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Abstract: Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with
two groove domains (G domain) and one constant domain (C-domain) as well as a light chain,
B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface
without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-
free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface
was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from
the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis,
esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian
epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells
upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin),
phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface
remains high as long as the cells remain in an activated state. After activation-induced upregulation,
the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the
redox environment promote dimerization. Heterodimerization can occur among and between the
alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they
may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking
B2m (HLA-B27+ B2m−/−) but not in HLA-B27+ B2m+/− mice. The mice with HLA-B27 in Face-2
spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and
swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some
HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free
variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly
with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact
with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters.
Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that
Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of
these variants as a neo-HLA class and proto-HLA.
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1. Introduction

Cell surface Human Leukocyte Antigen (HLA) class-I molecules are heteromeric,
peptide-binding glycoproteins comprised of (i) a glycosylated heavy chain (HC) polypep-
tide (44 kDa), and (ii) a non-glycosylated free single IgSF C-like domain protein, beta
2-microglobulin (B2m, 11.6 kDa) [1,2]. The HC consists of two membrane-distal domains,
designated by IMGT labels [3,4] as G (groove) domains (G-ALPHA1 and G-ALPHA2 or
D1, D2) of the major histocompatibility superfamily (MhSF), and a membrane-proximal
constant domain (C-like or D3) of the immunoglobulin superfamily (IgSF). The heteromer
is assembled in the endoplasmic reticulum (ER) and transported to the cell surface. The
membrane-distal α1 and α2 domains form a groove that binds to a peptide of 8–11 amino
acids (a.a). B2m stabilizes the conformational orientation of the HC groove after the emer-
gence from the ER by associating with the α3 domain and restricts the peptide length in
the groove [1]. Notably, the peptide binding groove in HLA class-II molecules that lack
B2m can accommodate longer peptides (12–15 a.a). The HLA-I trimers (HC + B2m + bound
peptide) present the peptide antigen to CD8+ Cytotoxic T Lymphocytes CTLs [5]. The
isotypes of HLA-I, namely classical HLA-A, HLA-B, and HLA-C, and non-classical HLA-E,
HLA-F, and HLA-G, are diagrammatically illustrated in Figure 1.
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Figure 1. Isotypes of human major histocompatibility proteins. The glycosylated heavy chain (HC,
44 kDa) consists of the membrane distal G-ALPHA1 and G-ALPHA2 domains and of the proximal
C-like ALPHA3 domain and is non-covalently associated with non-glycosylated B2m (11.6 kDa).

HLA class II molecules differ strikingly from HLA-I by having two heavy chains (α
chain and β chain, designated as II-ALPHA chain and II-BETA chain by IMGT labels). Each
alpha and beta chain comprises groove (G-ALPHA [D1] and G-BETA [D1]) and constant (C-
like ALPHA [D2] and C-like BETA [D2]) domains [3,4]. They are non-covalently associated
to generate a conformationally stable binding site for a peptide. The structure of HLA-II
illustrates that a dimerization of two HCs can provide structural stability and a stable site
for binding. The genes encoding the heavy chains of these two classes of HLA are closely
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linked to each other on the short arm of chromosome 6, whereas the gene that encodes B2m
is on chromosome 15.

Cell surface HLA-I molecules are capable of binding to other proteins to exert a signal-
transducing function [6,7]. Due et al. [6] minimized the binding of insulin receptor to the
cell surface HLA-I using HC-specific monoclonal antibodies (mAbs) (PA 2.6 and BB 7.5, -6,
and -7). However, the B2m-specific polyclonal Abs did not affect such binding of insulin
receptor to HLA, which suggests that the cell surface HLA HCs can independently serve
as ligands without the involvement of B2m. This finding initiated the study of “empty
HLA” molecules (peptide-free and B2m-free) now referred to as open conformers by Arosa
et al. [8]. Since the term “open conformers” may imply both the dimeric, peptide-free
B2m-associated HC and the monomeric peptide-free B2m-free HCs, the term Face-2 was
coined to distinguish B2m-free HC variants from peptide-free B2m-associated HCs and
B2m, HC, peptide HLA trimers (Face-1) [9].

Early (pre-1980) HLA researchers believed that HC could not exist on the cell surface
devoid of B2m, based on observations made on mutant cell lines. However, knowledge
of the structural variants and their functional potentials has been steadily emerging since
then. It has become increasingly clear that B2m-free HCs (Face-2) have a highly restricted
half-life as they dimerize to form homo- and hetero-dimeric variants (Face-3 and Face-4)
and perform diversified ligand-receptor functions [10].

The objective of this review is to chronologically trace (1) the discovery of B2m-free
monomeric variants of HLA (Face-2) in normal cells, transfected cells, malignant cells, and
activated immune cells; (2) the research documenting the cell surface expression of Face-2
independently of the B2m-associated HLA trimer (Face-1), as well as homo- and hetero-
dimerization of Face-2 (Face-3 and Face-4); (3) the progressive research on the differences
in the glycosylation patterns between Face-1 and Face-2; their peptide-binding capabilities;
(4) their interactions with ligands such as KIR, hormones, and neurotransmitters; (5) their
involvement in up- and downregulation of immune functions; (6) the possible role these
variants in the pathogenesis of spondyloarthritis, human cancers, and in allograft recipients;
and (7) the research on the phylogenetic relationship between HLA class I and II and the
similarities of the amino acid patterns of the variants with other classes of HLA, which sheds
new light on the origin of HLA during vertebrate evolution. The findings in this review
not only highlight the need to study immune responses to the variants, but also suggest
that the different Faces of HLA variants could constitute a new class of HLA. The ultimate
question is: should the novel B2m-free HLA HC variants (Faces-2, -3, and 4) that emerge
directly from the ER, independently of Face-1, be considered as a neo-HLA class(es)?

2. Early Reports on the Formation of Cell Surface B2m-Free HCs (Face-2)
2.1. Are Cell Surface B2m-Free HCs Ephemeral Due to the Dissociation of B2m?

In Face-1 HLA trimers, the association of B2m with HC increases the affinity of HC
for peptides. Similarly, B2m increases the stability of the peptide on the groove of the
HC [11–17]. In a unique experiment, Demaria et al. [11] selectively removed any B2m-free
HCs (Face-2) on the cell surface of PMA-activated T cells with brief treatment of cold
trypsin. This treatment did not remove B2m-associated HCs on the cell surface. They
exposed the PMA-treated resting T cells and trypsin-treated PMA-activated cells to BFA,
which arrests the exit of newly synthesized proteins from the ER. Interestingly, the BFA
blocked the expression of Face-2 on resting T cells exposed to PMA but did not block
the reappearance of Face-2 on trypsin-treated cells, documenting the dissociation of B2m
from intact Face-1 molecules. The dissociation of B2m results in the unfolding of α1 and
α 2 domains of HCs; these are referred to as “non-conformed” B2m-free HCs. These
“non-conformed” B2m-free HCs are rather distinct from folded α1 and α2 domain bearing
HCs or “conformed” HCs, as is observed on cells normally expressing functional B2m [17].
Notably, such peptide-carrying conformed B2m-free HCs are also observed in B2m-deficient
mice [17]. Figure 2 illustrates the dissociation of B2m from the B2m-associated intact HLA
(Face-1), as well as the consequent release of peptides and the formation of non-conformed
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membrane-bound HCs, which are selectively cleaved by membrane metalloproteinases
(MMPs) [12–14]. Hence, the cell surface non-conformed B2m-free HCs is considered to
have a very insignificant half-life. Figure 2 is based on the findings and the illustrations of
Elliott [14] and Demaria [12].
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Figure 2. Events occurring after dissociation of B2m, based on the previous reports
(Demaria et al. [11–13], Elliott et al. [14,15], Bix and Raulet, [17]). It has been well documented
(Cerundolo et al. [16]) that the human mutant cell T2 expressing H-2Db HCs, carrying 9 amino acid
peptides, and complexed with human B2m, forms stable complexes with half-life > 110 h at 4 ◦C,
39 h at 22 ◦C, and 3 h at 37 ◦C. They have also shown that small increases in the length of the peptide
greatly reduce the half life (t 1

2
to about 1–10 h at 4 ◦C). The transformation of conformed HC to

non-conformed HC and the cleavage of both conformed and non-conformed HC by MMPs and
proteolytic degradation of B2m and HC (Demaria et al. [11,12]; Elliot, [14]). Proteolytic modifications
of B2m in sera are based on Nissen et al. [18,19].

The proposition that HLA-I HCs cannot be expressed on the cell surface without
B2m is based on the unique properties of two cell lines. The first is Daudi, the Burkitt
Lymphoma cell line. It lacks the ability to synthesize B2m and cannot express trimeric
HLA-I molecules (Face-1) on the cell surface [20]. The surface expression of Face-1 in the
cell line was achieved by supplementing either with mouse or human B2m. The second is
the R1 cell line of a somatic cell variant of the C3H (H-2k) thymoma [21].

2.2. Can HLA HCs Emerge on the Cell Surface as B2m-Free HCs?

The first indication for the presence of B2m-free HCs of HLA-I on the cell surface
emerged from the works of Krangel et al. [22] in 1979. They observed two antigenically
distinct populations of HLA-A (A1 and A2) and HLA-B (B8 and B27) HCs on the surface
of a human lymphoblastoid cell line T5-1. One HC population is associated with B2m
(mAb W632 reactive) and another HC population without B2m, mAb W6/32 non-reactive
but positive from anti-HC serum (anti-H) that was raised against HLA-B7 B2m-free HCs.
Notably, these two categories differed in their glycosylation (mannose residues), density, and location
on the cell surface. Indeed, the anti-H-positive HCs are detectable on the surface of the T5-1
cell line, although their origin is not clarified. They may be a result of the movement of
anti-H-positive HCs from locations inside the cytoplasm to the cell surface. Their presence
is more easily accounted for, however, by the dissociation of B2m from the B2m-associated
HCs once they reach the cell surface. This notion is plausible, since the dissociation of such
complexes can be detected in cell lysates at 37 ◦C.

In the mouse B6 lymphoma EL4 cell line, Potter et al. [23,24] observed a variant which,
in contrast to the wild-type cell line, failed to express B2m on the cell surface and expressed
only Face-2 (H-2Db). This was identified by serological reactivity as well as by CTLs. They
speculated that alterations in the glycosylation site on the α3 domain may have prevented the
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association of B2m to the HC (H-2Db). Allen et al. [25] noted a high level of expression of the
H-2Db HC at the cell surface of the EL4 cell line even though there is no B2m protein within
the cell. This was further confirmed by transfecting the H-2Db gene into the RIE tumor cell
line, which lacks B2m. Interestingly, the Db B2m-free HC on the surface of RIE/Db cells
failed to react with mAb specific for the α1 domain (tested with mAb B22-249.1) or the α2
domain, suggesting an alternative structural configuration of Face-2 [15,25]. However, in stark
contrast to these reports, Bix and Raulet [17] observed that the Db B2m-free HCs on the
surface of RIE/Db cells were reactive to mAbs B22-249-1 and 28-14-8 Db and suggested that
peptides can bind to HCs in the absence of B2m “with sufficient affinity to establish a functionally
conformed molecule on the cell surface (p.833)”.

Inference: These studies unravel differences in the glycosylation patterns of Face-1
and Face-2. Such alterations in glycosylation sites may have prevented HC association
with B2m and led to the hypothesis that there is independent surface expression of Face-2,
without dissociating from B2m.

3. Research on B2m-Free HLA Variants on Tumor Cells
3.1. Do Proinflammatory Cytokines Induce the Expression of Face-2 on Tumor Cells?

On a human melanoma cell line Colo-38, Giacomini et al. [26] used three different
mAbs (W6/32, NAmb-1, an IgG1 directed against B2m, and Q1/28, an IgG2b that recog-
nizes a monomorphic determinant on B2m-free HC) and examined the impact of human
recombinant IFN-γ. The IFN-γ-treated cells were suspended in a medium containing
35S-methionine and immunoprecipitated with the above mAbs. Examining the immunopre-
cipitates of IFN-γ-treated and untreated cells by SDS-PAGE, they found a greater increase
in the synthesis of HLA B2m-free HCs (Face-2) in IFN-γ-treated cells than in untreated cells;
a similar greater increase in treated cells was not found for intact HLA (Face-1). Since the
cell surface of human [27] and mouse [23,24] cells were stained with anti-sera raised against
B2m-free HCs, it was concluded that the proinflammatory cytokine IFN-γ induced the surface
expression of B2m-free HCs (Face-2) without any involvement of B2m-associated HCs (Face-1).

3.2. Post-Translational Expression of Face-2 Independent of Face-1 in Cancer Cells

In 1986, Bushkin et al. [28,29] observed a close association between Face-2 and a
T-cell receptor molecule in patients with T cell chronic lymphocytic leukemia. While
characterizing the α/β T cell receptor molecules on the leukemia cells, a mAb A1.4 (IgG 1)
recognizing B2m-free HCs of HLA-A, -B, and -C molecules was used to immunoprecipitate
the HCs from the lysates of the leukemia cells. Not only was a 43 kDa HC precipitated
without B2m by A1.4, but a novel 38 kDa molecule was as well. Similarity between the β

chains of the T cell receptor and the 38 kDa molecule was confirmed by endo-F digestion,
2D (IEF-SDS-PAGE) electrophoresis, and chymotryptic peptide mapping. Furthermore,
it was confirmed that the 38 kDa molecule expressed on the surface of the leukemia cells
is non-covalently associated with B2m-free HLA–HCs, detected by mAb AI.4. Evidently,
B2m-free HLAs can associate with proteins other than B2m, as reported earlier by Due
et al. [6]. However, these reports failed to clarify whether B2m-free HLA-I HC expression is
the result of dissociation of B2m, as shown in Figure 1, or whether B2m-free HCs reach the
cell surface independently.

To address this dilemma, Marozzi et al. [30] evaluated the expression of Face-2
molecules in two different human neuroblastoma (NB) cell lines, IMR-32 and LA-N-1.
These cell lines express very low levels of Face-1 molecules, while detectable levels of
Face-2 were noted in about 5% of cells. The treatment of IMR-32 cells with retinoic acid
(RA) induced the cells to differentiate with morphological changes. RA-treated cells were
tested with mAb W6/32 and with the mAb L31 specific for B2m-free HCs. Grassi et al. [31]
characterized this murine mAb, finding that it binds to Face-2, and noted that it binds to
an epitope on the α1 domain of the HC, particularly to the tyrosine or phenylalanine at
position 67. All HLA-C alleles (C1 to C8) and a small group of B alleles share this specific
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aromatic a.a. at position 67 (Y67 & F67). Upon further cellular differentiation, the percentage
of cells expressing L31-reactive molecules on the cell surface increased from 45 to 80%.

The same analysis was carried out on the NB cell line LA-N-1. On RA-untreated
cells, both W6.32 and L31 gave results comparable to those shown by IMR-32 cells. An
RA-treated LA-N-1 cell population showed a 30% increase in mAb L31 reactivity, while the
reactivity of mAb W6/32 did not change from the untreated level. The exposure of B2m-
free HCs on the surface of the differentiated NB cells was not accompanied by significant
changes in the level of intact HLA. The synthesis of intact HLAs or B2m mRNAs or of L31
proteins did not change in differentiated NB cells, suggesting that the surface expression of
B2m-free HCs is regulated post-translationally.

In contrast to the contention that B2m-free HCs emerge from the dissociation of B2m-
associated HLA, the investigations of Martayan et al. [32] shed new light on cell surface
B2m-free HCs. They compared the conformation and surface expression of free HLA-C1
HCs in the absence of B2m in the kidney carcinoma cell line KJ29, which carries two
apparently normal copies of chromosome 6 and a single chromosome 15, implying the
loss of one copy of the B2m gene. They observed that the size of the pool of B2m-free
HLA-CW1 molecules decreases by the availability of B2m. They concluded that “essentially
all intracellular and approximately two thirds of cell-surface-expressed free HLA-CW1 HCs
originate from incomplete assembly with B2m, and not from the “melting” (dissociation)
of pre-formed trimeric complexes (p. 31)”.

Furthermore, the Giacomini group [33] carried out a detailed investigation by isoelec-
tric focusing to distinguish HCs of HLA-C in complex mixtures of immunoprecipitated
HLA-I molecules of two melanoma cell lines (SK Mel 37 and Colo 38) and two carcinoma
cell lines (colon HT-29 and bladder T24) genotyped HLA-A, HLA-B, and HLA-C. They
also performed flow cytometric analysis on viable cell suspension for studying the ex-
pression and susceptibility to IFN-γ upregulation of mAb L31 reacting HLA-C B2m-free
HCs (Face-2) and compared with that of mAb W6/32. While they noted HLA-C B2m-free
HCs both intracellularly and on the cell surface, IFN-γ enhanced the expression level of
W6/32-reacting HLA-A, -B -C molecules (1.3- to 1 5-fold), depending on the specific allele
and cell line) and L31-reacting free HLA-C heavy chains (1.5- to 12-fold) to a similar extent.
All these studies validate the hypothesis that Face-2 can emerge from cytoplasm directly and is not
necessarily due to dissociation of B2m from Face-1.

3.3. Does Face-2 Replace the Loss of Face-1 in Human Cancers?

Garrido [34], in a book titled “MHC class-I loss and cancer immune escape”, categorized
the loss of HLA-Ia in human cancer into several groups, as follows:

Type 1: Tumor cells can lose all of the six HLA-I alleles present in the normal cells;
Type 2: Tumor cells can lose a single HLA haplotype or one set of HLA-Ia genes localized

on chromosome 6 (HLA-A, B, and C);
Type 3: Tumor cells can downregulate an HLA-A, B or C locus, producing a phenotype

with only four HLA-Ia alleles,
Type 4: Tumor cells can lose a single HLA-I allele out of the six expressed by somatic cells;
Type 5: Tumor cells can lose HLA-Ia (classical) alleles and upregulate the expression of HLA-

Ib (non-classical) haplotypes, namely HLA-E, HLA-F, and HLA-G), primarily based
on the correlation between the loss of HLA-Ia, concomitant with the upregulation
of HLA-Ib.

The upregulation of HLA-Ib in cancer cells is primarily based on very extensive
documentation of HLA-E. Interestingly, most of these reports documenting HLA-E have
used the well-known and commercially available MEM series of anti-HLA-E mAbs (MEM-
E02, MEM-E06, MEM-E07, MEM-E08) and mAb 3D12, which were, in fact, generated
against either Face-2, or peptide-free Face-1 of HLA-E [35,36]. The positive staining by
these mAbs is considered as evidence for the upregulation of HLA-E, concomitant with the
loss of HLA-Ia.
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The epitope specificity of both MEM-series mAbs and 3D12 [37,38] was not verified
before commercializing the mAbs. When we analyzed the epitope specificity of the so-
called “HLA-E specific” mAbs [39–44], using a Luminex multiplex bead system coated
with different classical HLA-I Face-1 molecules admixed with Face-2 [45,46], we observed
(Table 1) that these mAbs were not specific for B2m-associated (Face-1) or to B2m-free HCs
(Face-2) of HLA-E.

Table 1. The HLA class I polyreactivity of commercial anti-HLA-E mAbs (MEM-E/02, MEM-E/06,
MEM-E/07, MEM-E/08, 3D12), claimed to be HLA-E-specific, is compared with truly polyreactive
mAb TFL-006 [47–49] in contrast to the HLA-I non-reactive, HLA-E monospecific mAb TFL-033
[40–44]. The HLA reactivity of the mAbs was examined with the single antigen bead assay using
Luminex xMAP multiplex technology with dual-laser flow cytometry. The data are based on the
LABScreen xMAP microbeads coated with an admixture of B2m-free and B2m-associated array of
HLA antigens representing various alleles [45,46]. TFL-006 was also tested with LIFECODES xMAP
microbeads coated only with intact B2m-associated HLA alleles [49] and all antigen-coated beads
gave negative results, indicating that TFL-006 does not bind to Face-1.

HLA-Ia
Alleles

mAb mAb mAb mAb MEM Series HLA-Ia
Alleles

mAb mAb mAb mAb MEM Series
TFL-033 TFL-006 3D12 E/02 E/06 E/07 E/08 TFL-033 TFL-006 3D12 E/02 E/06 E/07 E/08

HLA-E
specific HLA-E non-specific mAbs HLA-E

specific HLA-E non-specific mAbs

A*01:01 1684 11,453 B*07:02 1080 1910 12,951 1375 618
A*03:01 649 789 9525 B*08:01 2422 1062 15,204 4281
A*11:01 4600 2940 7067 4992 1321 B*13:01 1956 1820 5700 15,934 6182 3195
A*11:02 607 559 9404 580 B*13:02 5604 1171 1326 16,249 393
A*23:01 12,666 B*14:01 2919 3135 14,876 4103 1308
A*24:02 1256 4096 14,316 10,991 2739 B*14:02 942 12,447 634
A*24:03 1924 2505 15,894 9981 2094 B*15:01 3440 832 14,606
A*25:01 788 629 B*15:02 1345 3250 15,676 3860 1051
A*29:02 1204 1593 1770 643 B*15:03 1874 4731 15,401 571
A*30:01 2232 526 10,072 551 B*15:10 1292 768 15,482
A*30:02 1368 5296 B*15:12 2619 1903 15,670 850
A*32:01 955 603 B*15:13 2833 591 3400 15,450 4023 982
A*33:01 1079 3037 1195 3469 1163 B*15:16 3503 13,159
A*33:03 1204 1604 1228 511 B*18:01 1352 4392 16,138 3923 1665
A*34:01 2362 991 757 754 B*27:05 3518 942 13,985
A*36:01 4993 1219 9451 1493 B*27:08 4668 3264 1175 14,289 640
A*66:01 1783 571 B*35:01 2834 566 8716 15,768 12,917 6233
A*68:01 4150 664 B*37:01 1137 3444 14,356 3109 1871
A*69:01 992 917 B*38:01 6219 1672 968 14,774 516
C*01:02 3238 966 3125 12,748 2998 3217 B*39:01 3301 3010 12,219 3825 1289
C*02:02 5570 720 2567 17,083 2003 1986 B*40:01 8083 800 3478 15,269 2662
C*03:02 15,443 1713 14,941 1705 624 B*40:02 763 712 2442 9971 2166 631
C*0303 5990 571 2358 14,248 1549 1067 B*40:06 4678 3216 9898 15,642 14,269 6208
C*03:04 10,870 2585 13,686 1875 903 B*41:01 3037 4987 14,635 5400 1331
C*04:03 5809 3796 1765 7077 2052 703 B*42:01 2163 14,286
C*05:01 3635 931 9263 15,923 15,435 6346 B*44:02 1537 2621 15,821 1525
C*06:02 8171 3076 17,836 1914 10,260 B*44:03 1584 1321 2654 13,339 1625
C*07:02 3082 1640 6680 1911 7149 13,655 B*45:01 4122 604 3134 14,671 3234 748
C*08:01 8093 592 2481 15,461 2001 B*46:01 4176 3042 16,173 3389 1062
C*12:03 9256 1020 1692 15,372 1035 771 B*47:01 2630 777 8849
C*14:02 5143 1889 12,570 1839 1637 B*48:01 2822 3577 10,982 514
C*15:02 5101 2688 16,008 918 1080 B*49:01 3201 1588 15,804
C*16:01 3833 530 1128 15,803 590 735 B*50:01 4895 769 15,575
C*17:01 7054 5554 1869 1361 841 B*51:01 6464 841 2485 13,576 2619 884
C*18:02 1402 1095 7779 14,530 11,223 8373 B*51:02 3766 2303 13,138 2352 800

B*52:01 1168 1416 928 8975
B*53:01 2324 2754 13,622 2890 1384
B*54:01 1186 1910 13,506 1274 598
B*55:01 3525 1287 14,420 892 180
B*56:01 6569 5352 16,067 5075 1881
B*57:01 4535 588 3626 11,746 5398 1982
B*57:03 388 1143 2586 14,723 3272 1556
B*58:01 2668 823 1636 11,721 1809 1155
B*59:01 4289 2803 16,222 1837 915
B*67:01 2308 1856 704 12,533
B*73:01 5661 659 5560 2363 8347 3629
B*78:01 6082 4273 11,454 5927 1678
B*81:01 7621 579 1097 11,758
B*82:01 4317 5295 15,480 6315 1922

All MEM series mAbs, most notably the extensively used mAb MEM-E/02, bound
only to B2m-free HCs of several alleles of HLA-A, HLA-B, and HLA-C coated on the
beads [37,38] (Table 1). It is evident that MEM series, and more particularly MEM-E/02,
bind to the Face-2 of all HLA-Ia on the bead sets that are coated both with Face-1 and Face-2.

The binding of these mAbs, and particularly that of MEM-E/02, was selectively inhib-
ited by two peptides commonly shared by almost all HLA loci. They are 115QFAYDGKDY123
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(present in all alleles of HLA-A, -B, –C, -E, -F, and -G loci) and 137DTAAQI142 (present
in HLA-B and HLA-C) [32] (Figure 3). Further inhibition experiments carried out with
the peptide sequences on the binding of mAbs MEM-E02, E07, and E08 to HCs of dif-
ferent HLA loci coated on solid matrix (LABScreen beadsets) revealed the sequences
(115QFAYDGKDY123 and 137DTAAQI142) and inhibited the binding of the mAbs in a dosi-
metric manner (Figure 3A–C in [37]).
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Figure 3. (A,B) Structure of HLA-I intact molecule (Face-1) showing sequences shared by all HLA loci
(yellow string in α2 helical domain), which is masked by B2M (shown in blue). (C,D). The position
of most commonly shared sequences are as follows: 137DTAAQI142 (present in HLA-B and HLA-C
in G-ALPHA2 between the D strand and the helix, IMGT numbering 49–54, Lefranc et al. [3]) and
115QFAYDGKDY123 (present in all loci of HLA-Ia and Ib in G-ALPHA2 BC loop, IMGT numbering
25–33). The binding of mAb MEM-E/02 to HLA heavy chain coated solid matrix is inhibited by the
above-mentioned peptides, Ravindranath et al. [37], shown as yellow curved line. In Face-1, these
peptides are masked by B2m, but exposed in B2m-free HCs. The asterisk in figure show the sequence
blocked by B2m in the native state.

In contrast, as shown in Table 1, the HLA-E-specific mAb (TFL-033) [40–43] did not
react with any of the HLA class I molecules. On the other hand, there are several mAbs
generated from the B2m-free HCs of HLA-E that were HLA-I-polyreactive [47,48], very
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similar to the MEM mAb series. These observations and other findings only imply that
these tumor tissues and cells express B2m-free HCs (Face-2) of HLA-Ia and HLA-Ib but not
specifically HLA-E. Similarly, the observations made on another mAb 3D12, claimed to be
specific for HLA-E, are presented in greater detail elsewhere [38]. In light of these findings,
we revisited the literature on HLA-E expression on human cancers and summarized the
reports that used the MEM series of mAbs in Table 2. Evidently, the loss of HLA-I in human
cancer claimed in the literature implies the loss of intact (Face-1) HLA-I molecules, but
not the loss of Face-2. Garrido’s categorization of cancer types based on the loss of HLA
class I molecules should be reexamined for the expression of Face-2. Evidently, the claim
that HLA-Ib is upregulated concomitantly with the downregulation of HLA-Ia should
be modified as HLA-Ia Face-2, and possibly Face-3 and Face-4 variants are upregulated
concomitantly with the downregulation of HLA-Ia Face-1 on cancer cells.

Table 2. The citations referred to below on different cancers have used commercial mAbs MEM-E/02,
MEM-E/06, MEM-E/07, and MEM-E/08 with the sole intention of identifying HLA-E. Most of these
reports did not validate the reliability of the MEM series for HLA-E specificity.

Cancer Types MEM Series Citations

Melanoma MEM-E/02 Derré L et al. [50]

Melanoma Ravindranath M. H. et al. [36]

Melanoma Allard M et al. [51]

Lip Squamosal cell carcinoma MEM-E/06 & MEM-E/07 Goncalves A. S. et al. [52]

Laryngeal carcinoma Silva T. G. et al. [53]

Vulvar intraepithelial carcinoma van Esch E. M. G. et al. [54]

Penile carcinoma Djajadiningrat R. S. et al. [55]

Glioblastoma MEM-E/02 Mittelbronn, M. et al. [56]

Glioblastoma Kren L et al. [57]

Glioblastoma Kren L et al. [58]

Oral Osteosarcoma Arantes D. A. C. et al. [59]

Intraoral mucoepidermoid carcinoma Moscon C et al. [60]

Rectal Cancer Reimers M. S. et al. [61]

Colorectal carcinoma MEM-E/02 Benevolo M. et al. [62]

Colorectal carcinoma Zeestraten E.C. et al. [63]

Colorectal carcinoma Guo Z. Y. et al. [64]

Colorectal carcinoma Huang R. et al. [65]

Colorectal carcinoma MEM-E/08 Levy E. M. et al. [66]

Colorectal carcinoma Levy, E. M. et al. [67]

Colon carcinoma and leukemia MEM-E/02 Stangl S. et al. [68]

Gastric Cancer Sasaki T. et al., [40]

Gastric Cancer Ishigami S. et al. [69]

Hepatocellular carcinoma Chen A. et al. [70]

Non-small cell Lung Carcinoma Yazdi T. M. et al. [71]

Breast cancer de Kruijf E. M. et al. [72]

Breast cancer da Silva G. B. et al. [73]

Ovarian cancer/Cervical cancer Gooden M et al. [74]
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Table 2. Cont.

Cancer Types MEM Series Citations

Cervical cancer Gonçalves M. A. et al. [75]

Cervical cancer Spaans V. M. et al., [76]

Cervical cancer Ferns D. M. et al. [77]

Serous Ovarian Adenocarcinoma Zheng H. et al. [78]

Serous Ovarian Adenocarcinoma Andersson E. et al. [79]

Renal Cell Carcinoma Hanak L. et al. [80]

Serous Ovarian Adenocarcinoma Kren L. et al. [81]

Thyroid cancer Zanetti B. R. et al. [82]

Hodgkin Lymphoma Kren L, et al. [83]

Inference: The research conducted with cancer cells reveals that (1) the proinflam-
matory cytokine IFN-γ and RA are capable of inducing the surface expression of Face-2
without any involvement of B2m; (2) Face-2 can emerge from the cytoplasm directly and
not by dissociation of B2m from Face-1; (3) the downregulation of HLA-Ia Face-1 on human
cancer cells occurs concomitantly with the upregulation of Face-2 (Table 2).

4. Is Cell Surface Expression of Face-2 Common on Activated and Virus-Transformed
Immune Cells?

Schnabl et al. [84] were the first to confirm the cell surface expression of Face-2 on
activated T lymphocytes. Using mAb LA45 that reacted with B2m-dissociated denatured
HLA-A, B, and C molecules but not with intact HLA-Ia, they documented that the T-cells
activated in vitro or in vivo, but not those resting, expressed Face-2. Indeed, the molecular
mass (45 kDa) of the antigen reacting to mAb LA45 paralleled with the expression of
Face-2. Neither the anti-HLA-I mAb (W6/32) nor anti-B2m mAb recognized the LA45
positive antigen. Cloning and sequence analysis revealed a high homology of LA45 antigen
cDNA and protein sequence to human HLA-I genes, characteristic of HLA-A loci. LA45
antigens could not be detected on the surface and the cytoplasm of resting peripheral
blood lymphocytes (PBLs) or bone marrow mononuclear and polymorphonuclear cells.
However, after the stimulation of T cells with phytohaemagglutinin (PHA), LA45 was
antigen-expressed on the cell surface within 24 h, confirming the expression of HLA HCs
on activated but not on resting T cells. Madrigal et al. [85] further noted “that LA45
reactivity is the property of a subpopulation of HLA-A and HLA-B molecules produced
in PHA-activated T and EBV-transformed B cells but not in resting cells” (p1093). They
documented that the specific epitope of HLA-I HC recognized by the mAb LA45 include
arginine at position 62 and asparagine at position 63 in the α1 domain, and that the epitope
is found in most of the alleles of HLA-A and B loci. As noted earlier by Schnabl et al. [84],
the presence of such molecules on resting T cells is undetectable but increases from 25 K to
60 K molecules.

Demaria et al. [11] induced cell surface expression of Face-2 on resting human T cells
by phorbol myristate acetate (PMA) for varying time periods and monitored its expression
using Face-2-specific mAbs HCA2 and HC10 and mAb W6/32 that recognize not only Face-
1, but also “B2m-free HCs (Face-2) of most HLA-B antigens” [86,87] by immunostaining
and flow cytometry. The expression of Face-2 occurred prior to the expression of the
interleukin-2 receptor (IL-2R). Similarly, the activation of resting T cells with anti-CD3
mAb and PHA resulted in the expression of Face-2 on average from 30 to 65% of T cells.
Furthermore, the expression levels of Face-2 correlated with the levels of activation as
determined by the IL-2R expression. They studied the effect of BFA (brefeldin A), which
arrests the exit of newly synthesized proteins from the ER [88], on the expression of B2m-
free class I heavy chains. Resting T cells were activated with PMA and stained for B2m-free
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class-I HCs with mAb HC, and 10:90% were positive. “Expression of these molecules
was completely inhibited by BFA and thus induction of B2m-free class-I heavy chains on
activated T cells requires the transport of newly synthesized MHC class I molecules to the
surface (p. 107, 11)”. This report confirms that Face-2 molecules are transported from the
ER to the cell surface, in contrast to the previous reports which suggested that Face-2 may
be a consequence of dissociation of B2m from intact Face-1 molecules.

Interestingly, Benjamin et al. [89] also observed the presence of B2m-free HCs of HLA-
B27 bound with influenza peptides on the surface of human HLA-B27-transfected B cell
lines (HLA-B27-CIR). Setini et al. [90] demonstrated the presence of the Face-2 variant
on EBV-transformed B-lymphoid cells using another mAb L31. They also noted that the
oligosaccharides associated with the B2m-free HCs of HLA-C are non-sialylated in contrast to
B2m-associated HCs. This is another salient finding to point out that Face-2 differs from
Face-1 HCs in the glycosylation pattern.

Inference: The activation of resting T cells with cytokines, anti-CD3 mAb, and PHA
induced the cell surface expression of Face-2. Using BFA to arrest the ER release of newly
synthesized proteins, the transport of Face-2 from the ER to the cell surface was abrogated
on the PMA-activated T cells. These findings clarify that Face-2 could be expressed inde-
pendently of Face-1 expression on the cell surface and that is capable of binding to peptides.
Furthermore, the glycosylation pattern of Face-2 may differ from that of Face-1.

5. Normal Tissues Express Low Levels of Face-2

Giacomini et al. [33] using mAb L31 documented a low level of cell surface expression
of Face-2 of HLA-C on normal epidermis, breast, lung, bronchi, esophagus, stomach, ilium,
colorectum, gall bladder, urinary bladder, seminal vesicles, ovarian epithelia, endometrium,
and thymus tissues. The positivity of mAb L31 in normal tissues is comparable to that
observed on carcinomas and adenocarcinomas of various grades of these tissues. As a
control, they also used mAb W6/32, and, like almost all other investigators in the field
of HLAs, contend that the mAb is specific for B2m-associated HCs of HLAs. However,
a critical report of Tran et al. [86] questioned the contention and showed that the mAb
W6/32 “actually recognizes an epitope present on isolated non-reduced α-chains of most
HLA-B allelic forms”. Indeed, the report of Martayan et al. [87] on the affinity of the mAb
W6/32 for HLA HCs of B2m-defective Daudi cells confirms the above contention. Although
the affinity of W6/32 for Face-2 of HLA-B questions the validity of using mAb W6/32 to
validate the expression of B2m-associated HCs of HLAs, particularly in the light of the
observations of Giacomini et al. [26,33] that confirmed the presence of Face-2 among HLA-C
alleles and some alleles of HLA-B in normal and malignant non-lymphoid human tissues
and on the cell surface at low levels. In addition, a number of investigators [91–94] have
documented a low level of expression of Face-2 on the cell surface of normal peripheral
blood lymphocytes and spleen cells, in addition to EBV-transformed lymphoblastoid cell
lines, Jeshom and Horn2 G-B27 (line 11.9) and L-B7 (lines 11.13.12) cells, and Ltk- fibroblast
lines, using the mAb HC10.

Inference: The expression of Face-2 is not restricted to activated-immune cells, trans-
formed cells, and cancer cells, but it is also found on the surface of normal cells at very
low levels.

6. Monomeric and Dimeric Variants among Non-Classical HLA Molecules

The existence of Face-2 of the HLAs is further strengthened by the studies conducted
on HLA class Ib loci, namely HLA-E, HLA-F, and HLA-G. HLA-G mRNA was reported in
a wide variety of human tissues including peripheral blood T and B cells, keratinocytes,
fetal and adult eyes, fetal thymus, liver, and male germinal cells [95]. HLA-G was reported
on placenta extravillous cytotrophoblasts, which include proliferative and invading ex-
travillous trophoblasts, endovascular interstitial trophoblasts, placental giant cells and
chorionic trophoblasts, and thymic epithelial cells [95,96]. Interestingly, the trophoblasts
do not express HLA-A and HLA-B but only HLA-C, HLA-E, HLA-G [96], and HLA-F [97].
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The induction of HLA-G in macrophages and monocytes with proinflammatory cytokines
such as IFN-γ was observed [98]. Gonen-Gress et al. [99,100] demonstrated the expression
of Face-2 of HLA-G in a trophoblast cell line, Jeg-3, by in situ immunostaining.

In contrast to HLA-Ia molecules, the export of HLA-F from the ER requires the cyto-
plasmic tail, as observed in HeLa cells, possibly for a novel function, namely homodimer-
ization (vide infra) [101]. The expression of HLA-F was first observed on the surface of
B lymphocyte and monocyte cell lines and in vivo on extravillous trophoblasts that had
invaded the maternal decidua [102]. Further studies revealed cell surface expression of
Face-2 of HLA-F upon activation of B cells, T cells, NK cells, and monocytes using PMA and
ionomycin [103]. Dulberger et al. [104] pointed out that there are ten conserved a.a residues
that are critical for the architecture of the peptide-binding groove and for binding with
specific peptide residues. Five of these ten residues are altered within the HLA-F groove,
which led Geraghty et al. [105] to predict HLA-F either incapable of presenting peptides or
doing so in a different manner from other HLA-I molecules. A number of investigations
have also failed to elute canonical HLA-I peptides from natively expressed HLA-F from
human cell lines, leading to the conclusion that HLA-F may not present antigen [106] but
may act as a receptor for ligands to mediate signal transduction [107].

Inference: Face-2 of non-classical HLAs is also found on activated T and B cells, NK
cells, monocytes, and placental extravillous cytotrophoblasts.

7. Does Face-2 of HLA B27 Alleles Play a Role in Spondyloarthropathies?

An association between HLA-B27 and spondylorthropathies was observed in the
1970s [108,109]. When Parham’s group [89,110,111] observed the presence of B2m-free HCs
of HLA-B27 bound with influenza peptides on the surface of human HLA-B27-transfected B
cell lines (HLA-B27-CIR) as early as 1991, they noted that the “peptides seems to bind empty
(B2m-free) HLA-B27 molecules that are relatively stable under physiological conditions.
The possibility that certain class I molecules (B2m-free HCs) present extracellular peptides
to T cells in vivo should therefore be considered. For HLA-B27, this property might under-
lies the strong association of this allele with ankylosing spondylitis and other seronegative
spondylarthropathies” (p. 77, [89]). Subsequently, many investigators have observed that
HLA B27 alleles have a strong association with spondyloarthropathies [112–116]. Sponta-
neous arthritis was also observed in HLA-B27 transgenic mice lacking B2m (HLA-B27+
B2m−/−) but not in HLA-B27+ B2m+/− mice. To determine whether processing, assem-
bly, transport, and expression of the HLA-B27 molecule play a role in the disease process,
Khare et al. [117] introduced the HLA-B27 transgene into B2m-deficient mice. Within
2–4 weeks after transfection, most of the male mice possessed B2m-free B27 HCs (HLA-
B27-Face-2), but not with B2m-associated HLA-B27 (B27-Face-1). The mice with B27-Face-2
spontaneously developed nail and joint changes, hair loss, and swelling in paws, which
lead to ankyloses. Thirty-three of forty-for (75%) male mice 4 months or older developed
arthritis compared to seven of twenty-three (30%) female mice. To determine whether the
HLA-B27-Face-2 reached the cell surface in B2m−/− HLA-B27 mice, they stimulated the
splenocytes in vitro with Con-A. Low-level expression of HLA-B27-Face-2 was detected on
the cell surface of Con A-stimulated splenocytes. The presence of Face-2 on the cell surface
after stimulation suggested that environmental factors can stimulate cell surface expression
of Face-2. Furthermore, Khare et al. [118] demonstrated that Face-2 contributes to disease
pathogenesis in B27 transgenic mice. Spontaneous disease was delayed by treatment of
anti-HC-specific mAb, suggesting the importance of B27-Face-2 in disease pathogenesis.
Interestingly, they suggested that the HLA-B27-Face-2 may function like an HLA class II
molecule, possibly by forming dimers (Face-3/Face-4). This is significant in the evolving
concepts on B2m-free HLA variants.

Vasquez et al. [119] studied two untransfected cell lines, Hmy2.CIR and a human
lymphoid cell line T2, after transfecting with various HLA-B27 alleles (B*27:04, B*27:05,
B*27:06, and B*27:09). Flow cytometric observations using an intact (Face-1) HLA-B27-
specific mAb ME1 (IgG1) and an HC-specific mAb HC10 revealed that irreversible forms
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of Face-2 appeared at the cell surface to a similar extent among all subtypes, irrespective of
their association with Ankylosing Spondylitis. Bird et al. [120] recorded that some of these
lymphoblastoid cells expressed HLA-B*27:05 homodimers (Face-3) both intracellularly and
at the cell surface following endosomal recycling.

Studying the white population in the UK, Brown et al. [121] pointed out that infection
of HLA-B27-expressing cells by an organism may trigger spondyloarthropathy. Such
infection may interfere with the cellular antigen-presenting function and contribute to
the expression of aberrant HLA-B27 homodimers (Face-3). Orchard et al. [122] found
that, in the peripheral arthropathies of inflammatory bowel disease, the cell-surface HLA-
B27-homodimers may engage NK or related immunoreceptors expressed on lymphocytes
or other cells within the joint, to elicit local cytokine production or enhanced cellular
activity and to perpetuate joint inflammation. These observations indicate that HLA-I
variants, not only Face-2 but also Face3 and Face-4, may play a role in the pathogenesis of
spondyloarthrpathies. These variants may serve as biomarkers of disease.

Most importantly, Belaunzaran et al. [123] elucidated the functional role of HLA-B27-
homodimers (Face-3 of HLA-B27) using a B27-homodimer-specific mAb (HD5). The mAb
HD5 bound specifically to HLA-B27-homodimers but not B2m-associated intact HLA-B27
or A1, B7, B13, or C7. The HLA-B27-Face-3 binds to members of the killer cell receptor (KIR)
and leukocyte Ig-like families (details vide infra). In addition, in vitro assays demonstrated
that HLA-B27-Face-3 interactions with CD4+ T cells induced proinflammatory responses
(secretion of TNF and IFN-γ). Therefore, it was postulated that mAb HD5 may block the
interaction of HLA-B27-Face-3 to alter the immune responses. Indeed, mAb45 resulted
in reduced soluble TNF and decreased CD4+ T cells. This investigation of HD5 mAb
necessitates the need for developing therapeutic human HD5-specific monoclonal anti-
bodies for treating spondyloarthropathies. Furthermore, investigating serum antibodies
against HLA-B27-Face-3 in spondyloarthropathies may yield more information on the
pathogenesis and progression of the disease and enable the development of other specific
and personalized therapies.

Inference: In both mice and humans, HLA-B27-Face-2 and their dimers are associated
with spondyloarthropathies. The anti-HC antibodies, which recognize Face-2 and their
dimers, minimize spontaneous arthropathies.

8. Current Concepts Concerning Oligomerization of Face-2
8.1. Is the Cell Surface Clustering of Face-2 a Causal Factor for Dimerization to Generate Face-3
and Face-4 Variants?

It appears that dimerization is promoted by the clustering of Face-2 on the cell surface.
Several reports document that the Face-2 molecules on the cell surface are capable of aggre-
gating with other Face-2 molecules of HLA-I. In this regard, the observations of Chakrabarti
et al. [124] are notable. While constituting liposomes, they observed the self-association
or clustering of fluorescinated Face-2 of HLA-A2. The photographic figures presented in
the report documented molecular proximity of the self-associated Face-2 molecules, as
determined by flow cytometric phosphorescence resonance energy transfer (FCET). The fig-
ures also enable the visualization of the aggregation of the HCs monitored by fluorescence
photo-bleaching recovery (FPR) and time-resolved phosphorescence anisotropy (TPA), in
addition to FCET. The aggregation was blocked by B2m added to the liposomes. HLA ag-
gregates, defined by FCET, were readily detected on the surface of human lymphoblastoid
(JY) cells. Similarly, Matko et al. [125] detected clustered Face-2 molecules on activated
normal B and T cells, on cells of B and T lymphoblast lines, and on transformed fibroblasts.
No clustering was observed on the surfaces of resting B or T cells or normal fibroblasts.
The Face-2 clustering correlated with the presence of the HC-10 epitope of Face-2 at the
cell surface. The clustering was reversed by exogenous B2m. Several other investigators
have confirmed the occurrence of HLA Face-2 clusters on the plasma membranes of human
T (HUT-102B2) and B (JY) lymphoma cells [126]. The possible role of Face-2 oligomer-
ization (formation of Face-3 and Face-4) was further studied on a B lymphoblastoid cell
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line, JY [127]. Although these unique reports established further progress in the evolving
concept of different faces of B2m-free HCs of HLAs, further stringent evaluation of the
different faces is required to further validate the hypothesis of Khare et al. [117] that the
Face-3 and Face-4 variants can function like HLA class II molecules.

Using super-resolution microscopy, Kennedy et al. [128] examined variations, if any,
in the cell surface organization of different alleles at the nanoscale level. HLA-I alleles
(HLA-B*27:05/B*53:01/B*57:01 and HLA-C*06:02/C*07:02) were transfected into LCL.
721.221 lymphocytes that lacked the expression of classical HLA-I. After sorting cells to
express HLA-I molecules at similar levels, they were placed on poly-L-lysine-coated glass,
stained with mAb W6/32 that binds to intact HLA-I (Face-1) and imaged by stochastic
optical reconstruction microscopy (STORM). This technique provided co-ordinates for the
location of HLA-I, with a resolution of <20 nm. Allotypes of the same locus did not differ
in their nanoscale organization. The clusters of HLA-C on the cell surface were larger
than for HLA-B, revealing that different loci exhibit distinct nanoscale organizations at
the cell surface. Although mAb W6/32 was used with the notion that it may stain only
intact B2m-associated HLA molecules, work of Tran et al. [86] showed that the mAb W6/32
“actually recognizes an epitope present on isolated non-reduced α-chains of most HLA-B
allelic forms”. These studies suggest that clustering of cell surface HLA molecules may
have facilitated dimerization of B2m-free HCs.

Inference: Cell surface clustering of Face-2 promotes its oligomerization. Clustering
and oligomerization of Face-2 is prevented by exogenous B2m, suggesting that B2m can
downregulate the dimerization of Face-2. The half-life of Face-2 and its dimers requires
detailed investigation.

8.2. Is Dimerization a Necessary Prerequisite for Face-2 on the Cell Surface?

The dimerization of HLA HCs was investigated on H-2Ldand H-2Db MHC class
I molecules of the mouse by Capps and Zuniga [129,130]. They generated antiserum
against a synthetic peptide corresponding to a portion of the cytoplasmic domains of
the HCs of H-2Ldand H-2Db. The antibody bound exclusively to B2m-free H-2Ld/Db

HCs. Immunoblots of cell lysates were immunoprecipitated with R4-reactive H-2Ld/Db

which revealed the presence of homodimers and heterodimers of B2m-free HCs. The
B2m-free HC molecules arose late in their biosynthesis. Clustering of cells with Face-1 or
with exogenous B2m molecules prevented the formation of H-2Ld/Db HC dimers. It was
concluded that dimerization (formation of Face-3 and/or Face-4) could be a consequence
of the loss or unavailability of B2m. In addition, the dimerization of Face-2 is interpreted
as a strategy to eliminate dysfunctional monomers (Face-2). Similarly, Allen et al. [131]
observed homodimerization of Face-2 on the cell surface HLA-B27-transfected T2 cells.
Tran et al. [132] reported a correlation between disease incidence and HLA-B27 dimers in
the HLA-B27 transgenic rat models.

Lynch et al. [133] demonstrated that a significant proportion of the HLA-I content of
exosomes exists in the form of disulfide-linked dimers. These dimers can be detected after
the release of exosomes from human monocyte-derived dendritic cells. They also found
that heterodimers (Face-4) formed between two different HLA-I alleles. Most importantly,
they have shown that exosomes in the human EBV-transformed B cell line (Jesthome)
may form Face-4 between HLA-A and -B molecules. Similarly, Makhadiyeva et al. [134]
showed that similar Face-4 dimers can be detected on the human lymphoblastoid lines
LCL.221, CEM, Jesthome cell line, and on the rat C58 lymphoma cell lines when the redox
environment has been significantly altered, either by chemical oxidation with diamide,
chemically induced apoptosis with hydrogen peroxide and thimersol, or by cross-linking
of FacR/CD95. Interestingly, in the CEM cell lines, there were low levels of HLA-B27
dimers in the cell lysates in the absence of oxidative stress, whereas the Jesthome cell line,
which expresses a higher level of HLA-B27 than the CEM cell lines, displayed dimers
under normal conditions. These findings support the contention of Santos et al. [135]
that Face-3 and Face-4 dimers in dendritic cells form only after the activation induced
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upregulation of Face-2. Morales et al. [136] observed the dimerization of B2m-free HLA-G
(Face-3) in the villous cytotrophblasts. HLA-F is capable of homodimerizing (Face-3) with
the Face-2 of other HLA-F molecules or heterodimerizing (Face-4) with other HLA-I loci,
such as HLA-C [101,137].

There is an urgent need to investigate the possible occurrence of diverse forms of
homo- and heterodimers involving the six haplotypes of HLAs. We envisage diversified
forms of homo- and heterodimers and diagrammatically illustrated the hypothesis in Fig-
ure 4, for they may have significant functional and immunological implications in various
disease states including tumorigenesis, metastasis, end stage organ diseases, autoimmu-
nity, organ transplantation, or allograft tolerance and rejection. We hypothesize that an
individual who has identical pairs of alleles of all six isomers is capable of forming up to
36 different kinds of homo- and heterodimers and, in an individual who has two different
pairs of alleles of all the six isomers, 144 different kinds of homo- and heterodimers may be
possible. Dimerization may occur in different alleles at different time points depending
on the nature of the activating factor, implying that the dimerization may differ under
different pathological conditions. The functional potential of these homo- and heterodimers
requires extensive experimental investigation, further developing the work conducted by
previous investigators [129–137].
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Figure 4. Diagrammatic illustration of different combinations of dimers of peptide-free (implying
unfolded) monomeric B2m-free HCs (Face-2) resulting in different kinds of peptide-free (implying
unfolded) allelic homodimers (Face-3), peptide-free (implying unfolded) allelic heterodimers (Face-
4A), and peptide-free (implying unfolded) isomeric heterodimers (Face-4B). For the purpose of
illustrating a similarity with HLA-II, we have suggestively and tentatively indicated one monomer as
α chain and another monomer as β chain, although in reality both of them are α chains. As defined
and designated by IMGT labels (Lefranc et al. [3]), each HC, though considered unfolded, may consist
of groove (G)-like domains (α1 [D1] and α2 [D2]) and a constant (C)-like domain (α3 [D3]) with
cytoplasmic tail. Domains of different alleles of different isomers or the α and β chains as shown in
the figure may vary extensively. This implies that the ligands binding to the α1 domain of these two
chains may differ markedly. More structural studies on the dimers may further clarify the G and C
domains of each chain in a homodimer and in the allelic and isomeric heterodimers.

Not only should HLA typing be known of patients for developing personalized
immunotherapy, but a consideration of the immunogenicity and antigenicity of homo- and
heterodimers is also potentially critical. Based on Figure 4, we visualize approximately
144 monoclonal antibodies specific for each one of these dimers. Similarly, the patients’ sera
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have to be screened against these monomers and dimers and most importantly against the
dimers because they interact with both KIR and the Leukocyte Ig-like family of receptors.

We hope that our hypothesis may stimulate further studies on the multivarious HLA-I
antibodies formed against novel HLA-I heterodimers in mismatched organ transplantation,
which may play a role in transplant rejection. Indeed, proinflammatory cytokines and
T cell activation can be expected after recognition of donor HLA antigens, either by the
direct pathway (donor HLA on donor antigen-presenting cells), the semidirect pathway
(intact donor HLA on recipient’s antigen-presenting cells), or by the indirect pathway
(self-restricted presentation of processed donor-derived HLA HCs on HLA molecules
on recipient antigen-presenting cells) [138]. In this regard, Horuzko’s team of investiga-
tors [139–142] have observed HLA-G with a high level of HLA-G dimers in circulation and
augmented expression of the membrane-bound HLA-G on monocytes which are associated
with the prolongation of kidney allograft survival. Interestingly, the HLA-G dimer in
circulation was higher in a group of 90 patients with a functioning allograft compared
with 40 patients who underwent allograft rejection. They have demonstrated that the
HLA-G dimer inhibits the activation and cytotoxic capabilities of human CD8+ T cells.
This mechanism is implicated in the downregulation of Granzyme B expression. Such
homo- and heterodimers may function through differential binding to the LILRBI family
of receptors [141]. They also documented the presence of soluble HLA-G dimers as being
associated with lower levels of proinflammatory cytokines, suggesting a major role of
HLA-G dimers in controlling an inflammatory state.

Similarly, the possible role of these dimers in the lymph node and organ metastasis of
human cancer as well as in autoimmune diseases needs to be investigated for developing
personalized active specific and passive immunotherapies. All these observations suggest
that Face-2 may be transitory HLA molecules generated under activation or inflammation-
induced oxidative stress, and Face-2 may be immediately transformed into a homodimer
(Face-3) or heterodimer (Face-4) depending on the nature of the alleles in the vicinity. Since
Face-2 exposes shared and unique sequences (115QFAYDGKDY123 and 137DTAAQI142) due
to the absence of B2m, it may elicit potentially detrimental antibodies. The formation of
Face-3 and Face-4 may serve a preventative function against possible ill effects of binding
of such antibodies to exposed epitopes on Face-2.

Possibly, these homo- and heterodimers of HLA-I Face-2 may also represent neo-HLA-
I molecules or classes, from the point of view of the genes responsible for the HCs of HLA
classes, as illustrated in Figure 5. More structural studies are needed to understand their
possible functions and role in human pathology. Incidentally, it is interesting to note that
Triantafilou et al. [143] observed the oligomerizaton of HLA class II in HLA-DR-transfected
fibroblast cells by immunoprecipitation techniques from detergent-derived cell extracts.

Inference: Although dimerization (formation of Face-3 and/or Face-4) could simply
be a consequence of the loss or unavailability of B2m, dimerization masks the exposure of
the most commonly shared highly immunogenic amino acid sequences in the HC, which
are masked by B2m in Face-1. Therefore, dimerization could be a strategy to protect highly
immunogenic sequences on the Face-2 molecules.

8.3. Do Cysteine Residues in Face-2 Facilitate and Stabilize Dimerization?

Allen et al. [131] showed that HLA-B27 Face-2 can form disulfide-bonded homodimers
(Face-3) through cysteine residue at position 67 (C67) in the extracellular α1 domain. It is rea-
sonable to infer the role of C67 in HLA-B27 homodimerization, since 41 of the 44 HLA-B27
alleles possess C67 (Table 3), with the exception of B*2718, B*2723, and B*2729. In contrast
to HLA-B27 Face-2, B27 Face-3 homodimers appear to be binding to peptides and stabilized
by a peptide epitope, despite the absence of B2m. Most interestingly, HLA-B27 Face-3 ho-
modimers are still recognized by both Face-2 binding mAb HC10 and Face-1 binding mAb
W6/32. Although Allen et al. [131] believed that mAb W6/32 is conformation-specific, sur-
face labeling and immunoprecipitation showed the presence of mAb W6/32-reactive Face-2
at the surface of HLA-B27-transfected T2 cells. McMichael and Bowness [115] observed that
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disulfide-bonded HLA-B27-Face-3 is present in HLA-B*2705-transfected LBL721.220 cells.
mAb HC10 confirmed the presence of both non-reduced and reduced Face-3 in Western
blots. In this regard, Mear et al. [144] proposed that the Face-3 homodimerization is a result
of HLA-B27 “misfolding” within the ER, the accumulation of which occurs concomitantly
with the proinflammatory intracellular stress response. Such misfolding of HLA-B27 may
contribute to its recognition by both HC10 and W6/32.
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Figure 5. Illustration of the genes responsible for the heavy chains (HCs) of HLA classes. In HLA
class I, the HCs generated by genes in chromosome 6 combine with B2m generated from the gene
at chromosome 15, whereas HLA class II is a result of dimerization of HCs formed from genes in
chromosome 6. The illustration guides to hypothesize the generation of a new class of HLAs (a
neo-HLA class) from genes in chromosome 6 by their homo- or hetero-dimerization.

Table 3. The distribution of Cys and Tyr in HLA-B alleles, based on the examination of a.a. sequences
of α1, α2, and α4 domains of 847 B alleles. Cys is observed in 100% of alleles at position 101 and 164,
90% of alleles at position 67, and 50% of alleles in position 203. Compared to Cys, Tyr is almost 100%
prevalent in positions 7, 9, 27, 59, 74, 84, 85, 99, 118, 123, 159, 171, and <50% in position 111, 116, and
209. Interestingly, Tyr is observed in four B*07 and in one B93 allele.

Allelles
α1 α2 α3

1 7 9 27 59 67 74 84 85 99 10
1

11
3

11
6

11
8

12
3

15
9

16
4

17
1

20
3

20
9

B*07:02 Y Y Y Y Y Y Y Y C Y Y Y C Y C Y

B*07:09 Y Y Y Y Y Y Y Y C Y Y Y C Y

B *0710 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*07:14 Y Y Y Y Y Y Y Y C Y Y Y Y Y C Y

B*07:17 Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
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Table 3. Cont.

Allelles
α1 α2 α3

1 7 9 27 59 67 74 84 85 99 10
1

11
3

11
6

11
8

12
3

15
9

16
4

17
1

20
3

20
9

B*14:01 Y Y Y Y C Y Y Y C Y Y Y Y C C Y

B*14:06 Y Y Y Y C Y Y Y C Y Y Y Y C

B*15:02 Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

B*15:09 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*15:10 Y Y Y Y C Y Y Y Y C Y Y Y Y C Y C Y

B*15:18 Y Y Y Y C Y Y Y Y C Y Y Y Y C Y C Y

B*15:21 Y Y Y Y C Y Y Y Y C Y Y Y Y C Y C Y

B*15:23 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*15:44 Y Y Y Y C Y Y Y Y C Y Y Y Y C Y

B*15:45 Y Y Y Y Y Y Y Y C Y Y Y Y Y C Y

B*15:90 Y Y Y Y C Y Y Y Y C Y Y Y Y C Y

B*15:91 Y Y Y Y Y Y Y Y C Y Y Y C Y

B*15:92 Y Y Y Y Y Y Y Y C Y Y Y C Y C Y

B*15:93 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*15:99 Y Y Y Y C Y Y Y Y C Y Y Y Y C Y

B*27:01 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:02 Y Y Y C Y Y Y C Y Y Y Y C Y C Y

B*27:03 Y Y Y C Y Y Y C Y Y Y Y C Y C Y

B*27:04:01 Y Y Y C Y Y Y C Y Y Y Y C Y C Y

B*27:04:02 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:05:02 Y Y Y C Y Y Y C Y Y Y Y C Y C Y

B*27:05:03 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:05:04 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:05:05 Y Y Y C Y Y Y C Y Y Y Y C Y C Y

B*27:05:06 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:05:07 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:05:08 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:05:09 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:05 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:06 Y Y Y C Y Y Y C Y Y Y Y Y C Y C

B*27:07 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:08 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:09 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:10 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:11 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:12 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:13 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:14 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:15 Y Y Y C Y Y Y C Y Y Y Y C Y
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Table 3. Cont.

Allelles
α1 α2 α3

1 7 9 27 59 67 74 84 85 99 10
1

11
3

11
6

11
8

12
3

15
9

16
4

17
1

20
3

20
9

B*27:16 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:17 Y Y Y C Y Y Y C Y Y Y Y C Y Y

B*27:18 Y Y Y Y Y Y Y C Y Y Y Y C Y

B*27:19 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:20 Y Y Y C Y Y Y C Y Y Y Y C Y Y

B*27:21 Y Y Y C Y Y Y C Y Y Y Y Y C Y Y

B*27:23 Y Y Y Y Y Y Y C Y Y Y C Y

B*27:24 Y Y Y C Y Y Y C Y Y Y Y Y C Y

B*27:25 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:26 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:27 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:28 Y Y Y C Y Y Y C Y Y Y Y C

B*27:29 Y Y Y Y Y Y Y C Y Y Y Y C Y

B*27:30 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:31 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:32 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:33 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:34 Y Y Y C Y Y Y C Y Y Y Y C Y

B*27:35 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*27:36 Y Y Y C Y Y Y C Y Y Y Y C Y C

B*35:26 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:01:01 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*38:01:02 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:02:01 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:02:02 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:03 Y Y Y Y Y Y Y C Y Y Y C Y

B*38:04 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:05 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*38:06 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:07 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:08 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:09 Y Y Y Y C Y Y C Y Y Y C Y

B*38:10 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:11 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:12 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*38:13 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*38:14 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*38:15 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*39:01:01:01 Y Y Y Y Y Y Y C Y Y Y C Y C Y

B*39:01:01:02 Y Y Y Y Y Y Y C Y Y Y C Y C Y
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Table 3. Cont.

Allelles
α1 α2 α3

1 7 9 27 59 67 74 84 85 99 10
1

11
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11
6

11
8

12
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15
9

16
4

17
1

20
3

20
9

B*39:01:03 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:01:04 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:02:01 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:02:02 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:03 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:04 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:05 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*39:06:01 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:06:02 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:07 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*39:08 Y Y Y Y Y Y Y Y C Y Y Y C Y C Y

B*39:09 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:10 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:11 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*39:12 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:13:L01 Y Y Y Y Y Y Y Y C Y Y Y C Y

B*39:13:02 Y Y Y Y Y Y Y Y C Y Y Y C Y C Y

B*39:14 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:15 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:16 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:17 Y Y Y Y C Y Y Y C Y Y Y Y C Y

B*39:18 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:19 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:20 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*39:22 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:23 Y Y Y Y Y Y Y C Y Y Y C Y C Y

B*39:24 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:25N Y Y Y Y C Y Y Y C

B*39:26 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:27 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:28 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:29 Y Y Y Y C Y Y Y C Y Y Y Y C Y

B*39:30 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:31 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:32 Y Y Y Y C Y Y Y C Y Y Y C

B*39:33 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:34 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*39:35 Y Y Y Y C Y Y Y C Y Y Y C Y

B*39:36 Y Y Y Y C Y Y Y C Y Y Y C Y C Y
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Table 3. Cont.

Allelles
α1 α2 α3

1 7 9 27 59 67 74 84 85 99 10
1

11
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11
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11
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9

16
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17
1

20
3

20
9

B*39:37 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*39:38Q Y Y Y Y C Y Y Y C Y Y Y Y C Y

B*39:39 Y Y Y Y Y Y Y C Y Y Y C Y

B*39:40N Y Y Y Y C Y Y Y C Y Y Y

B*39:41 Y Y Y Y C Y Y Y C Y Y Y C Y C Y

B*73:01 Y Y Y Y C Y Y Y C Y Y Y Y C C Y

B*78:03 Y Y Y Y C Y Y Y C Y Y Y Y C

B*95:01 Y Y Y Y Y Y Y Y C Y Y Y C Y

B*95:08 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*95:09 Y Y Y Y Y Y Y Y C Y Y Y C Y

B*95:12 Y Y Y Y Y Y Y Y C Y Y Y Y C Y

B*95:13 Y Y Y Y Y Y Y Y C Y Y Y C Y

B*95:14 Y Y Y Y C Y Y Y Y C Y Y Y C Y C Y

B*95:15 Y Y Y Y C Y Y Y Y C Y Y Y C Y

B*95:19 Y Y Y Y C Y Y Y Y C Y Y Y C Y

Antoniou et al. [145] studied the formation of B27-Face-3 and the relationship to
assembly kinetics. Two distinct populations of HC-dimers were detected, one within the
ER and another at the cell surface [120,145]. One set of homodimers form in the presence
of C67 [146] and another in the absence of C67 [120]. Evidently, cysteine residues other than
C67 or other amino acids, such as serine or tyrosine, could be involved in HC dimerization.
Taurog [147] reported that transgenic rats expressing HLA-B27 with serine substituted for
C67 developed the spondyloarthropathy-like phenotype with somewhat less arthritis than
controls expressing wild type B27, suggesting that C67 may not be a prerequisite for the
disease. Importantly, C67 is also shared by a small cohort of other HLA-B alleles (Table 3).

Bird et al. (120) have shown “that presence of C67 alone in B15 and B39 HCs is not
sufficient to form homodimers” (p750), although the authors failed to note that there
are some B39 alleles without C67 (see Table 3). Indeed, HLA-B39 is also reported to be
associated with spondyloarthropathy [148,149]. B27 mutants with C67 can generate S-S
bonds with intra-chain cysteines of the α2 and α3 domains; however, these misfolded
forms may not exit the ER in human cells (114). Similarly, Antoniou et al. [145] suggest
the possibility of HC dimerization through bonding between C67 of one HC with C164 of
another HC. It is evident from this report that B2m-free HCs within the ER can form dimers
through the structurally conserved Cys at position 164 (Table 3). Nossner and Parham [150]
also observed the dimerization of HLA-B*07:02-transfected C1R cells, which is an HLA-A-
and HLA-B-deficient EBV transformed B cell line expressing HLA-C4.

All these observations suggest that dimerization could result not only in homodimers
(Face-3) but also in heterodimers (Face-4). Antoniou et al. [145] further pointed out that
residues surrounding C67 can promote HC dimerization. In this regard, Whelan and
Archer [151] have shown Lys70 residue as observed in HLA- B27 and B73, conferring
enhanced chemical reactivity to C67. Antoniou et al. [145] demonstrated that Lys70 and
Ala71can impact dimerization when substituted into HLA-A2. They point out that residues
Gln65 and Iln66 can also enhance HC dimerization. If this is verified, it may further confirm
that heterodimerization can occur among different alleles of different haplotypes.

Inference: Dimerization of B2m-free HCs may involve cysteine–cysteine linkages
between two heavy chains. In HLA- B-derived HCs, C67 is highly prevalent and may
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contribute to S-S bonding between the HCs. Other amino acids adjacent to C67 such as
Gln65 Iln66 Lys70 Ala71can impact S-S linkages of the dimers.

8.4. Documentation of Cysteine-42-Mediated Homodimerization of HLA-G

Boyson, in Strominger’s group [152], investigated whether HLA-G dimerization oc-
curred naturally, using the HLA-G-transfected mutant EBV-transformed B cell line B-LCL
721.221 which is devoid of any HLA class I molecules. The B-LCLs were lysed and ana-
lyzed on SDS/PAGE gels under both reducing and non-reducing conditions, blotted to
nitrocellulose. On the blots, the HLA-G HCs were monitored with the HLA-G HC-specific
mAb MEM-G/1. Under non-reducing conditions, two bands, one 39 kDa and another
78 kDa, were observed. However, under reducing conditions, the 78 kDa band was not
observed, suggesting that the band missing in the reducing gels was a dimer, possibly
disulfide-bonded. Further confirmation of the dimeric nature of the 78 kDa band was
ascertained by a parallel control experiment. They repeated the experiments conducted by
another Strominger team [153] in which HLA-A2 was immunoprecipitated by using anti-
β2m mAb (BBM.1) beads from surface-biotinylated HLA-A2 transfectants in the presence
and absence of iodoacetamide (IAM). Dimerized HLA-A2 HCs were observed under nonre-
ducing conditions in the absence of IAM, but this dimerization was completely abrogated
by the addition of IAM, indicating that the HLA-A2 dimers could be an artifact of cell lysis
and immunoprecipitation. The inclusion of IAM in the lysis buffer enabled distinguishing
between preexisting and artefactual HLA dimers. Similarly, when HLA-G was immuno-
precipitated from surface-biotinylated HLA-G transfectants, HLA-G dimers were detected
under nonreducing conditions even in the presence of IAM, suggesting that they were
preexisting dimers and not an artifact. The existence of dimers was confirmed using the
conformation-specific W6/32 mAb and the HLA-G-specific MEM-G/11 mAb. Furthermore,
the mutation of C42 on HLA-G to Ser42 completely abrogated the dimerization of HLA-G in
the absence of IAM. Thus, dimerized HLA-G exists on the cell surface linked by means of a
C42-mediated disulfide bond. Gonen-Gross et al. [99,100] documented the involvement of
C42 in the dimerization of HLA-G using the B cell line LCL 721.221 and a melanoma cell
line LB33 mel B1 that expresses HLA-A24 only. Similarly, Shiroishi et al. [154] showed that
HLA-G can be expressed as a disulfide-linked dimer both in solution and at the cell surface.
Although Apps et al. [155] contend that HLA-G is a B2m-associated dimer with increased
avidity for LILRB1 receptors, Morales et al. [136] showed that normal placental villous
cytotrophoblast cells indeed synthesized B2m-free, S-S-bonded HLA-G HC homodimers.
Interestingly, incubating cells at reduced temperatures enhances HC dimerization in both
HLA-B27 and HLA-A2 [145]. It is interesting to note that HLA-A2 (A*02:07, A*02:15N,
A*02:18) has C99 (Table 4). Whereas Cys is lacking at position 67 in HLA-A, HLA-C, HLA-E,
HLA-F, and HLA-G, it occurs at positions 101, 164, and 203 in HLA-A (Table 4), and in
HLA-C, it occurs in these positions as well as in the terminal position # 1 (Table 5).

Table 4. Distribution of Cys and Tyr in a few HLA-A alleles, based on the examination of a.a.
sequences of α1, α2, and α4 domains of 505 A alleles. Cys is observed in 4 alleles at position 99, in
almost all alleles at position 101 and 164, and in >50% of alleles at position 203. Compared with Cys,
Tyr is almost 75 to 100% prevalent in positions 7, 9, 27, 59, 74, 84, 85, 99, 113, 116, 118, 123, 159, 171,
and 209, and <50% in position 99.

ALLELES
α1 α2 α3

1 7 9 27 59 67 84 85 99 10
1

11
3

11
6

11
8

12
3

15
9

16
4

17
1

20
3

20
9

E*01:01:0101 Y Y Y Y Y C Y Y Y Y C Y C Y
A*01:01 Y Y Y Y Y Y C Y Y Y Y C Y C Y
A*01:04 Y Y Y Y Y Y C Y Y Y Y C Y
A*02:01 Y Y Y Y Y C C Y Y Y Y Y C Y C Y
A*02:07 Y Y Y Y Y C C Y Y Y Y Y C Y C Y
A*02:15 Y Y Y Y Y C C Y Y Y Y Y C Y C Y
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Table 4. Cont.

ALLELES
α1 α2 α3

1 7 9 27 59 67 84 85 99 10
1

11
3

11
6

11
8

12
3

15
9

16
4

17
1

20
3

20
9

A*02:18 Y Y Y Y Y C C Y Y Y Y Y C Y C Y
A*02:10 Y Y Y Y Y Y C Y Y Y Y Y C Y C Y
A*23:01 Y Y Y Y Y C Y Y Y Y Y C Y C Y
A*23:02 Y Y Y Y Y C Y Y Y Y Y C Y
A*24:62 Y Y Y Y Y C Y Y Y Y C Y

A*68:02:01:01 Y Y Y Y Y Y Y C Y Y Y Y Y C Y C Y
A*68:15 Y Y Y Y Y Y Y C Y Y Y Y Y C Y
A*92:03 Y Y Y Y Y C C Y Y Y Y Y C Y C Y

Table 5. The distribution of Cys and Tyr in HLA-C alleles, based on the examination of a. a sequences
of α1, α2, and α4 domains of all C alleles. Cys is lacking at position 67 and at 99 (with the exception
of C*01:02:01, C*01:03, and C*01:04), and is present in almost all alleles at position 101, 164, and 203.
Compared to Cys, Tyr is almost 75 to 100% prevalent in positions 7, 9, 27, 59, 74, 84, 85, 99, 113, 118,
123, 159, 171, and 209.

ALLELES
α1 α2 α3

1 7 9 27 58 67 84 85 99 10
1

11
3

11
6

11
8

12
3

15
9

16
4

17
1

20
3

20
9

E*01:01:01:01 C Y Y Y Y C Y Y Y Y C Y C Y
C*01:02:01 C Y Y Y Y Y Y C C Y Y Y Y Y C Y C Y

C*01:03 C Y Y Y Y Y Y C C Y Y Y Y C Y C Y
C*01:04 C Y Y Y Y Y Y C C Y Y Y Y C Y C Y

C*02:02:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*02:02:02 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*02:10 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*02:11 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*05:01:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*05:03 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*05:08 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*05:09 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*06:02:01:01 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*06:02:01:02 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*07:01:01 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:01:02 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*07:02:01:01 C Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:02:01:02 C Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:02:01:03 C Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*07:03 C Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:04:01 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:04:02 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*07:06 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:11 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:18 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:19 C Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:26 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:29 C Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:30 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:36 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:41 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:42 C Y Y Y Y Y Y C F Y Y Y C Y C Y

C*08:01:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*08:02 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*08:03 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
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Table 5. Cont.

ALLELES
α1 α2 α3

1 7 9 27 58 67 84 85 99 10
1

11
3

11
6

11
8

12
3

15
9

16
4

17
1

20
3

20
9

C*08:09 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C
C*12:02:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*12:02:02 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*12:03:01:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*12:04:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C
C*12:04:02 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*12:05 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*12:08 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*12:13 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*12:14 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*12:19 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*14:02:01 C Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*14:03 C Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*15:02:01 C Y Y Y Y Y Y Y Y C Y Y Y C Y C Y
C*15:03 C Y Y Y Y Y Y Y Y C Y Y Y C Y C Y
C*15:04 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*15:05:01 C Y Y Y Y Y Y Y Y C Y Y Y C Y C Y
C*15:05:02 C Y Y Y Y Y Y Y Y C Y Y Y C Y C Y

C*15:06 C Y Y Y Y Y Y Y Y C Y Y Y C Y C Y
C*15:16 C Y Y Y Y Y Y Y Y C Y Y Y C Y C Y
C*15:17 C Y Y Y Y Y Y Y Y C Y Y Y C Y C Y

C*16:01:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*16:01:02 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y

C*16:02 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*16:04:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*17:01 G Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*17:02 G Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*17:03 G Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*18:01 C Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*18:02 C Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*05:01:01 C Y Y Y Y Y Y Y Y C Y Y Y Y C Y C Y
C*07:01:01 C Y Y Y Y Y Y Y C Y Y Y Y C Y C Y

C*18:01 C Y Y Y Y Y Y C Y Y Y Y C Y C Y

Inference: During dimerization, C42 may be involved in S-S linkage in B2m-free HCs
of HLA-G. The finding that the mutation of C42 on the HCs to Ser-42 totally abrogated
dimerization confirms the role of C42 in the dimerization of Face-2.

8.5. Does Oxidative Stress Play a Role in Dimerization?

Davies and his team [156–161] have extensively studied the role of covalent crosslink-
ing within or between polypeptide HCs of different proteins. They point out that such
covalent crosslinking within and between HCs plays a role in determining structural con-
figurations and ligand-receptor interactions of the proteins. Under normal physiological
conditions, covalent crosslinking can occur either enzymatically or due to molecular reac-
tions. Under pathological conditions (inflammation, injury, infections, and malignancy),
“the covalent crosslinking is generated as a consequence of exposure to oxidants (radicals,
excited states, or two-electron species) that are induced by endo- or exogenous stimuli and
as a result of the actions of a number of enzymes (oxidases and peroxidases)” (p. 1, [160]).
The oxidative crosslinking may result in the folding of HCs within cells in the ER or Golgi
involving (1) the generation of S-S bonds between two Cys residues, and (2) crosslinking of
two Tyr residues (Figure 6). These crosslinkings occur commonly during oxidative stress.
They can be formed between different sites within the same molecule (intramolecular or
intrachain crosslinks) or between two different chains in a single molecule (e.g., the inter-
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chain crosslinks in mammalian insulin receptors), and they play a key role in stabilizing
or maintaining the structural configurations that are essential to functional activity. The
number of S-S bond-containing polypeptide HCs is well defined in structural proteins
such as receptors (e.g., the low-density lipoprotein receptor, LDLR), and extracellular ma-
trix proteins (e.g., laminin). Similarly, dityrosine crosslinking is observed in lipoproteins,
extracellular matrix proteins, lysozyme, myoglobin, fibronectin, laminins, calmodulin,
insulin receptors, hemoglobin, and centrin 2 [161]. Dityrosine crosslinking may arise due
to oxidative damage in cells exposed under stress or exposure to continuous flux of H2O2
or exposed to peroxidase activity. However, persistent inflammation and oxidative stress
are well known in patients with end-stage renal disease (ESRD) [162–166].
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Interestingly, Colombo et al. [166] performed a detailed investigation on plasma
protein-bound di-tyrosines as biomarkers of oxidative stress in ESRD patients on mainte-
nance hemodialysis (HD). They observed that the pre-HD levels of plasma protein-bound
di-tyrosines in hemodialyzed patients were significantly higher when compared with di-
Tyr levels in age-matched healthy subjects. “In most ESRD patients, a single HD session
decreased significantly the plasma protein-bound di-Tyr level, even if the mean level of
plasma protein-bound di-Tyr post-HD remained significantly greater in ESRD patients
compared to the mean di-Tyr level in age-matched healthy subjects” (p. 60, [153]). Also,
urine contains polypeptides with dityrosine in patients with diabetes undergoing HD [166].
Evidently, inflammation-induced oxidative stress to kidneys in ESRD may have caused the
release of proteins containing di-tyrosine into circulation. However, the exact source of
the dityrosine-containing polypeptides in circulation remains uncertain and needs to be
investigated. Interestingly, there is no report to date documenting the dimerization of Tyr
or dityrosine of HLA HCs, although (1) dityrosine is observed in plasma and urine from
patients with diabetes, ESRD, or undergoing hemodialysis [166], and (2) Tyr is abundant in
HLA-A (Table 5) and in isomers of HLA-Ib.

Inference: During inflammation, injury, infections, malignancy, ESRD, and trans-
plantation, covalent crosslinking may be generated by oxidative stress induced by endo-
or exogenous stimuli and because of the actions of a number of enzymes (oxidases and
peroxidases). The oxidative crosslinking may result in the folding of HCs within cells in the
ER or Golgi involving S-S bonds between two Cys residues, and/or crosslinking between
two Tyr residues.

9. Diversified Functional Capabilities of B2m-Free HLA Variants

One of the primary roles of B2m in intact HLA class I (Face-1) is to provide a stable
groove for the binding of peptides for antigen presentation to the CD8+ T lymphocytes.
HLA-I (Face-1) may also play a role in non-immunological functions by interacting with
insulin receptors, endorphin, glucagon, and epidermal growth factors [167–171]. Immuno-
logical and non-immunological functions of B2m-free HLA variants are steadily emerging.
The above reports claim that peptides can bind to these variants. In a transfected B cell
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line (LCL 721.221), the peptides bind to glycosylation-altered Face-2 of HLA-F [103]. The
peptides can bind to HC in the absence of B2m “with sufficient affinity to establish a func-
tionally conformed molecule on the cell surface (p. 833, [17])”. Carreno and Hansen [94]
confidently claim that the binding of exogenous peptide ligand can influence the expression
and half-life of B2m-free HLA variants at the cell surface. However, there is no report so far
to document that the HLA variants present antigens.

Recent findings indicate that the α1 and α2 domains of HLA variants can serve as
binding sites for short peptides, polypeptides, and a variety of proteins. Like HLA-I Face-1,
B2m-free HC variants (Face-2, Face-3, and Face-4) (Figure 3) have the propensity to bind to
members of killer cell receptor (KIR) and leukocyte Ig-like families. Kulkarni et al. [172]
clarified that the interaction between KIR and HLA-I results in the regulation of immune
responses in infection, inflammation, and malignancy. Detailed investigations have been
carried out by Kollnberger and his team of investigators [173–183] on KIR and HLA-I
variants in spondyloarthropathies and other diseases. KIR receptors are categorized by
the number of extracellular Ig-like domains, either 2 (termed 2D) or 3 (termed 3D). KIR3D
includes domain 0 (D0), D1, and D2, whereas KIR2D may have D0 and D2 or D1 and D2.
KIRD may have long (KIRDL) or short (KIRDS) cytoplasmic tails and they perform a variety
of roles in immune homeostasis. KIRDL performs inhibitory immune regulatory functions,
whereas KIRDS performs immune stimulatory functions. Their domains interact differ-
ently with different B2m-free HLA variants and HLA haplotypes [173,175–177,179–183].
KIR3DL2 expressed on NK and T cells binds to B27-dimers of Face-2, and Face-2 per se on
antigen presenting cells, tumor cells, and trophoblast cells. D0 plays a central role in the
stronger binding of KIR3DL2 to Face-2 of HLA-F, and Face-2 and Face-4 of HLA-I classes.

Kollnberger’s team [173–183] assessed KIR binding to HLA-Ia variants using sev-
eral approaches, which included (i) flow cytometric analysis of KIR-expressing cell lines
stained with HLA-I Face-1; (ii) recombinant KIR Fc fusion proteins or KIR tetramers coated
fluorescent multiplex beads; (iii) physical measurements of KIR binding to HLA-I vari-
ants; (iv) binding of KIR-expressing reporter cells to HLA-I variants or to HLA-I variant
transfected cell lines; and (v) KIR inhibition of NK cytotoxicity and IFN-γ production by
binding to HLA-I variants. The binding of HLA variants inhibits lymphocyte IFNγ production
and cytotoxicity. KIR3DL2 has the propensity to suppress tumor immune surveillance and promote
maternal fetal immune tolerance. Since KIR family receptors are not restricted to subsets of
NK cells but are also expressed by γδ, CD8 and CD4 αβ T cells involved in health and
various diseases [184,185], more detailed investigations are needed to assess the outcome
of interactions of KIR-HLA variants on these different kinds of T cells.

Interestingly, when immune cells are activated due to inflammation, infection, injury,
and pregnancy, the B2m-free HLA variants (Face-2, 3, and 4) such as that of HLA-C and
HLA-F are overexpressed [186–189]. Concomitantly, KIRs are also activated and conse-
quently the HLA-I variants act as ligands for activating KIRs. During pregnancy, the
secretion of cytokines and growth factors that enable vascularization are essential for blood
supply through the placenta [190–192]. As a result, NK cells in the endometrial decidual
tissue, both KIR2DL1/2, as well as monomeric, homo- and heterodimeric variants of B2m-
free HLA-F, HLA-C, and other HLA-I are activated for functional interactions [177,179].
The variants of HLA-F and other HLA-I loci act as ligands for activating KIR and KIR3DL2
expressed on placental and maternal cells [192], suggesting that not only the suppression
of inhibitory function but also the activation through KIRs may contribute to normal preg-
nancy. A complementary report [193] suggests that HLA-F variants act as ligands for
KIR3DS1. However, more focused experimentation on activated cells under different condi-
tions such as inflammation, infection, transplantation, spondyloarthropathies, malignancy,
and metastasis are needed for deriving definitive conclusions on the interaction between
activating and inhibiting KIRs and specific HLA-I variants.

Inference: The expression and half-life of B2m-free HLA variants at the cell surface
may depend on ligands binding to the variants. The ligands may include exogenous
peptides, members of the KIR family with long and short cytoplasmic tails, and leukocyte
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Ig-like molecules, which are expressed on several immune cells, including a variety of T
cells and NK cells.

10. Are B2m-Free HC Variants the Evolutionary Progenitors of HLA-I and II and May
Represent Proto-HLA?

The structures and functions concerning HLA-I and HLA-II are found throughout
jawed vertebrates. Extensive studies carried out by Dijkstra and co-investigators [194–199]
on their broad distribution and conservation during vertebrate evolution demonstrated
that the structural patterns of HCs are evolutionarily primitive among HLA-I and HLA-II
classes. Structural configuration of HLA-I has been studied in cartilaginous and bony
fishes, amphibians, birds, and a variety of mammals, whereas HLA-II structures were
studied in lungfish, chicken, mice, and humans (for detailed citations, see Wu et al. [1,199]).
Comparing the sequences of HCs, Kaufman and co-investigators [200–202] postulated
that B2m-free HC-homodimers would have evolved into class II heterodimers, which
would have given rise to ancestral HLA-I and HLA-II. A similar postulation was made
by Hashimoto and others [203–205] on the origin of HLA classes. Concurring with this
postulation, Wu et al. [1] have recently examined in detail the structure and sequences
of HLA-I and HLA-II from the perspective of their relationship, and they developed a
diagrammatic model with which the authors proposed in the title itself that “in evolution, a
class II-like molecule came first”. Although it is thought-provoking and interesting, hitherto
no specific investigation has been undertaken to examine the presence of B2m-free HCs
of HLA molecules, primarily due to the contention of earlier investigators that B2m-free
HCs are unstable and that B2m provides stability to the HC. Even recently, while trying to
explain how the synergistic binding of B2m, HC, and peptides, Wu et al. [199] state that B2m
is stable when alone, while HC on its own is unstable. However, in vitro studies carried out
recently by Dirscherl et al. [206], with isolated HCs in conjunction with molecular docking
and dynamics simulations, suggest that the α3 domain of one monomer can dimerize with
another monomer in a manner similar to that seen for B2m.

Hashimoto and others [203] have elegantly pointed out, based on the sequence simi-
larities, that HLA class I and class II molecules are “most likely evolved from a common
ancestor. . . The class II β-chain seems to have diverged more slowly than other chains. . .
more than 400 million years ago the MHC class I-like molecules had membrane-proximal
domains of the same length as the contemporary” (p. 2212) HCs of class II.

The reports recapitulated in the present review postulate that the B2m-free HLA–HCs of
monomeric, homo-, and heterodimeric variants could be the common ancestors of classical
and non-classical HLA-I and HLA-II. As a preliminary measure, we examined a.a sequence
similarities between B2m-free HC (Face-2) and the heavy chains of HLA class II. Notably,
the HLA-I sequence 117AYDGKDY123 is shared by classical (HLA-A, HLA-B, and HLA-C)
and non-classical (HLA-E, HLA-F, and HLA-G) HLA-I and by Face-2 involved in homo and
heterodimerization, although it is lacking in the HCs of HLA-II. However, we observed that
another six a.a sequence (34 VRFDSD39), a neighboring doublet (RA), and a neighboring
triplet (58EYW60) a.a. that are found in all classical HLA class I isomers are also found in
the β-chain of DRB, DQB, and DPB isomers of HLA class II, as illustrated in Table 6.

Based on these preliminary observations, we have postulated an evolutionary tree
for HLA-I and HLA-II with B2m- free HC as the progenitor, as shown in Figure 7. The
conclusive proof lies in further scrutiny of the a.a. sequences and in documenting the
presence of B2m-free HCs from cephalochordates and Agarthans, although in these two
groups MHC genes are reported to be lacking [1]. The polyreactive mAbs such as TFL-006
or TFL-007 and other mAbs as listed in a recent report [37] likely aid in the diagnosis of
Face-2 upon activation of cells, particularly on the cell surface of immune cells of Agarthans,
cartilaginous fishes, and higher vertebrates, with proinflammatory cytokines, chemokines,
PHA, PMA, and such similar activators.
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Table 6. Similarities in the a. a sequence of Proto-HLA, HLA class I heavy chains and β-chains
of HLA-II.

HLA class I and Proto-HLA
34V R F D S D . . . . . . E . R A . . . . . . . . E Y W 60

V: VALINE (NON-POLAR); R: ARGININE (+ CHARGE); F: PHENYLALANINE (NON-POLAR); D: ASPARTIC ACID (- CHARGE); S: SERINE (POLAR);

E: GLUTAMIC ACID (- CHARGE); A: ALANINE (NON-POLAR); Y: TYROSINE (POLAR); W: TRYPTOPHAN (NON-POLAR)

ALLELES EXAMINED for Heavy Chains
HLA-A ALLELES 1-504
HLA-B ALLELES 1-846
HLA-C ALLELES 1-277
HLA-G ALLELES 4
HLA-E ALLELES 2 34V R F D N D . . . . . . V . R A . . . . . . . . E Y W 60

HLA-F ALLELE 1 34L R F D S D . . . . . . E . R E . . . . . . . . Q Y W 60

HLA class II
38V R F D S D . . E . R A . . . . . . . . . E Y W 61

ALLELES EXAMINED for β-chain of HLA-II
DRB ALLELES 1-512
DRB1*010101–1*030101–1*040101–1*070101–1*080101–1*090102–*110101, DRB1*130101–1*140101–1*150101–1*160101, DRB3*0106,
DRB5*0102, DRB5*0202–5*0205;
DQB ALLELES 1–71
DQB1*050101–DQB1*020101, DQB1*060101
36V R F D S D . . E . R A . . . . . . . . . E Y W 59

DPB ALLELES 1–123
DPB1*020102–1*030101–1*0402–1*0501–1*0601–1*0801–1*0901–1*1001, DPB1*1102, DPB1*1401, DPB1*1502,
DPB1*1601–1*1701–1*1801–1*1901–1*200101 ---- 1*9901
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Figure 7. Hypothetical outline of the evolutionary tree of HLA. B2m-free HC of HLA-I or the
proto-HLA is considered as the primitive variant of HLA-I and II, which by dimerization gives
rise to homo- and heterodimers. B2m would have associated with monomers (Face-2) to evolve as
HLA-I. Another independent monomer would have combined with modified Face-2 to evolve as
HLA-II heterodimers.
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Inference: The presence of six a.a. sequences (34 VRFDSD39) with a neighboring
doublet and a triplet (RA and 58EYW60), which are found in all classical HLA class I
isomers, are also found in the β-chain of DRB, DQB, and DPB isomers of HLA class II,
suggesting that the different Faces of HLA variants, more particularly Face-2, may represent
the proto-HLA and the progenitors of HLA-I and HLA-II classes.

11. Summary: Genesis, Transformation, and Functions of HLA Variants (Neo-HLA)

Since finding HLA-B8 and HLA-B27 B2m-free HCs (Face-2) on the cell surface of a
human lymphoblastoid cell line [22], their genesis has remained controversial. However,
the experimental investigations of Demaria et al. [11–13] clarified that Face-2 may emanate
from two distinct pathways:

(a) Inducing the expression of B2m-free HCs with PMA on activated T cells and blocking
their exit with BFA from the ER together confirms that the induction of Face-2 on
activated cells requires the direct transport via ER independent of their association
with B2m.

(b) In a second experiment, they stripped Face-2 from PMA-activated T cells by brief
treatment with trypsin in the cold. The treatment of these cells with trypsin selectively
removed surface B2m-free HCs but had no effect on B2m-associated HLA (Face-1)
(p. 107, Lines 19–21, [11]). The treated cells were then incubated at 37 ◦C in the
presence or absence of BFA. They noted that the BFA did not block Face-2 reappearance
on these trypsin-treated activated T cells, indicating that they are dissociated from
B2m-associated HLAs. They immunostained with mAb HC10 to confirm that the
emergence of Face-2 is due to dissociation of B2m from Face-1.

These two observations put an end to the belief of many investigators that Face-2
results solely from the dissociation of B2m from Face-1. Furthermore, several reports have
emerged postulating independent surface expression of Face-2, without dissociating from
Face-1 [33]. One notable feature of Face-2 that emerged independently on the cell surface is
a totally altered glycosylation pattern from that of Face-1, being either the absence of sialyl
residues [90], differences in the density of mannose residues [22], or both.

HC-specific mAbs enabled the identification of the expression of Face-2 on the cell
surface of activated T lymphocytes [33,84,85,123]. A causal factor for the emergence of cell
surface expression of Face-2 is inflammatory stress, since T-cell activation occurs under the
influence of proinflammatory cytokines. PHA, anti-CD3 mAb, and PMA result in the cell
surface expression of Face-2 [11,84,85]. Increases from 25K to 60K molecules per T-cell after
PHA stimulation [76] and increases on average from 30 to 65% after anti-CD3 mAb are
indeed significant findings on the expression of Face-2 [85]. Indeed, low levels of expression
of HLA-C and HLA-B Face-2 molecules are observed in normal human tissues such as nor-
mal epidermis, breast, lung, bronchi, esophagus, stomach, illum, colorectum, gall bladder,
urinary bladder, seminal vesicles, ovarian epithelia [33,89], PBL, and spleen cells [91–95].

The half-life of B2m-free HCs (Face-2) seems to depend on peptide binding to the
HCs [94] or on clustering and dimerization with other Face-2 molecules. While constituting
liposomes, it was noted that Face-2 self-associated with other Face-2 molecules [121].
Similarly, Face-2 molecules cluster on activated normal B and T cells, on cells of B and
T lymphoblast lines, and on transformed fibroblasts [122–126]. No such clustering was
observed on the surfaces of resting B or T cells or normal fibroblasts. Interestingly, the
clustering was reversed by exogenous B2m. Novel homo- (Face-3) and hetero dimers
(Face-4) of Face-2 molecules are observed on the exosomes released from human monocyte-
derived dendritic cells [131] and on different cell lines [132,133]. Dimerization of Face-2
molecules of HLA-G [134] and HLA-F [135] is also observed.

Under pathological conditions (inflammation, injury, infection, and malignancy), the
dimerization may involve covalent crosslinking because of exposure to oxidants (radicals,
excited states, or two-electron species) that are induced by endo- or exogenous stimuli
and as a result of the actions of a number of enzymes (oxidases and peroxidases). The
crosslinking can form between different sites within the same molecule (intramolecular
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or intrachain crosslinks) or between two different HCs and play a key role in stabilizing
or maintaining the structural configurations that are essential to functional activity. The
oxidative crosslinking may result in folding of HCs within cells in the ER or Golgi involving
(1) the generation of S-S bonds between two Cys residues, and (2) crosslinking of two Tyr
residues (Figure 6).

Studies carried out on spondyloarthropathy suggest that the Face-2 dimerization is
caused by Cysteine67 residues in the α-domain of the HCs of HLA-B alleles [144–151].
Spondyloarthropathy is highly minimized when C67 is replaced by serine in transgenic
rats [147]. One set of homodimers forms in the presence of C67 [134] and another in the
absence of C67, suggesting the possible involvement of Cys in positions other than 67 [145].
C42 is involved in the dimerization of HLA-G [99,100,152]. Altering C42 to S42 completely
abrogates the dimerization of HLA-G. Normal placental villous cytotrophoblast cells syn-
thesize S-S bonded HLA-G homodimers (Face-3). Cells grown at reduced temperature seem
to upregulate HC dimers in HLA-B27 and HLA-A2 [145]. Interestingly, HLA-A2 (A*02:02,
A*02:18) has Cys at position 99. Tables 3–5 document the presence of tyrosyl residues in
α1 > α2 > α3 domains of HCs. Di-tyrosine crosslinking is well documented in several
proteins (lipoproteins, extracellular matrix proteins, lysozyme, myoglobin, fibronectin,
laminin, calmodulin, insulin-receptors, hemoglobin, and centrin 2 [159,163–166]). It is yet
to be investigated in the dimerization of HLA monomers, although dityrosine crosslinking
is observed in pre-hemodialysis (HD) levels of plasma proteins. Di-tyrosines containing
plasma proteins in hemodialyzed ESRD patients are significantly higher compared with
levels in age-matched healthy subjects [166].

The primary factor promoting the dimerization of the monomers as well as the genera-
tion of covalent crosslinking under pathological conditions (inflammation, injury, infection,
and malignancy) is oxidative stress induced by radicals, excited states, or two-electron
species. Davies’s team [156–161] has clarified that the oxidative crosslinking may result
in the folding of HCs within the ER or Golgi involving the generation of S-S bonds or
even dityrosyl linkages to promote the dimerization of Face-2. Evidently, inflammation-
induced oxidative stress to tissues may have released proteins containing di-tyrosine
into circulation.

The possible functions of HLA HC homo- and heterodimers deserve more attention.
B2m-associated HLA is well known to perform peptide presentation to CD8+ T cells. Since
Demaria et al. [12,13] showed that the Face-2 molecules can remain unfolded, there is doubt
regarding whether the monomeric HCs can bind to peptides. However, Giocomini and
others [33] observed that approximately two-thirds of cell-surface-expressed free HLA-
C1 HCs originate without B2m, and not due to dissociation from pre-formed trimeric
complexes, and noted that “peptides can bind to HC in the absence of B2m with sufficient
affinity to establish a functionally conformed molecule on the cell surface (p. 833)”. Such
functionally conformed molecules on the cell surface of several cancer cells correlated well
with the loss of expression of intact HLA-I (Table 2).

B2m-free HC HLA variant molecules may bind to peptides [14–17,87,94,103,129].
Most importantly, they may serve as ligands for different polypeptides and proteins, which
include insulin receptors [6] and T cell receptor (α/β) molecules [29,30] as well as KIR and
Leukocyte Ig-like families, expressed on NK cells, different subsets of T cells, and other
immune cells. Interestingly, when immune cells are activated due to inflammation, infection,
injury, or pregnancy, under the influence of cytokines and chemokines, not only are B2m-
free HC HLA variant molecules (Faces 2–4) upregulated but different KIR molecules
are as well. However, more in-depth research is needed to distinguish the functional
consequences of the interactions between different allelic and isomeric, monomeric, homo,
and heterodimers of B2m-free HLA variants, and different immune cell receptors.

Striking similarities between the a.a sequences (e.g., 34VRFDSD39 and 117AYDGKDY125)
located on the independently expressed monomeric B2m-free HLA variants of HLA class
I and class II (34VRFDSD39) prompted us to explore the literature on the phylogenetic
relationship among the two major HLA classes, in the context of independent expression
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of B2m-free HLA variants. We hypothesize that the monomeric B2m-free HLA-I could
be the progenitor of not only homo- and heterodimeric variants but also HLA class I and
HLA class II β chains. More investigations need to be conducted on the expression of
polypeptides resembling monomeric and dimeric variants of B2m-free HLA in Agnathans
and jawed cartilaginous fishes and on differences in the a.a sequences of α and β chains of
HLA class II in higher vertebrates.

We hypothesize that the mono and dimeric variants may form a neo-HLA class.
Figure 5 illustrates how the genes for the HCs of DR, DP, and DQ generate HLA class II.
Similarly, the genes for the HCs of HLA-A, -B, -C, -E, -F, and -G have generated dimers
without B2m. Therefore, there are three groups of HLA-gene products:

(i) HLA–HCs associated with B2m (HLA-I);
(ii) HLA–HC dimers belonging to HLA-II (DP/DQ/DR);
(iii) The monomers, homo-, and hetero-dimers of HLA–HCs (HLA-A/-B/-C/-E/-F/-G).

The HLA-HCs of the third group are not formed by the dissociation of B2m but they
are transported directly from ER and expressed independently of HLA class I [11,12]. Their
α1 domain may remain unfolded. Their glycosylation patterns may differ from that of
HLA-I. Above all, the structural configuration of the third group is strikingly different
from that of HLA-I. In spite of the structural difference between Face-2 molecules, the α3
domain of one monomer can dimerize with another monomer in a manner similar to the
dimerization of HCs with B2m [206]. There is no clear-cut evidence so far to document that
the third-group HC dimers can perform antigen presentation. However, they can interact
with unique receptors such as KIR molecules to upregulate and downregulate immune
functions associated with NK, T, and B cells. Importantly, the third group is upregulated
in cancer cells when group (i) is downregulated. Evidently, group (iii) may represent a
neo-HLA class which may be the progenitors of other HLA classes of proto-HLA.

In conclusion, this review illustrates how different variants of HLA molecules emerge
on the cell surface, independent of the B2m-associated HLA that we have designated
as Face-1. Experimental investigations have demonstrated that variants (i.e., B2m-free
monomers that we have designated as Face-2) can traverse from the ER to the cell surface
independent of Face-1, particularly during activation of immune cells and other cells under
the influence of proinflammatory cytokines and chemokines. The B2m-free monomers give
rise to homodimers (Face-3) and heterodimers (Face-4) on the cell surface. Although we
have speculated a variety of dimers based on Face-4, validation with further investigation
is warranted. New reports are emerging on the functional diversity of the dimers in
association with other cell surface receptors such as KIR and the leukocyte Ig-like family of
receptors. These diversified functions in normal cells and malignant cells merit extensive
investigation, which may shed light on organ metastasis. Similarly, we have postulated
that the B2m-free monomer could be the phylogenetic progenitor of HLA-Class I and class
II, as well as of the B2m-free dimers. Only focused future investigations may either confirm
or reject these postulated hypotheses.
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