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Abstract: Manganese (Mn) exposure has evolved from acute, high-level exposure causing manganism
to low, chronic lifetime exposure. In this latter scenario, the target areas extend beyond the globus
pallidus (as seen with manganism) to the entire basal ganglia, including the substantia nigra pars
compacta. This change of exposure paradigm has prompted numerous epidemiological investigations
of the occurrence of Parkinson’s disease (PD), or parkinsonism, due to the long-term impact of Mn.
In parallel, experimental research has focused on the underlying pathogenic mechanisms of Mn and
its interactions with genetic susceptibility. In this review, we provide evidence from both types of
studies, with the aim to link the epidemiological data with the potential mechanistic interpretation.

Keywords: manganese; manganism; neurotoxicity; parkinsonism; Parkinson’s disease; gene-environment
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1. Introduction

Two decades after James Parkinson’s Essay on The Shaking Palsy was published
in 1817, John Couper published his landmark article, On the Effects of Black Oxide of
Manganese when Inhaled into the Lungs [1]. Since then, ‘manganism’ and parkinsonism
have crossed paths, creating the uncertainty regarding their differences and similarities.
Throughout the years, technological changes have increased human exposure to Mn, mirror-
ing now more closely the phenotypes of parkinsonism [2]. Today, the industrial production
and utilization of Mn have sharply increased, mainly due to the high demand for steel
required for construction in emerging economies such as China, India, and the Middle East.
The discovery of better-performance Mn-based batteries for electric vehicles is projected
to further increase the production of pure Mn and its global utilization, replacing the
more expensive cobalt-based batteries. Welding will also keep growing, with consequent
exposure of welders to much smaller Mn-containing particles. All this is reflected by the
progressive increases in metal pollution in soil [3–6] related to anthropogenic activities.
Few data are available on the presence of Mn in the ocean and aquifers [7,8] but available
data have suggested areas with high levels in drinking water. Air concentration is highly
variable, depending on the presence of industrial emissions. Car traffic does not seem to
be a source of pollution, as the Mn concentration in gasoline, mainly in the form of MMT,
seems to be negligeable.

A full international conference on Mn toxicity took place in 2016 at the Icahn Scholl
of Medicine at Mount Sinai, New York. New epidemiological, toxicological and cellular
studies reported at the conference yielded new insights into mechanisms of Mn toxicity
and opportunities for preventive intervention. Strong evidence was provided for causal
associations between Mn and both neurodevelopmental and neurodegenerative disorders.
Brain imaging data strongly substantiated the new findings at different life stages. Can-
didate biomarkers of exposure were present for hair, nails, and teeth, reflecting different
exposure windows and outcomes [9]. Sex differences have been reported in several studies,
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suggesting that women are more susceptible, due to less efficiency in managing Mn trans-
port, which is regulated by the SLC30A10 and SLC39A8 transporters, resulting in disturbed
Mn homeostasis and toxicity [9].

Whether Mn exposure is associated with Parkinson’s disease (PD) or parkinsonism,
and their differences and similarities with manganism, the clinical intoxication resulting
from acute high exposure to Mn, have been topics of debate. Globally, the ‘Parkinson’s
pandemic’ is the fastest growing neurological disease and has increased from 2.6 million in
1990 to 6.3 million in 2015. By 2040, it is projected to increase to 17.5 million not only due
to aging but also to increasing longevity and industrialization [10]. In North America, the
most updated information on PD frequency, based on multi-study and Medicare sources
indicates that it may be higher than what has previously been reported. The prevalence
rate based on data collected in 2010 among those aged ≥45 years was 572 per 100,000 (95%
confidence interval 537–614), with 680,000 patients in the US aged ≥45 years. Based on the
US Census Bureau’s population projections, that number will double in 2030 [11]. Incidence
rates calculated from the same sources in 2012 were 47–77/100,00 among those aged ≥45,
and 108–212/100,000 among those aged ≥65 [12]. Age- and sex-adjusted analyses also show
spatial clustering in southern California, southeastern Texas, central Pennsylvania, and
Florida, possibly due to case ascertainment and diagnostic protocols, and environmental
exposure in certain geographic location.

A growing interest has developed in the past two decades in the possibility that
Mn exposure acts as an exogenous trigger to induce parkinsonism, which is different
from the classical form of manganism. Human epidemiological studies indicate that
increased frequency of parkinsonism is associated with chronic Mn exposure, which,
although not reaching sufficiently high levels to cause acute manganism, is sufficient
to induce parkinsonian symptoms [13–16]. Clinical cases of parkinsonism have been
described in relation to the homozygous mutations in the solute carrier (SLC) transporters,
which mediate the influx (SLC39A8, SLC39A14) and efflux (SLC30A10) of Mn [17–21].
Human observations have been supported also by experimental work, which provides
plausible mechanistic explanations. The clinical feature of Mn-induced parkinsonism is
now considered as a different phenotype from idiopathic Parkinson’s Disease (IPD), based
on the presence of four cardinal signs of rest tremor, bradykinesia, rigidity, and impaired
postural reflexes. Mn-induced parkinsonism includes a broader classification defined by
the presence of at least two of the four cardinal signs [22] and the benchmark dose for Mn
concentration in PM10 airborne particles has been estimated in 20–25 ng/m3, as a cut-off
for increased risk [23]. Classical manganism is instead the result of acute exposure to high
Mn concentrations of at least 1 mg/m3, as indicated by WHO [24].

Accurate descriptions of the clinical manifestation of that atypical parkinsonism have
been provided by several reports starting from Dr. Couper’s paper [1], to similar reports
from Morrocco [25], Chile [26–28]. They all indicate slowness of movement (bradykinesia),
masked facies, and gait impairment (postural instability) as the main features, in addition to
the lack of response to L-Dopa treatment. Cases of clinical manganism have been reported
more recently in China, where ferroalloy production is highly developed and not always
sufficiently controlled by modern preventive intervention [29,30]. Not only inhalation
can be the cause of Mn overload, causing manganism, but also intravenous absorption
of excessive Mn through parenteral nutrition, calling for a more adequate regulation of
Mn concentrations in parenteral solution [31–33]. Consumption of illicit drugs such as
ephedrone, obtained via the reaction of pseudoephedrine with potassium permanganate
(KMnO4), acetic acid, and water. The oxidation of ephedrine/pseudoephedrine-induced
KMnO4 forms methcathinone (ephedrone) and manganese dioxide, resulting in clinical
manganism in young adults [34,35]. Finally, Mn overload leading to clinical manganism is
caused by hepatic portosystemic shunts in liver failure conditions, blocking Mn excretion
through the biliaric system and resulting in acquired hepatocerebral degeneration [36].

Treatment of these clinical manifestations has shown somewhat inconsistent results af-
ter para-aminosalicylic acid (PAS) [37,38], ethylenediaminetetraacetic acid (EDTA) [39,40],
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and 2,3 dimercaptosuccinic acid chelation [41]. Removing Mn overload is currently the only
treatment of genetically induced manganism due to homozygous mutation of Mn trans-
porters and is able to reduce the severity of symptoms, to an extent, among affected children.

These data indicate that Mn exposure poses a high public health concern for the
future, and together with the increasingly diffused presence of Mn in workplaces and the
environment, call for a clear definition of the role of Mn. With this review, we provide
further information and updates, focusing on Mn as a potential risk factor for parkinsonian
outcomes based on human epidemiological studies and experimental mechanistic studies.

2. Methods

We conducted a literature search using the keywords, “manganese”, “parkinsonism”,
“Parkinson’s disease”. We utilized the following databases: Scopus, MedLine, and PubMed.
The databases were chosen due to their great variety and the broad scope of available
studies. The search was conducted based on single MeSH terms or in combination. Each
manuscript was reviewed by RL and KT and classified per type of design.

3. Human Studies

A variety of studies have been conducted on human populations exposed to Mn,
through their occupation or environmental exposure, to fill the gaps in knowledge regarding
Mn as a potential risk factor for PD and/or parkinsonism. This review focuses on human
studies published after a previous review in 2009 by Lucchini et al. [13]. That analysis
concluded that although acute manganism is a distinct medical condition from PD, the
progressive changes of exposure scenarios towards chronic exposure to much lower levels
(see Figure 1) might have progressively extended the site of Mn deposition and toxicity
from the globus pallidus to the entire area of the basal ganglia, including the substantia
nigra pars compacta, a brain region affected in PD.
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3.1. Occupational Studies

Welders have been the subject of human studies exposed to Mn through their occu-
pation for many years, starting from the first publication by Racette et al. in 2001 [14],
reporting an early onset of PD among 15 career welders who showed a reduction in
dopamine through LEVODOPA PET scans and were responsive to dopamine treatment.
This research group has produced a few subsequent papers as discussed below, reinforcing
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the finding of high PD incidence among welders, with no substantial differences from
non-welder PD patients.

In 2012, Racette et al. examined 811 shipyard and construction welders and compared
them to 59 non-welder workers and 118 patients diagnosed with idiopathic PD [15]. The
Unified Parkinson’s Disease Rating Scale, motor sub-section 3 (UPDRS-3), was utilized for
the diagnostic assessment. UPRDS-3 scores higher than 15 were considered parkinsonism
and were found in 15.6% of the welders compared to 0% in the reference group. Welders
showed a U-shaped dose–response relationship between exposure years and parkinsonism.
UPDRS-3 scores among welders were like the newly diagnosed idiopathic PD cases that
showed more frequent resting tremors and asymmetry.

In 2015, Andruska and Racette reported a prevalence of parkinsonism of 15.6% among
716 welders and a PD prevalence of 2% in the general population over 65 years of age [16].
The studies by Racette’s group have consistently showed a relationship between Mn
exposure and parkinsonism, compared to other negative studies based on clinical record
or metanalysis [42–45] that did not rely on the same methodology based on individual
assessment using UPDRS-3.

Modern FDOPA PET research in pre-symptomatic Mn welders has also shown im-
paired FDOPA uptake in the striatum and lower uptake in the caudate compared to the
putamen compared to non-exposed subjects [46,47]. This is in contrast with previous
studies not showing altered FDOPA uptake in Mn exposed or intoxicated subjects. The
improvement of FDOPA PET technology and the changes in the exposure patterns may
explain this difference in imaging findings.

Mn is always present in welding fumes and therefore, it is biologically feasible that at
the current average exposure levels in welding, Mn toxicity may be insufficient to produce
clinical manganism but sufficient to enhance the effects of a reduced release of dopamine,
resulting in presynaptic dysfunction and PD at an earlier stage [48]. Low-level Mn exposure
over time may more accurately mimic environmental triggers that have been associated
with PD risk [16].

Among 418 Mn miners in South Africa, parkinsonism defined by a UPDRS-3 score
higher than 15 showed a prevalence of 29.4% [49]. For Iranian automotive workers, the rate
of parkinsonism assessed with transcranial sonography was 42% [50]. These workers had
been exposed to 3.34 mg/m3 of cumulative Mn on average, over an average duration of
12.30 years of work, whereas the South African miners had experienced a similar average
cumulative exposure of 3.7 mg/m3 over an average duration of 13.5 years.

3.2. Environmental Studies

Non-occupational studies have been conducted to assess the relationship between
Mn exposure and PD and/or parkinsonism. They have mainly included ecological and
case–control designs.

A high prevalence of parkinsonism was observed in the province of Brescia, Italy,
where clustering of Bayesian SMRs (BSMRs) resulted in the vicinities of ferroalloys in-
dustries operating since the beginning of 1900. A significant correlation was observed
between the BSMRs for parkinsonism and the average concentration of Mn in the deposited
dust [51]. In the same province, case–control studies have shown a relationship of PD and
parkinsonism with metal exposure and α-synuclein polymorphism [52]. Being born in
the province of Brescia also resulted in a potential determinant of early life exposure in
the development of the disease at the old age [52]. The parkinsonian patients in this area
showed a serum increase in liver enzymes AST/ALT, together with higher levels of blood
and urinary Mn, and disruption of copper, zinc, and iron levels [53]. The involvement of
liver function in patients exposed to Mn indicates a potential link to genetic mutation of
the SLC enzymes that regulate Mn transportation, as seen in other studies [54].

Homozygous mutations of this family of transporters (SLC30A10, SCL39A8, SLC39A14)
cause a rare pediatric genetic disease characterized by hypermagnesemia, parkinsonism
and dystonia, liver disease and polycythemia [55–58], and specific imaging signs [59].
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Heterozygous mutations of these transporters are commonly seen in up to 40% of the
cases in the province of Brescia [60]; they influence Mn in blood, leading to neurological
impacts [61,62]. Therefore, a Mn-induced increase in PD and parkinsonism in the Italian
site may be related to historic environmental contamination and genetic vulnerability. The
province of Brescia is a unique site impacted for more than a century by ferromanganese
emission in enclosed pre-Alp valleys like Valcamonica, resulting in high levels of Mn in
soil [63–65], local products [66,67], and deposited dust [68,69], causing continuous airborne
resuspension [70,71]. Epidemiological studies focused on these types of locations cannot
be compared to others where no such contamination is present.

3.3. Diagnostic Criteria

According to the evolving exposure scenario, diagnostic assessment is also changing.
While the response to levodopa has been used in the differential diagnosis of manganism
from IPD, this diagnostic feature no longer reflects the different toxicological target. From
the manganism-localized toxicity delimited to the globus pallidus, Mn-induced parkinson-
ism reflects toxicity in a larger area of the basal ganglia, including the substantia nigra pars
compacta. Therefore, individuals affected by parkinsonism after long-term exposure to low
Mn levels can respond to levodopa [72]. The globus pallidus hyperintensity, considered as
an imaging hallmark of manganism, may not be detected any longer, after chronic exposure
to low Mn levels. Depending upon the individual exposure intensity, duration, timing,
co-exposure with other neurotoxicants, genetic predisposition given by the diffuse non-
homozigous mutation of the SLC transporters, the clinical diagnosis may reveal an overlap
in syndromes between manganism, Mn-induced parkinsonism, and IPD (see the mixed
diagnosis overlapping area in Figure 1. This is a more challenging situation compared to
the past; therefore, diagnosis requires, in the first place, knowledge and clinical suspicion.
The assessment of modern Mn neurotoxicity requires a multidisciplinary approach, linking
early recognition to outpatient referral to neurology for definitive care. Usage of MRI or
serum-based studies should be done at the request of specialists familiar with toxicity and
the latest research [73]. Increased levels of misfolded α-synuclein in central-nervous-system-
derived exosomes can be observed both in Mn exposed individuals [74] and parkinsonian
patients [75]. Therefore, although the diagnostic predictivity of Mn-induced parkinsonism
is still not established, the increased production of toxic α-synuclein in exosomes can
provide the mechanistic foundation of Mn-induced parkinsonism. Notably, misfolded
α-synuclein is associated with an earlier onset of parkinsonism, which has been observed
among Mn-exposed individuals [15,76,77].

4. Experimental Studies

As discussed above in the human studies, manganism and PD are two distinctive
disorders [78–80]. However, Mn may be a risk factor for developing PD by interacting
with an individual’s genetic makeup [23,81]. Such interactions have been investigated in
mammalian cell culture and animal studies where Mn was combined with PD-linked genes
such as SNCA, parkin, DJ-1, and ATP13A2 [82–84]. Given that such gene products and
Mn share pathogenic mechanisms such as mitochondrial impairment, neuroinflammation,
oxidative stress, and protein misfolding [82], it is not surprising that when combined, their
neurotoxic effects are amplified. Below are some genes that have been documented to
interact with Mn.

4.1. SNCA

SNCA encodes α-synuclein, which is predominantly a synaptic protein that is encoded
by the SNCA gene. Missense mutations as well as mutations leading to duplications
and triplications of SNCA have been identified in autosomal dominant PD [85–90]. The
discoveries that increasing the gene dosage of SNCA by 2- to 3-fold can cause PD [89] is
significant for idiopathic PD, because it indicates that elevated wild-type (WT) α-synuclein
alone is sufficient to cause the disease. In addition to familial PD, α-synuclein aggregation
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is also detected in the Lewy bodies of idiopathic PD [91]. Lewy bodies are intracellular
inclusions that consist of aggregated α-synuclein, and more recently, they have also been
reported to contain lipids and organelles such as mitochondria [92]. Pathogenic mechanisms
associated with α-synuclein mutations range from impairing protein degradation pathways
(autophagy and ubiquitin proteasomal system), mitochondrial dysfunction, oxidative stress,
synaptic dysfunction, and neuroinflammation [93]. There has also been a significant interest
in the spread of α-synuclein pathology from one cell to another in a prion-like fashion [75]
and Mn has been demonstrated to enhance this transmission [74].

Mn can bind to α-synuclein via three residues in the C-terminal domain: Asp-121,
Asn-122, and Glu-123 [94]. Although this is a low-affinity binding, low concentrations of
Mn are sufficient to induce α-synuclein fibril formation [95]. Several independent laborato-
ries have reported the effects of Mn on the aggregation of α-synuclein [96]. The interaction
between α-synuclein and Mn has been demonstrated in rat primary midbrain dopamin-
ergic neurons, resulting in a higher intracellular level of Mn in cells with α-synuclein
overexpression [97,98]. Although such binding of α-synuclein is protective against Mn
neurotoxicity during the early stages of Mn exposure, the accumulation of sequestered Mn
by α-synuclein eventually induces protein aggregation and neurotoxicity [99]. In a more
recent study, these investigators demonstrated that when combined with α-synuclein, Mn
exposure increases α-synuclein transmission intercellularly via exosome release [74]. By
spreading the misfolded toxic α-synuclein, these exosomes induce neuroinflammation and
degeneration of the nigral dopaminergic neurons [74]. This is the first in vivo demonstra-
tion that, although Mn by itself does not cause neurodegeneration, when combined with a
PD-linked protein, nigral dopaminergic cell loss occurs. The results of these studies are
consistent with a previous report demonstrating that α-synuclein overexpressing neuronal
cells released exosomes capable of transferring α-syn protein to other normal neuronal
cells [100], forming aggregates and inducing death in the receiving cell [101,102]. In fact,
exosome-associated α-synuclein oligomers are more likely to be taken up by recipient
cells and are more neurotoxic compared to free α-syn oligomers [103]. To enhance the
relevance of their mouse study, Kanthasamy and colleagues isolated exosomes in the serum
of welders exposed to Mn and they found increased misfolded α-synuclein in these work-
ers as compared to the non-exposed control subjects [74]. In non-human primates, Mn
exposure has also been reported to induce α-synuclein aggregation [104]. In combination,
emerging evidence indicates that Mn promotes α-synuclein aggregation and spread, lead-
ing to dopaminergic neurodegeneration in experimental models and suggests that such a
scenario may also occur in humans [27].

4.2. Parkin

Mutations in Parkin cause autosomal recessive early-onset PD [105,106], which may
present with or without Lewy bodies [106,107]. Parkin mutations are considered as the most
prevalent autosomal recessive mutations in PD, accounting for approximately up to 77% of
familial early-onset PD and 10–20% of early-onset PD in general [108–110]. Parkin is an E3
ubiquitin ligase that mediates protein degradation. Parkin has been reported to regulate
Mn transport via the divalent metal transporter 1 (DMT1) [111]. DMT1 is the primary route
by which Mn is taken up in the brain. Four DMT1 isoforms have been identified and the 1B
isoform is regulated post-translationally and degraded via the proteasomal pathway. Parkin
is involved in the ubiquitination and mediate the subsequent proteasomal degradation of
this specific isoform of DMT1 [111]. Therefore, a loss of parkin function could facilitate Mn
uptake, promoting Mn accumulation in the basal ganglia and accelerating its toxicity.

4.3. DJ-1

Mutations in DJ-1 cause early-onset autosomal recessive PD [112]. DJ-1 is a multi-
functional protein. Under basal conditions, DJ-1 is localized mostly in the cytoplasm and
to a lesser extent, in the mitochondria and nucleus [113–115]. However, under oxidative
stress conditions, cytoplasmic DJ-1 translocates to mitochondria [115], where it confers
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protection against oxidative stress [115,116]. Mn has been reported to reduce the levels of
DJ-1, resulting in effects that resemble the neurotoxic activity of mutant forms of DJ-1 [117].
Given that both Mn and loss of DJ-1 function can individually promote oxidative stress
and induce mitochondrial dysfunction, such combination may exacerbate their neurotoxic
effects. Indeed, the life-span of C. elegans was reduced after Mn exposure when DJ-1 was
deleted [118].

4.4. ATP13A2

In addition to causing autosomal recessive juvenile-onset Kufor–Rakeb syndrome [119],
which is a levodopa-responsive form of pallido-pyramidal neurodegeration, homozygous
missense mutations in ATP13A2 cause juvenile parkinsonism and early-onset autosomal
recessive PD [120]. ATP13A2 encodes ATPase type 13A, a lysosomal P5B-type transmem-
brane ATPase which has functional domains like other P-type ATPases that are mainly
involved in transporting cations, including Mn. Consistent with these roles of ATP13A2
and its cellular localization, loss of function in this protein has been reported to impair
autophagy flux and accumulation of aggregated α-synuclein [121–123]. ATP13A2 has been
shown to protect cells against Mn toxicity by transporting Mn into lysosomes; however, this
protection is lost when mutations in this gene occur [123]. A recent study has shown that
ATP13A2 polymorphism could negatively impact the effects of Mn on motor coordination
in humans exposed to Mn [124].

5. Discussion

This review indicates that Mn-induced parkinsonism should be given a current up-
dated and structured nosological classification that is clearly different from the historical
knowledge of classic manganism. The evolution of the exposure scenario drives this
epidemiological and clinical redefinition of Mn’s impact on the central nervous system.
Manganism is still occurring, resulting from any situation causing Mn overload exceeding
the Mn homeostatic range in an acute manner. No matter what the cause is, from high Mn
levels in parenteral nutrition, or the consumption of illicit drugs like ephedone, hepatic
failure blocking biliaric excretion, genetic dysfunction of Mn transporters, or a lack of
exposure control in the workplace resulting in airborne Mn concentrations higher than the
WHO cut-off of 1 mg/m3, the features of this atypical parkinsonism, known as manganism
since 1837, can still affect a substantial number of patients. L-DOPA and chelation with
EDTA and PAS are used to reduce the symptoms with varying results due to individual
factors that can influence the therapeutic response.

Mn-induced parkinsonism is likely more diffuse in the population, mainly because of
ambient levels that easily exceed the cut off values of 20 ng/m3 that have resulted from
academic research and the reference concentration of 50 ng/m3 resulting from the risk
assessment estimates by US EPA and Health Canada. Therefore, given the relevance of
the constantly evolving exposure scenario, further research is needed to target detailed
exposure assessment of the emerging occupational and environmental sources including
(i) steel production for growing demand in construction, and (ii) production, use and espe-
cially disposal of Mn-based EV batteries. Intervention studies focused on the effectiveness
of exposure reduction are also envisaged, given the demonstrated potential for long-term
neurological impacts of low doses. Mixture studies are especially needed to quantify the
weight of Mn when co-exposures with neurotoxic and protective elements occur. In this
regard, novel models such as Bayesian kernel machine regression [125] and weighted
quantile sum regression [126], enable understanding of the interaction of Mn with other
protective and toxic elements and assessment of both the mixture’s effect and the role of
each component within the mixture.

Experimental models used to study neurotoxic mechanisms and the neurotoxicity of
Mn should take into consideration the Mn dosage regimen. Acute high doses are more
relevant to manganism whereas a low chronic dose is more appropriate for parkinsonism
and PD. Different concentrations of Mn may also differentially impair cellular mechanisms.
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For example, although Mn is well-documented to block mitochondrial function, a recent
study has demonstrated that when exposed to concentrations below the acute cytotoxic
threshold, Mn does not induce mitochondrial dysfunction in neuronal cells [127]. Another
important consideration is the use of animal models when feasible. Although in vitro
models have their role, given the complexity and the intricate interactions between cell
types in the brain, in vivo models will allow investigations of Mn-induced toxicity in
specific cell types in different brain regions.

6. Conclusions

Mn-induced manganism is a well-accepted neurotoxic impact of Mn. What is less
clear, however, is whether Mn plays a pathogenic role in parkinsonism and, especially,
in idiopathic PD. There are overlapping clinical and neuropathological features between
these neurological conditions, suggesting some common brain regions and pathogenic
mechanisms being involved. The basal ganglia are the region commonly affected between
Mn- and PD-linked proteins. Additionally, there are common mechanisms such as mi-
tochondrial dysfunction, neuroinflammation, oxidative stress, and dysregulated protein
homeostasis [82,128]. We believe, as illustrated in Figure 1, that a combination of the
duration of Mn exposure, exposure intensity, and genetic susceptibility influences the
outcome of Mn-induced neurotoxicity. Acute high dose exposure typically causes man-
ganism and the globus pallidus is the primary target. Chronic, low-level exposure extends
Mn deposition and toxicity to other brain regions, including the substantia nigra [129].
When combined with other PD-linked gene products such as α-synuclein, parkin, DJ-1,
and ATP13A2, it is likely that Mn contributes to the onset and progression of idiopathic
PD. In addition to the ones discussed in this review, Mn would most likely also interact
and enhance the parkinsonian effects of other genes. Cumulatively, based on the human
and experimental studies, as exemplified in this review, Mn most likely contributes to
parkinsonism/PD pathogenesis; therefore, it is imperative to control this modifiable factor
and eliminate all possible causes of overexposure and long-term absorption of low doses.
This call for preventive intervention was clearly stated by Dr Couper almost two hundred
years ago [1] and must be further embraced today in view of the projected exponential
surge of PD over the next two decades [10].
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