. It was calculated by:

Precision =
TP

(TP + FP)
(1)

Sensitivity determines what percentage of the gold standard we predicted and it is
useful when we need to control the false negatives. It was calculated by:

Sensitivity =
TP

(TP + FN)
(2)

Specificity determines what percentage of the false interactions (TN + FP) was correctly
not predicted to exist (TN). It was calculated by:

Speci f icity =
TN

(TN + FP)
(3)

The F1-score is the harmonic mean of precision and sensitivity, and illustrates the
quality of positive CCI detection. F1-score was calculated by:

F1 =
2TP

(2TP + FP + FN)
(4)

Matthews correlation coefficient (MCC) considers both positive and negative CCIs.
MCC was calculated by:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

In addition, we plotted Precision-Recall (PR) curves. A PR curve is a plot of the
precision versus the sensitivity (also called recall) for different thresholds of a given tool.
Usually, there is a trade-off between precision and recall; therefore, the best performing
tool is the one with the largest area under the curve (AUC).

2.4.6. Hardware and Software

The benchmark workflow ran under an Oracle’s VirtualBox virtual machine (VM). The
hardware included an Intel Xeon(R) Bronze 3104 CPU @ 1.70 GHz × 4 with 64 GB RAM,
while the OS was Ubuntu 20.04.5 LTS 64-bit. All the scRNA-seq datasets, the gold standard,
the seven tools, and the additional R functions, were installed in the VM where the study
was performed. The whole workflow was written and ran in a jupyter notebook that
displays both the code and the results. The notebook can be found in our website (https:
//github.com/mora-lab/cell-cell-interactions/tree/main/benchmark-workflow, accessed
on 19 November 2021).

A summary of the workflow can be seen in Figure 2.

https://github.com/mora-lab/cell-cell-interactions/tree/main/benchmark-workflow
https://github.com/mora-lab/cell-cell-interactions/tree/main/benchmark-workflow


Biomolecules 2023, 13, 1211 8 of 18
Biomolecules 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 
Figure 2. General workflow of our benchmark. CCI analyses were run for each scRNA-seq dataset 
with all seven tools plus LIANA to create prediction outputs following the “source-target-ligand-
receptor” format. All outputs were combined with all possible L-R pairs in the gold standard to 
create a set of “all possible” pairs. Finally, each prediction output was compared with the gold 
standard as well as the “all possible” set to calculate TP, FP, TN and FN, which are needed to com-
pute precision, sensitivity, specificity, F1-score, and MCC. 

Figure 2. General workflow of our benchmark. CCI analyses were run for each scRNA-seq dataset
with all seven tools plus LIANA to create prediction outputs following the “source-target-ligand-
receptor” format. All outputs were combined with all possible L-R pairs in the gold standard to create
a set of “all possible” pairs. Finally, each prediction output was compared with the gold standard as
well as the “all possible” set to calculate TP, FP, TN and FN, which are needed to compute precision,
sensitivity, specificity, F1-score, and MCC.

3. Results
3.1. General Setup

We evaluated every tool’s performance following two different CCI representation
models. (i) The STLR model, which means including the source, target, ligand, and receptor
for each CCI. Both our gold standard and the software predictions were converted to the
STLR model. (ii) The ST model: The ST (source-target) model modifies the STLR tables
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by counting all the L-R interactions for each cell pair, leaving only cell-cell information.
The ST model has been used in a previous benchmark attempt whereas, to our knowledge,
the STLR model has not been used. The tool benchmark results for the STLR and the ST
models appear in Figures 3 and 4, respectively.
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(d) F1-score and MCC for all CCI prediction tools.
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3.2. Predicted Interaction Counts

In total, we collected 56 scRNA-seq datasets from IPF patients and 250 CCI pairs from
eight cell types in our literature-based manually-curated IPF gold standard. Figure 3a
compares the amount of CCIs predicted by the seven tools and LIANA-ensemble from
the same input data. During CCI prediction, undetermined errors occurred in 16 samples
running CCInx, which were excluded from this part of the analysis. Under the STLR
model, scMLnet predicts the smallest number of interactions, although we found that
errors happened when sender and receiver cells were the same (autocrine prediction). On
the other hand, iTALK, LIANA, and NATMI showed the largest number of predictions.
When those predictions are collapsed into the ST model, there is a total of 64 possible
CCIs only (given that our gold standard includes eight cell types). We observe that most
tools predict all 64 possible interactions in multiple samples, while our gold standard only
contains 49 CCIs under this model.

3.3. Processing Time

As the technology of scRNA-seq develops, the amount and size of scRNA-seq data are
rapidly increasing. Therefore, the speed of a tool needs to be taken into account. We mea-
sured the computation time of all seven tools and LIANA-ensemble for different amounts
of cells. Figure 3b shows how the speed of the tools varies with cell counts. Reasons for the
massive discrepancies between tools might include the differences of methods, algorithms,
or prediction depth. SingleCellSignalR, iTALK and CCInx were the fastest prediction tools
in our benchmark, followed by CellChat, whereas CellPhoneDB and scMLnet used con-
siderably more time. Regarding scMLnet’s low speed, the fundamental reason is that the
tool follows four steps: ligand-receptor prediction, receptor-transcription factor prediction,
transcription factor-target gene prediction, and multilayer network construction, which
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makes it slower than all other tools. We can also see that LIANA’s ensemble is faster than
some individual methods, which could have been due to LIANA being a more efficient
implementation of some of those methods, or to the fact that LIANA is using older versions
of their L-R databases.

3.4. Evaluation of Prediction Performance

Under the ST model (source-target prediction only), scMLnet showed the best precision
and specificity, but also the worst sensitivity. In contrast, CCInx, CellChat, CellPhoneDB,
iTALK, and NATMI, all showed a good precision, with very high sensitivity and very low
specificity. Therefore, according to the F1-score, the above-mentioned five tools showed
the top performance (Figure 4a). In addition, we show that the PR curve for CellPhoneDB
(sample 022I from GSE136831) produces an AUC = 0.83, which can be interpreted as a good
predictor across threshold values (Figure 4b). Under the STLR model (source-target-ligand-
receptor prediction), CellPhoneDB, scMLnet, and NATMI performed better regarding
precision, while NATMI, iTALK, LIANA, and CellPhoneDB showed higher sensitivity.
For specificity, which is related to true negatives, scMLnet, CellChat and CellPhoneDB
achieved higher scores than other tools. It is important to highlight that precision was
low for all tools under this model, whereas all tools showed high specificity (Figure 3c).
Figure 3d shows that CellPhoneDB, NATMI and scMLnet have the best F1-scores, while
CellPhoneDB, NATMI and iTALK performed better regarding MCC.

The difference in results between source-target prediction and source-target-ligand-
receptor prediction deserves further analysis. Under the ST model, as stated before, the tools
predict all possible CCIs, not only the true ones, and the number of all possible interactions
is close to the number of true ones, rewarding over-prediction and allowing high values
of the performance metrics. In addition, we observe that some of those source-target
interactions do not include the correct L-R pairs, thus changing FPs into TPs. Therefore, the
entire approach could be misleading. On the other hand, under the STLR model, which is a
more accurate representation of a CCI, our gold standard contains 250 true CCIs, leading
to more than 100,000 possible CCIs (see Section 2). Also, the tools usually predict a few
thousand significant interactions, which is much more than the interactions in our gold
standard. As a result, the STLR model presents a high imbalance, with FP >>> TP and
total-negatives >>> total-positives. Such an imbalance is responsible for its low values
in precision and sensitivity. There are strategies to address the imbalance, which we will
discuss later (Figure 3 shows the tool performance values before any technique to address
the imbalance is applied). Despite the problems explained, Figure 3 still allows us to
identify performance differences between the tools. In summary, we found that, under our
settings, predicting all possible ST combinations is enough to obtain excellent metrics under
the ST model. We expect that, the more complete the gold standard and the more targeted
the study (focused on a specific tissue or location), the more probable is that predicting all
cells interacting to each other will give good performance results. Under these conditions,
the ST prediction problem becomes trivial, whereas the STLR prediction problem remains
a complex one. From this point on, we focus on the STLR model.

3.5. Validation of Predictions

In order to verify the ability of the tools to generate new knowledge, we collected the
most frequently predicted CCIs among samples by both scMLnet and NATMI under the
STLR model (Supplementary Tables S5 and S6). scMLnet predictions were enriched on CCIs
related to lung injury. We focused on the “Endothelial-Macrophage-IGF2-IGF2R” interac-
tion, as IGF2 has been reported to affect the inflammatory phenotype of macrophages [30]
and it is increasingly expressed in fibrosis diseases [31], which makes this prediction likely
to be true. Additional experiments should be performed to validate such interactions be-
tween endothelial and macrophage cells in the IPF lung. Regarding NATMI, several of the
top CCIs were related to angiogenesis. We focused on the “Endothelial-Mast-IL33-IL1RL1”
interaction, as IL33 activation by mast cells plays a significant role in airway inflammation,
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especially asthma [32]; therefore, we can raise the question of whether IL33 takes part in
the pathogenesis of IPF as well. None of the two CCIs mentioned above were found in our
literature review (and, therefore, in our gold standard), which indicates the possibility of
finding new potential mechanisms using CCI prediction tools.

4. Discussion
4.1. Tool Recommendations

Different tools could be recommended depending on the user’s goals. When there is a
need to control for false positives (e.g, a research focused on a limited number of targets),
we prefer tools with high precision and specificity, such as CellPhoneDB and scMLnet.
When there is a need to control for false negatives (e.g., a research that is trying to explore
all possibilities no matter if some of them are less reliable than others), we prefer tools
with high sensitivity, such as NATMI and CellPhoneDB (Figure 3c). If time is an important
constraint, CellChat is the fastest tool with high specificity, whereas iTALK is the fastest tool
with high sensitivity (Figure 3b). Finally, if we just want an all-round good performance,
CellPhoneDB and NATMI are the best tools according to F1-score and MCC (Figure 3d).
Interestingly, the ensemble of the tools does not represent an improvement over the best
performing tools. Even using a comprehensive reference database, the effect of the poor
performer methods seems to affect the quality of the ensemble.

In addition to technical features, we have also observed that we should consider other
characteristics for tool selection such as: user friendliness, visualization capabilities, and
additional analyses. Compared to some R tools, which need coding skills, Python tools like
CellPhoneDB and NATMI are easy to use through simple command lines and parameters.
Tools like CellChat, iTALK and CellPhoneDB provide various methods for visualization
such as chord plots, networks, and bubble plots, which are useful for interpretation of
complex CCIs. Finally, in addition to L-R interaction prediction, tools such as CellChat and
scMLnet provide complementary information. CellChat can perform further communica-
tion analysis such as identification of signaling roles for cells and discovering dominant
CCI patterns, while scMLnet can provide more information about receptor-transcription
factor and transcription factor-target gene interactions, giving us a multilayer network of
cell-cell interactions. All in all, tool selection depends not only on performance but also on
project design, intended depth of exploration, coding ability, and hardware configuration,
among others.

4.2. Comparing Our Study to Other Benchmarks

Our approach differs from other benchmarks attempts such as Dimitrov et al. [13]
and Shan et al. [14]. Dimitrov et al. [13] compared 16 databases and seven methods plus
the consensus among the methods. They built LIANA, which is an open interface to all
methods and databases that decouples each method from its database, allowing the user to
compare the combinations of all seven methods with all 16 databases. They also created
OmniPath, a database that integrates all 16 resources under study plus a few more. Such
resources combine experimental and computational interactions with different degrees
of reliability. The authors explain that, due to the lack of a gold standard, they assessed
both tools and databases through indirect methods. Regarding the databases, they found
varying degrees of overlap as well as bias toward specific terms depending on the resource.
They highlight the need for larger curation efforts. Regarding the methods, they applied
each method-database pair to six transcriptomic datasets and evaluated the agreement
between methods, and the agreement with spatial adjacency, cytokine activity, and receptor
protein abundance data. The results showed a low overlap between the highest ranking
interactions among the methods but also a general agreement between prediction methods
and the other types of data. As they lacked a gold standard, they did not make any specific
method recommendations.

Shan et al. [14] created CITEdb, a database that contains 728 manually-curated human
cell-cell interactions across 204 different “physiological contexts” (organs, diseases, or
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disease phases), including metadata such as tissue, experimental approach, and biological
functions. The authors specify that the most frequent “contexts” in the database are immune
response, bone microenvironment, carcinogenesis, and breast cancer, while stating that
this could be used as a benchmark dataset to evaluate CCI prediction tools. In order
to test the quality of the dataset, they used their database in conjunction with LIANA.
Using LIANA, CITEdb, and an scRNAseq dataset from melanoma, they found that NATMI
and SingleCellSignalR were the best performers. However, the authors acknowledge that
the main limitation of the approach is that CITEdb’s benchmark ignores ligand–receptor
information and focuses on cell-cell interactions (ST model evaluation).

Similar to Shan et al., we went for the “gold standard” approach. However, we
abandoned the idea of including many contexts (which leads to mixing evidence from
dissimilar contexts and to some contexts containing very few interactions) and replace it
with an in-depth coverage of one specific disease. It is not clear how having a gold standard
built with little amounts of data for each one of 204 different systems can represent any
of those 204 systems when evaluating one specific scRNA-seq dataset. In opposition,
our gold standard contains only interactions related to our scRNA-seq dataset and that
makes the evaluation more robust. We highlight that, despite our differences, both our
benchmark and Shan et al.’s agreed on NATMI being one of the best performers, but we
disagree on SingleCellSignalR, which is a good performer under their settings but a poor
performer under ours. Similar to Dimitrov et al., we made our benchmarks available for
reproducibility but, in our case, we built multiple jupyter notebooks and a virtual machine
instance, which allows every researcher to repeat, re-use, and improve our study.

Despite our efforts, our benchmarking approach (STLR model) still presents several
limitations: First, our results show low precision of all tools, or the fact that most of the
predicted CCIs are not in the gold standard. This calls for experimental validation in order
to determine if this is a common problem of the tools or if we are discovering multiple
new CCIs that can be added to our gold standard. Second, all tools show medium-to-low
sensitivity, or the fact that most of the gold standard was not predicted. This could be
a deficiency of the tools but also a result of our methodology: samples could be highly
heterogeneous, including patients with different co-morbidities or disease stages (IPF is
roughly classified as mild, severe, early, and advanced) and, therefore, no sample will
follow all the CCIs from the gold standard. In addition, we computed processing time for
all the tools up to 138,248 cells, which is the total number of cells in this study. However,
the number of cells in published scRNA-seq datasets is becoming increasingly large. In the
future, the tools will also need to prove their efficiency in front of much larger numbers
of cells.

The gold standard can be improved regarding quality and quantity. One way of
improving the quality of our gold standard is adding disease stages and co-morbidities.
Regarding quantity, we can collect CCIs with automatic methods such as text mining
followed by manual curation. For the tools that predict CCIs between disease and control
groups, the gold standard can be improved by adding not only up-regulated but also
down-regulated CCI information. We also observe that our gold standard was built with
IPF-specific interactions from the disease mechanism literature; however, there are also
“ubiquitous” CCIs to all lungs, sick or healthy, which could also be predicted by the tools
and, therefore, should be added to the gold standard as well.

The data imbalance under the STLR model must also be addressed. Some of the ways
to address the data imbalance include generating more positives or undersampling the
negatives. More importantly, our definition of “true negatives” leads to low numbers of
CCIs under the ST model and very large numbers under the STLR model, being one of
the culprits of the imbalance. Therefore, an additional option is changing our definition of
“true negatives” to experimentally found true negatives. As discussed in “Methods”, we
have found a few available datasets of negative protein-protein interactions but we don’t
know of any existing dataset including negative source-ligand-receptor-target information.
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Finally, it is difficult to say if our results regarding best tools are limited to IPF or can
be generalized. We have worked under the assumption that our software recommendations
should be generalizable as long as we guarantee that we have a “complete” gold standard
of a disease, paired to scRNA-seq data of the same disease, instead of a gold standard made
of pieces of mechanisms that do not fully reproduce any single disease. However, it is also
possible to think that the choice of disease affects the final method recommendation. Some
diseases can have more or less interactions, higher or lower expression levels of proteins,
higher or lower levels of multi-protein interactions, and each of those patterns might be
easier to detect with different methods. This is a discussion that cannot be solved until a
comprehensive gold standard covering multiple diseases/phenotypes and cell types, with
a high coverage of each disease and a high quality of interactions, is created.

4.3. General Limitations of the Tools and Alternatives to the scRNA-seq Approach

The fact that most tools generate many FPs and few TPs can be partly blamed on the
benchmark and partly on the tools themselves. Current tools share multiple limitations
that have already been discussed in previous reviews and benchmarks, including:

(1) The fact that neither up-regulation nor expression correlation of the “communicating”
molecules necessarily imply that cells are interacting [6].

(2) Communication and structural interactions mainly occur to the protein level, but we
use sc-transcriptomics data because sc-proteomics technologies still don’t have the
same level of development. However, the assumption that RNA levels reflect protein
levels of ligands and receptors is not entirely correct. RNA and protein levels can
differ due to multiple post-transcriptional and post-translational processes [1].

(3) Protein-protein interactions are dependent on protein concentration, which is some-
thing that most current methods cannot evaluate [1].

(4) Protein abundance is not enough to infer protein-protein interaction strength. Another
aspect to consider is the existence of post-translational modifications such as glycosi-
lation. Many ligands and receptors are glycoproteins and glycosylation changes their
affinity; therefore, glycomic and other omic data could be added under a multi-omic
approach [1,6].

(5) All databases are highly incomplete and biased towards some areas of interest.
(6) New methods should consider the temporal aspect of cell-cell communication,

i.e., the change in protein levels and communication patterns over time [1,6].
(7) The previous tools do not consider that cellular communication can also be metabolite-

mediated. However, recent papers include detailed reviews of metabolite sensing
and signaling [33], single-cell mass spectrometry studies of the metabolic profiles of
cell-cell interactions [34], and tools for predicting metabolite-mediated CCIs using
scRNA-seq data (based on the expression levels of the metabolite-producing enzymes
and the metabolite sensors) [35].

(8) Communicating proteins are limited to ligands and receptors. In the future, proteins
involved in juxtacrine interactions, such as cell adhesion proteins and gap junctions,
extracellular matrix proteins, endocrine signals, and other proteins involved in cell
communication, should also be included [13].

(9) Some CCIs are not as simple as one source, one ligand, one receptor, and one target,
but they form complex communication pathways instead.

In addition, the tools follow a multiplicity of approaches and there is no unified
decision criteria and decision thresholds to predict if a CCI exists. Current tools use from
customized scores to p-values to no-threshold suggestions. Future implementations should
always include decision thresholds that the user is able to manipulate and are not hard-
coded in the software, and decision criteria should not be in the form of customized scores
with ad hoc thresholds but they should be in terms of the probability of the CCI to be true,
which would allow an easier interpretation and comparison.

Those limitations demonstrate that there is still room for improvement in the methods
used to predict cell-cell interactions.
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On top of that, recent experimental methods have appeared as alternatives to the
whole scRNA-seq approach. Such methods have been recently reviewed [36]. They include
microscopy-based imaging methods, proximity-based chemical tagging, and functional-
based exploitation. Microscopy-based methods include: Transference of GFP (or other
fluorophores) from the source cell to the target cell, as well as fluorescence protein re-
constitution reports (interaction of two complementary fluorescence protein fragments).
Chemical tagging of cell interactions include: (i) contact-dependent tagging, which are
technologies that require proximity for a tag from an enzyme on the source cell surface
to be transferred to an acceptor on the target cell. (ii) contact-independent tagging, such
as technologies where tags diffuse from a catalyst-loaded cell to the interacting cell, or
technologies using photocatalytic methods. Finally, functional exploitation methods refer
to the application of cell engineering approaches to achieve gain or loss of protein function,
such as GFP-based touching nexus (G-baToN) [37] and synNotch [38]. synNotch consists of
an engineered Notch receptor that binds to the ligand of interest, as well as a transcription
factor that activates expression of proteins such as fluorescent proteins, in response to the
ligand-receptor interaction [38]. All the previous strategies are a more direct way of identi-
fying CCIs but lack the high-throughput opportunities that scRNA-seq offers. However,
recent methods such as PIC-seq constitute an evolution of the scRNA-seq approach [39].
PIC-seq uses a mild tissue dissociation strategy to preserve some cell structures that are
destroyed by common tissue dissociation methods. Such cell aggregates, which have been
called PICs (physically interacting cells), are then sequenced using scRNA-seq [39].

5. Conclusions

Benchmark studies are aimed to compare the performance of computational meth-
ods by reference to a gold standard and in terms of well-known evaluation metrics [11].
Previous to our study, there have been a few attempts to evaluate CCI prediction tools by
comparing the overlap of predicted CCIs among them [12,15]; however, agreement is not
necessarily related to truth and, therefore, it is important to design, build, and use reference
datasets that can represent the biological ground truth. There has also been an attempt
to build a gold standard-based benchmark [14]; however, this work has two important
limitations: (i) it does not include all information regarding source, target, ligand, and
receptor data, and (ii) their gold standard is spread along multiple different phenotypes
with many of them containing very few interactions [14]. We have built a benchmark
study that improves the previous attempts and offers more reliable conclusions regarding
the performance of the current CCI prediction tools. Using scRNA-seq data of IPF and
a curated gold standard of IPF’s CCIs collected from the literature, we have been able to
evaluate the performance and speed of seven popular, functional, and comparable CCI
prediction tools plus a consensus tool, and provide an open benchmark workflow as well
as recommendations for CCI prediction tool selection.

Under our settings, all the tools perform well for source-target CCI prediction but show
limitations for source-target-ligand-receptor prediction. In general, current state-of-the-art
tools for STLR cell-cell interaction prediction work well with scRNA-seq data, showing
high specificity, and offering the chance to explore intercellular relationships among several
cell types in a tissue. However, low precision and sensitivity issues point to the need of
keep improving the gold standard and the benchmark’s design. From our benchmark,
CellPhoneDB was the tool with the best performance by F1-score and MCC. However, other
tools proved to be useful under different circumstances. For example, for an exploratory
project such as building a CCI network, which needs as many predicted CCIs as possible,
NATMI would be recommended due to its higher sensitivity. For a project looking after one
or two specific CCIs, scMLnet would be more adequate. When having a large scRNA-seq
dataset and limited computational power, tools such as iTALK might be a good choice.

However, we have found an imbalance between the massive amount of currently
available predictions and the limited amount of experimentally validated interactions
for specific “source cell–ligand–receptor-target cell” combinations. We need studies that
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experimentally validate all the predictions that are currently generated and we have
discussed in this paper some of the technologies that could be used with that purpose, such
as microscopy-based imaging, proximity-based chemical tagging, and functional-based
exploitation methods. As a consequence of such an imbalance, current CCI prediction tools
have been validated and evaluated on indirect, incomplete, or biased datasets. Therefore,
more work is expected from both the tool side and the experimental validation side.

In this paper, we have discussed the many directions in which CCI prediction tools
could be improved and, therefore, we expect that more benchmarks for new tools will be
needed in the future. For reproducibility and extensibility, all analysis and visualizations
in our study were written and run using a jupyter notebook workflow that is open and
freely available online. Relevant code and data are also provided, making it possible for
other researchers to evaluate their methods using our workflow. We also provide a virtual
machine instance with all software installed for even more convenience. We expect that
researchers who have new methods or tools for CCI prediction can download our workflow
as well as all functions and data, prepare a function following our example to predict CCI,
transform their output into a source-target-ligand-receptor format, and record the processing
time. Our code will produce the plots comparing the evaluation metrics of all the tools.
In addition, the user can also test new scRNA-seq datasets or even new gold standards
with our workflow by simply replacing the corresponding files. This way, we have built a
framework for comparing methods that still do not exist.

Cell-cell interactions are important for understanding disease development and pro-
gression, as disruptions in cell-cell interactions can lead to the development of cancer and
other disorders. In the future, knowledge of cell-cell interactions might also be useful for
predicting and manipulating cell-interaction-based phenotypes. For example, genetic and
cell engineering modifications that result in the addition or removal of communication
pathways and, consequently, the associated phenotype [1]. As a consequence, we expect
the importance and interest on cell-cell interaction prediction, as well as the need for better
prediction tools, to keep growing with time.
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