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Abstract: This literature review focuses on the evidence implicating oxidative stress in the pathogen-
esis of manganese neurotoxicity. This review is not intended to be a systematic review of the relevant
toxicologic literature. Instead, in keeping with the spirit of this special journal issue, this review high-
lights contributions made by Professor Michael Aschner’s laboratory in this field of study. Over the
past two decades, his laboratory has made significant contributions to our scientific understanding of
cellular responses that occur both in vitro and in vivo following manganese exposure. These studies
have identified molecular targets of manganese toxicity and their respective roles in mitochondrial
dysfunction, inflammation, and cytotoxicity. Other studies have focused on the critical role astrocytes
play in manganese neurotoxicity. Recent studies from his laboratory have used C. elegans to discover
new facets of manganese-induced neurotoxicity. Collectively, his body of work has dramatically
advanced the field and presents broader implications beyond metal toxicology.
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1. Introduction

Manganese is an essential nutrient that plays a critical role in protein, lipid, and car-
bohydrate metabolism in animals and humans. Manganese serves as an enzyme cofactor
and is incorporated into several metalloenzymes, including manganese superoxide dis-
mutase (MnSOD), arginase, glutamine synthetase, phosphoenolpyruvate decarboxylase,
and pyruvate carboxylase [1,2]. Mammalian tissues normally contain 0.3–3.0 µg Mn/g wet
tissue weight [3]. The body’s nutritional requirements for manganese are normally met
through dietary intake via food and drinking water. The estimated safe and adequate daily
dietary intakes (ESADDI) for manganese required to maintain body stores is 2 to 5 mg/day
in adults and 1.5 to 2.0 mg/day for children 4 to 6 years of age [4]. To ensure adequate
nutrition in neonates, manganese is often added to infant formula because there is a greater
need for this element during growth and development [5].

Exposure to excessive amount of manganese can result in manganese neurotoxic-
ity, producing adverse effects most notably in the human extrapyramidal system [6–8].
Neurotoxicity can occur following high-dose oral, inhalation, or parenteral exposure to
manganese. The development of neurotoxicity following different routes of exposure
indicates that the dose to target tissue is the critical determinant of manganese toxicity,
regardless of route. This association between manganese and neurotoxicity was first noted
by Couper in 1837 who reported abnormal neurologic effects in workers at an ore-grinding
plant where “black oxide of manganese” was processed [9]. Most epidemiologic research
on manganese conducted during the late 20th century focused on occupational inhala-
tion exposure. Subsequent epidemiologic studies of welders, manganese miners, battery
producers, and other manganese workers have clearly established a causal association
between chronic high-dose-manganese exposure via inhalation and neurotoxicity [10].
Hallmarks of manganese neurotoxicity in adults include behavioral changes, cognitive

Biomolecules 2023, 13, 1176. https://doi.org/10.3390/biom13081176 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13081176
https://doi.org/10.3390/biom13081176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom13081176
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13081176?type=check_update&version=1


Biomolecules 2023, 13, 1176 2 of 14

deficits, progressive bradykinesia, dystonia, and other gait abnormalities [11–13]. There
has been increasing concern regarding the role of environmental manganese exposure and
children’s health [14]. Manganese has been identified as a risk factor for the development
of aggressive behavior, attention deficit, cognitive decline resulting in lowered IQ, and
learning deficits in infants and children [15–18].

Analysis of brain samples have shown that manganese accumulates within the human
striatum, globus pallidus, and substantia nigra [3,19]. Manganese accumulation in these
brain regions is associated with the presence of the divalent metal transporter 1 (DMT1)
although additional transporters may play a role in brain uptake of manganese [20–22].
Brain imaging studies that rely on the paramagnetic properties of manganese that result in
increased signal intensity seen with T1-weighted magnetic resonance imaging (MRI), allow
for visual inspection of the brain for evidence of manganese accumulation at this site. Brain
MRI studies of highly exposed people reveal signal intensity changes in the globus pallidus,
striatum, and midbrain consistent with manganese accumulation at these sites [23,24].
Studies performed in nonhuman primates have shown that changes in the T1-weighted
image correlate with manganese tissue concentration [25]. The primary neuropathologic
target of manganese neurotoxicity is the globus pallidus (particularly the internal segment)
with sparing of the substantia nigra pars compacta and an absence of Lewy bodies [26].
Studies of a manganese-exposed South African mine worker have revealed reduced as-
trocyte and neuron density in both the caudate and putamen [27]. Chronic manganese
neurotoxicity in people is also associated with decreased γ-aminobutyric acid (GABA)
neurons, reduced myelinated fibers, and moderate astrocytic proliferation in the medial
segment of the globus pallidus [26].

Several studies have examined neurochemical changes following high-dose-manganese
exposure. Because manganese neurotoxicity results in dysregulation of motor control, many
studies have focused on the striatal and pallidal dopaminergic system. Manganese reacts
with dopamine and other biogenic amines resulting in oxidative damage to the neurotrans-
mitters [28]. One pathway involves manganese catalyzed oxidation of the alpha hydroxyl
group of dopamine forming a semi-quinone radical (Figure 1). The semi-quinone radical
then reacts with oxygen to generate superoxide anion radical [O2•−] and a quinone. Oxy-
gen can reoxidize the quinone to quinol to generate hydrogen peroxide [28]. Manganese-
catalyzed dopamine auto-oxidation may also involve semiquinone and aminochrome
intermediates, l-cysteine or copper, and NADH facilitation [29,30]. Excess manganese
may also alter glutamate homeostasis in the basal ganglia [31]. Changes in glutamate
homeostasis have been associated with excitotoxicity in the CNS [31].
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Figure 1. Manganese-catalyzed autoxidation of dopamine involves redox cycling of Mn2+ and
Mn3+ in a series of reactions that generate hydrogen peroxide (H2O2), dopamine-o-quinone and
aminochrome.

In vivo mammalian studies have shown that manganese exposure can result in altered
levels of dopamine and its metabolites (e.g., 3,4-dihydroxyphenylacetic acid) and alter
dopaminergic neurotransmission [32,33]. Alterations in manganese dopamine transmission
can occur in the absence of detectable neuropathology. Although the initial focus on
neurochemical effects is primarily centered on dopaminergic transmission, alterations in
other neurotransmitter systems, including GABA and acetylcholine, also occur following
manganese exposure [34,35]. Changes in striatal GABA, norepinephrine, and serotonin
function are seen following manganese exposure in rodents [35].
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Important species differences have been demonstrated with respect to manganese
neurotoxicity [3]. Rodents generally fail to develop a behavioral syndrome or neuropatho-
logical lesion comparable to that seen in manganese-poisoned humans. Nevertheless,
experimental studies have demonstrated that high-dose-intraperitoneal-manganese expo-
sure impairs memory, learning ability and locomotor function in mice [36,37]. Manganese
exposure also results in dopaminergic neuron loss in the striatum of MitoPark mice, a
mitochondrially defective transgenic mouse model of Parkinson’s Disease [38]. Nonhuman
primates best replicate the neurotoxic effects observed in humans. Manganese-exposed
monkeys develop gait and other motor abnormalities that mimic those observed in affected
humans [39–41]. Monkeys also develop reduced levels of striatal and pallidal dopamine
and 3,4-dihydroxyphenylacetic acid, in conjunction with loss of dopaminergic neurons.
These changes occur in the absence of loss of dopamine terminals in the caudate and
putamen [39]. Monkeys also develop deficits in spatial and non-spatial working memory as
well as effects on visuospatial-paired associate learning [42–44]. Histological assessment of
the frontal cortex from manganese-exposed monkeys has also shown the presence of cells
with apoptotic stigmata and astrocytosis in both the gray and white matter and α-synuclein
aggregation in the frontal cortex gray and white matter [45].

The mechanism of action of manganese neurotoxicity remains the subject of ongoing
research [46]. Molecular mechanisms of manganese neurotoxicity involve multiple neuronal
cell types and can include mitochondrial impairment, oxidative stress, inflammation, and
excitotoxicity [46,47]. Manganese can trigger glial activation and neuroinflammation in
both microglia and astrocytes [48]. Welders exposed to manganese have altered methylation
patterns in the DNA that codes for inducible nitric oxide synthase [49]. This review largely
focuses on the role of oxidative stress in manganese neurotoxicity (Figure 2) with special
attention to the role of work from the Aschner laboratory.
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2. Reactive Oxygen Species (ROS) and Neurotoxicity

Reactive oxygen species (ROS) are molecular oxygen products that play an important
role in normal biology and disease [50]. Both non-radical (e.g., hydrogen peroxide, molecu-
lar oxygen) and free radical (e.g., superoxide anion radical [O2•−], hydroxyl radical [•OH],
peroxyl radical [ROO•]) forms of ROS exist. Normal endogenous production of cellular
ROS primarily occurs through mitochondrial oxidative phosphorylation at the electron
transport chain when molecular oxygen is reduced [51]. During transport, some electrons
react with molecular oxygen forming O2

−• [52]. Elevated mitochondrial ROS production
can cause mitochondrial dysfunction and contribute to neurologic disease [53,54].

Despite its role in disease, ROS are also required for numerous normal cellular pro-
cesses including cell growth, differentiation, and death by acting as signaling molecules.
ROS activates the nuclear factor erythroid 2 (NF-E2)-related factor 2/Kelch-like ECH-
associated protein 1 (NRF2/KEAP1) pathway, which serves as a master regulator of ROS
levels [55,56]. Other pathways regulated by ROS include nuclear factor-κB (NF-κB), phos-
phoinositide 3-kinase (PI3K)/AKT, and mitogen-activated protein kinase (MAPK) [57]. As
a result, ROS activate diverse molecular targets, initiating pathways involved in growth
promotion and survival (including autophagy) or apoptosis [58].
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Redox homeostasis within cells is the result of cellular processes that balance ROS
production and antioxidant capacity. Oxidative stress occurs when this balance is perturbed
and ROS production overwhelms the cellular antioxidant defense, damaging nucleic acids,
proteins, and lipids. The brain has several features that predispose it to oxidative stress,
including disproportionately high-oxygen consumption, lack of stored ATP, high-lipid con-
tent, among others [28]. There is growing literature that oxidative stress plays a role in man-
ganese neurotoxicity as well as other neurodegenerative diseases, including Alzheimer’s
disease, Parkinson’s disease (PD), Huntington’s disease (HD), and aging [59].

3. Oxidative Stress and Manganese: Physicochemical Properties

Manganese has eleven oxidation states ranging from Mn−3 to Mn+7, with Mn+7 having
the strongest oxidation state of the group [60]. In the body, manganese exists in several
valence states including divalent (Mn2+) and trivalent (Mn3+) forms. The reduced form
of manganese (Mn+2) has a lower oxidative stress potential when compared with the
trivalent (Mn+3) oxidized form of this metal [61–63]. The valence form of manganese can
influence in vitro cytotoxicity with the trivalent form being more potent than the divalent
form [63,64]. Intracellular formation of Mn3+, following oxidation of Mn2+, likely plays a
minimal direct role in manganese neurotoxicity [65]. Manganese can secondarily alter the
redox balance of iron, copper, and other transition metals [60,62,66]. Manganese promotes
mitochondrial peroxide (H2O2) production even at physiologic concentrations [67]. Given
the ability of manganese to participate in redox reactions, it is widely hypothesized that
oxidative stress plays a role in manganese neurotoxicity [68].

In biological systems the redox active transition metals iron and copper, may partici-
pate in electron transfer reactions that produce hydroxyl free radical (·OH) via Fenton-type
reactions resulting in oxygen radical damage [69,70]. Evolutionarily cells have developed
protective antioxidant systems to scavenge these reactive oxygen products. The higher
reduction potential of manganese when compared with iron limits its participation in
Fenton-like redox chemistry [71].

4. Anti-Oxidants as Mediators of Manganese Neurotoxicity

Relative to the liver, the brain has lower levels of catalase activity, cytosolic GSH con-
centrations, and glutathione peroxidase 4 expression [28]. Reduced glutathione peroxidase
4 expression has been linked with ferroptosis, an intracellular iron-dependent form of cell
death that has been proposed as a contributing mechanism in manganese neurotoxicity [72].
Another family of proteins with antioxidant properties are the peroxiredoxins. These per-
oxidases are involved in redox homeostasis, phospholipid turnover, glycolipid metabolism,
and cellular signaling [73]. Peroxiredoxin 2 is present in the central nervous system and
reduces ROS production by catalyzing hydrogen peroxide [74]. Metallothionein also plays
a role as a free radical scavenger and is also involved in the metabolism of zinc and some
other metals [75,76]

Manganese is incorporated into manganese superoxide dismutase (MnSOD) the prin-
cipal antioxidant enzyme found in mammalian cells. This enzyme converts superoxide
anion radicals to hydrogen peroxide and oxygen in mitochondria [77]. Thus, MnSOD plays
a critical role in mitochondrial and cellular redox homeostasis and protects cells from oxida-
tive stress. Genetic deletion of MnSOD is typically lethal in rodents, while a neuron specific
deletion in spinal cord neurons results in extensive demyelination and axonal degeneration,
elevated production of inflammatory cytokines, and microglia activation [78].

Additional discussion of the role of antioxidants in manganese neurotoxicity follows.

5. The Role of Mitochondrial Oxidative Stress in Manganese Neurotoxicity

The human brain’s reliance on ATP production leads to it consuming approximately
20% of the total basal oxygen budget [28]. Meeting neuronal ATP demands requires mito-
chondria, which in addition to ATP production are also involved in cell signaling, calcium
homeostasis, and other cellular processes. Mitochondria are also the main intracellular
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storage site for manganese [79]. Manganese is mainly transported into the mitochondria via
the mitochondrial Ca2+ uniporter system [80]. As mentioned earlier, mitochondrial man-
ganese primarily exists as Mn2+ [79]. Although Mn+2 is less reactive when compared with
Mn+3, increased mitochondrial manganese concentrations have numerous biological effects,
including inhibition of oxidative phosphorylation [81,82], increased mitochondrial matrix
calcium concentration [83], and inhibition of brain mitochondria respiratory complexes
I–IV [84,85].

Altered mitochondrial activity in rat pheochromocytoma (PC12) cells treated with
manganese is associated with altered mitochondrial activity [85]. Changes in mitochondrial
function in the PC12 cells occurred along with reduced glutathione (GSH) concentrations
and decreased catalase activity [85]. These effects can result in increased production of
reactive oxygen (ROS) and reactive nitrogen species with subsequent oxidative stress.
Pretreatment of cell cultures with antioxidants (e.g., ascorbic acid, GSH, N-acetyl cys-
teine) can mitigate some manganese-induced effects on mitochondrial function [86–88].
Manganese-induced impairment of mitochondrial membrane potential is partially res-
cued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial
translocation [89]. Rat striatal neurons develop dose-dependent decreases in mitochondrial
membrane potential and complex II activity following in vitro exposure to manganese [90].
Striatal neurons exposed for two days to manganese at 5 µM developed DNA fragmen-
tation and decreased expression of microtubule-associated protein MAP-2, suggesting
that manganese may trigger apoptotic-like neuronal death secondary to mitochondrial
dysfunction [90]. However, recent studies have shown that manganese-induced effects on
mitochondrial function only occur at concentrations that initiate cell death, suggesting that
mitochondrial dysfunction plays a limited role in cytotoxicity [91].

The weight of evidence suggests that mitochondrial dysfunction may be an initiating
event for manganese neurotoxicity leading to overproduction of both ROS and reactive
nitrogen species (RNS). Altered ROS and RNS production results in altered cell signaling,
including activation of proinflammatory signaling and apoptotic cell death [92].

6. Caenorhabditis elegans as an Animal Model of Manganese Neurotoxicity

There is a growing interest in toxicology in the use of so-called New Alternative
Models (NAMs) to reduce reliance on mammalian-based toxicity testing [93]. The Aschner
laboratory has been at the forefront of using the nematode, C. elegans, to study the roles
of oxidative stress, mitochondrial dysfunction, and dopaminergic neurodegeneration fol-
lowing manganese exposure [94,95]. The approximately 19,000 genes in the genome of this
nematode have 60–80% homology with the mammalian genome [96] and C. elegans and
mammals share many biological functions. The C. elegans nervous system is completely
defined with 302 neurons and 56 glial cells or 381 neurons and 92 glial cells in either
hermafrodite or males, respectively [97,98]. The C. elegans hermaphrodite possesses eight
dopaminergic neurons, consisting of three pairs within the head and one pair in a posterior
lateral position [99,100]. The dopaminergic system of C. elegans is more sensitive to the
effects of manganese when compared with other neuron classes [101]. Exposure of early
stage (L1) C. elegans larvae to manganese results in degeneration of these dopaminergic
neurons in L1, L4 and young adults [102–105]. Exposure of C. elegans to manganese also
results in behavioral changes. For example, manganese exposure alters olfactory learning
and memory in L1 C. elegans [106].

Manganese toxicity in C. elegans can result in reduced GSH levels, generation of
ROS, mitochondrial changes, and death [105,107,108]. Recent studies investigating this
association have used nematodes with mutant forms of hpo-9 (e.g., tm3719), the worm
homolog of BTBD9. These worms demonstrate hyperactive egg-laying behavior and have
been proposed as a model organism for the study of restless leg syndrome in people [109].
When compared with wild type nematodes, tm3719 and hpo-9 knockout worms were more
sensitive to manganese exposure with higher production of ROS and decreased numbers
of intact mitochondria [110].
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7. Astrocytes as Targets for Manganese Neurotoxicity

Interactions between neurons and astrocytes are critical for maintaining homeostasis
of glutamate, glutamine, and GABA. Astrocytes contain glutamine synthetase, which
catalyzes the conversion of L-glutamate, ATP, and ammonia into L-glutamine, ADP, and
phosphate. Synthesized glutamine is subsequently released extracellularly and taken up
by neurons and metabolized to glutamate by glutaminase. Synaptic glutamate released
from neurons is removed by astrocytes through several cell membrane sodium-dependent
transporters, including glutamate-aspartate transporter (GLAST) and glutamate transporter
1 (GLT1).

Manganese is preferentially localized in astrocytes in the brain at levels that are
50–200 times higher than those seen in neurons [111,112]. Manganese influences astrocyte
morphology [113,114]. In vitro studies have shown that astrocyte uptake of Mn2+ depends
on transferrin and DMT1 [115]. Expression and activity of glutamine synthetase in rat
primary astrocytes is reduced following in vitro exposure to manganese [116]. In vitro
studies using Chinese hamster ovary cells with increased expression of GLAST and GLT-1
have shown that manganese reduces glutamate transport into these cells [117]. Manganese
deregulates expression of glutamine and glutamate transporters via protein kinase C path-
way activation [118,119]. Downregulation of GLAST and GLT-1 transporter expression also
occurs in rhesus monkeys following manganese inhalation [120]. Treatment of astrocytes
with either estrogen or tamoxifen will reverse manganese-induced glutamate transporter
impairment in astrocytes via increased transforming growth factor beta1 expression [121].

In vitro treatment of astrocytes with manganese results in shifts in the intracellular
redox potential towards the oxidized state and results in induction of oxidative stress,
mitochondrial dysfunction, and altered glutamine/glutamate cycling [122,123]. Exposure
of astrocytes to manganese increases nitric oxide (NO) synthesis in these glial cells [124].
Astrocytes treated with manganese also demonstrate enhanced expression of inflammatory
cytokines and chemokines that can be amplified by neighboring microglial cells [125,126].
Manganese activates astrocyte caspase-3 and phosphorylated extracellular signal-regulated
kinase (p-ERK) via mitochondrial-dependent pathways [127]. Down regulation of the redox
sensing protein 1 (DJ-1)/PARK7 increases the susceptibility of astrocytes to manganese-
induced oxidative stress [128].

Impacts of manganese on other glial cells should not be ignored. For example, NF-κB
signaling in microglia regulate the production and release of cytokines and chemokines
that amplify the activation of astrocytes [125,126,129]. Thus, microglial play a role in
mediating neuroinflammatory responses during manganese neurotoxicity. Microglial
cells are also involved in ROS production and oxidative stress. In vitro exposure of rat
microglia to manganese results in a time- and concentration-dependent release of hydrogen
peroxide [130]. Manganese-induced release of hydrogen sulfide by microglia was reduced
by mitogen-activated protein kinases inhibitors. Manganese treatment of microglia also
activated ERK and p38-MAPK that preceded hydrogen peroxide production [130]. Studies
with microglia-depleted dopaminergic neuron cultures show that depletion of microglia
reduces manganese-induced neuron injury [131].

8. The Role of Oxidative Stress in Manganese Neurotoxicity: In Vivo
Mammalian Studies

My laboratory enjoyed a multi-year collaboration with the Aschner laboratory that
evaluated markers of oxidative stress in rodents following manganese inhalation [132].
Several exposure paradigms were used in these inhalation studies including 14-day, sub-
chronic, and developmental studies [133–136]. During the subchronic study [135], young
adult male and female CD rats and senescent male rats were exposed 6 h/day, 5 days/week
for 90 days to air or manganese sulfate at 0.01, 0.1, or 0.5 mg Mn/m3 or manganese phos-
phate at 0.1 mg Mn/m3. Oxidative stress biomarkers that were evaluated by Aschner
and colleagues included measurement of GSH and metallothionein concentrations, and
glutamine synthetase protein levels, as well as metallothionein and glutamine synthetase
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mRNA levels in the cerebellum, olfactory bulb, striatum, hippocampus, and hypothalamus
from control and manganese-exposed rats [137–140]. Depletion of oxidative scavengers
such as glutathione and metallothionein occurred in some brain regions [138]. In juvenile
and 16-month-old rats that inhaled either manganese sulfate or manganese phosphate,
total GSH levels significantly decreased in the olfactory bulb of manganese-exposed young
males and increased in the female olfactory bulb. Both aged and young female rats had
significantly reduced GSH in the striatum following manganese inhalation. Senescent
male rats exhibited decreased GSH levels in the cerebellum and hypothalamus following
manganese inhalation [140]. Total GSH level was reduced in several brain regions of male
rats exposed to manganese during early development. In female rats, GSH was unchanged,
or upregulated in the olfactory bulb [68].

Other in vivo rodent studies also report manganese-induced oxidative stress in various
regions of the rodent brain, particularly in the basal ganglia, such as globus pallidus,
striatum, and substantia nigra [34,61,141–144]. Conflicting data from rodent studies have
also been reported. For example, a study from our laboratory failed to demonstrate evidence
of increased striatal ROS or whole-brain 8-hydroxy-2’ -deoxyguanosine (8-OHdG) levels
despite increased brain and mitochondrial manganese concentrations, altered motor activity,
and decreased body weight in rats following either adult or developmental exposure to
oral manganese [145].

As noted earlier, unlike rodents, nonhuman primates largely replicate the neurotoxic
effects observed in humans [7]. Chronic manganese exposure did not produce the loss of
dopamine terminals in the caudate and putamen based on [11C]- methylphenidate PET
imaging of exposed animals [146,147]. Histologic assessment of the frontal cortex from
manganese-exposed monkeys has revealed the presence of cells with apoptotic stigmata
and astrocytosis in both the gray and white matter and a-synuclein aggregation in the
frontal cortex gray and white matter [45]

The role of oxidative stress in manganese neurotoxicity in nonhuman primates has also
been examined and largely stems from studies performed in our laboratory to characterize
manganese pharmacokinetics in young male rhesus monkeys following inhalation [148].
In this study, monkeys were exposed to either air or manganese sulfate at either 0.06, 0.3,
or 1.5 mg Mn/m3 for 65 exposures. Additional monkeys were exposed to manganese
sulfate at 1.5 mg Mn/m3 for 15 or 33 exposures and evaluated immediately thereafter or
for 65 exposures followed by a 45- or 90-day delay before evaluation [148]. Brain imaging
studies using T1-weighted magnetic resonance imaging revealed dose-dependent increases
in MRI signal hyperintensities within the olfactory bulb and the globus pallidus [25]. As the
exposure increased, manganese-induced hyperintensities involved multiple brain regions
that were confirmed using chemical analysis of affected bran regions.

Biochemical endpoints indicative of oxidative stress and excitotoxicity were assessed
in the cerebellum, frontal cortex, caudate, globus pallidus, olfactory cortex, and puta-
men of monkeys exposed to manganese [120,149]. Glutamine synthetase, GLT-1, GLAST
and tyrosine protein levels, metallothionein, GLT-1, GLAST, tyrosine hydroxylase and
GS mRNA levels, and total GSH levels were determined for all brain regions [120,149].
Manganese exposure differentially affected these biomarkers in each brain region. For
example, GSH was increased in the frontal cortex and decreased in the caudate despite
two- to threefold increases in manganese concentrations in these regions. Exposure to
manganese sulfate persistently decreased metallothionein mRNA in the caudate when
compared to air-exposed controls. In contrast, putamen metallothionein mRNA levels were
unaffected by manganese exposure. The glutamate transporters GLT-1 and GLAST were
relatively unaffected by short term manganese exposure, except in the globus pallidus
where exposure for 33 days led to decreased protein levels, which persisted after 45 days
of recovery for both proteins and 90 days of recovery in the case of GLAST. Exposure to
1.5 mg Mn/m3 caused a significant decrease in GSH levels in the caudate and increased
GSH levels in the putamen of monkey exposed for 15 and 33 days, with both effects persist-
ing at least 90 days post-exposure. Tyrosine hydroxylase protein levels were significantly
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lowered in the globus pallidus of the monkeys exposed for 33 days, but mRNA levels were
significantly increased in this same region. All manganese-exposed monkeys had decreased
pallidal glutamine synthetase protein, decreased caudate GLT-1 mRNA, decreased pallidal
GLAST protein, and increased olfactory tyrosine hydroxylase mRNA levels.

Studies exploring the role of oxidative stress in human manganese neurotoxicity are
extremely limited and primarily rely on in vitro exposure of human cells, as reviewed
earlier. Additional studies using noninvasive methods to assess redox status in manganese-
exposed humans are needed.

9. Conclusions

As this review demonstrates, molecular mechanisms are involved with manganese
neurotoxicity. Although oxidative stress may play a critical role, it may not serve as the
initiating event. Rather it is likely that the initiating event is an increase in intracellular
levels of manganese because of manganese overexposure. Pharmacokinetic models predict
that increases in globus pallidal manganese concentrations in humans above approximately
0.55 µg Mn/g trigger adverse neurologic effects [150]. Elevated brain manganese levels
are partially sequestered in mitochondria, resulting in mitochondrial dysfunction and
secondary oxidative stress. Elevated production of ROS can lead to further mitochondrial
injury resulting in neurotoxicity. Thus, the respective roles of manganese overexposure,
mitochondrial dysfunction, and oxidative stress are tightly interwoven.

This review has largely focused on only one aspect of research stemming from Pro-
fessor Aschner’s laboratory. Work from Professor Aschner’s laboratory has provided a
wealth of data demonstrating that oxidative stress and mitochondrial dysfunction are
critical molecular mechanism involved in manganese neurotoxicity. His work has provided
insights into how elevated intracellular manganese concentrations results in a cascade
of events linking oxidative stress and mitochondrial dysfunction with abnormal cellular
function. This research is not only relevant for manganese neurotoxicity but also promises
to hold broader future impact in improving our understanding of mechanisms involved in
other neurological disorders. Aschner’s work with C. elegans also helps pave the way for the
use of this animal model in neurotoxicity research. This effort is well aligned with ongoing
international efforts to decrease reliance on vertebrate animal models in neurotoxicology.
Dr. Aschner’s work also helps to illustrate the power of collaborative science and serves as
a model for other scientists.
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