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and Katarina Vukojević

Received: 12 June 2023

Revised: 17 July 2023

Accepted: 17 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Biological Macromolecule-Based Scaffolds for
Urethra Reconstruction
Saeed Farzamfar 1, Megan Richer 1, Mahya Rahmani 2 , Mohammad Naji 3, Mehdi Aleahmad 4,
Stéphane Chabaud 1 and Stéphane Bolduc 1,5,*

1 Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de
Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada;
saeed.farzamfar@crchudequebec.ulaval.ca (S.F.); megan.richer.1@ulaval.ca (M.R.);
stephane.chabaud@crchudequebec.ulaval.ca (S.C.)

2 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine,
Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; mahya.rahmani@gmail.com

3 Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences,
Tehran 1983963113, Iran; naji_m_f@yahoo.com

4 Department of Immunology, School of Public Health, Tehran University of Medical Sciences,
Tehran 1417613151, Iran; mehdi_aleahmad@live.com

5 Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
* Correspondence: stephane.bolduc@fmed.ulaval.ca; Tel.: +418-525-4444 (ext. 42282)

Abstract: Urethral reconstruction strategies are limited with many associated drawbacks. In this
context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure.
However, most of the used tissues in clinical practices are non-specialized grafts that finally fail
to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma.
In this technology, scaffolding biomaterials characteristics are of prime importance. Biological
macromolecules are naturally derived polymers that have been extensively studied for various tissue
engineering applications. This review discusses the recent advances, applications, and challenges of
biological macromolecule-based scaffolds in urethral reconstruction.

Keywords: biological macromolecules; urethra reconstruction; tissue engineering; urethra defects

1. Introduction

Urethra tissue engineering (UTE) is a quickly progressing technology that aims to
produce an implantable urethral tissue, using a combination of biomaterials, cells, and
growth factors. The primary objective of this field is to create a tissue graft that can
potentially replace the grafts that are currently used in the clinic [1–5].

Biomaterials are crucial components of UTE as they provide structural integrity for
the tissue-engineered scaffolds and support various cellular functions. An ideal scaffolding
biomaterial for UTE should be biocompatible, biodegradable, and able to endure mechani-
cal forces [6]. In this context, various types of biomaterials have been explored, including
natural polymers, as well as synthetic ones. These biomaterials can be utilized individually
or in combination with each other to augment their applicability [6,7]. In particular, these
scaffolding systems should be able to promote the growth and differentiation of various
cell types that are present in the urethra. Otherwise, the developed tissue’s functionality
might be compromised [8,9].

Polymers that are derived from large biomolecules, such as proteins, polysaccharides,
and nucleic acids, are known as biological macromolecule-based polymers. These poly-
mers consist of repeating monomers linked together by covalent bonds, forming long
molecular chains [10,11]. These biomaterials originate from natural sources, and therefore,
demonstrate various positive features for interaction with biological systems. Biologi-
cal macromolecules, such as collagen, chitosan, alginate, cellulose, Hyaluronic acid (HA),
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gums, and dextran, have been widely explored for different biomedical applications [12–14].
Despite being highly biocompatible, scaffolds that are only produced from these polymers
have certain shortcomings. In the case of polysaccharides, one of the main challenges is the
lack of cell adhesion moieties which can result in reduced tendency of cells towards these
polymers [12,13,15]. Furthermore, they may not endure mechanical forces and undergo
failure or collapse [16]. Despite these concerns, the biocompatibility, bioactivity, modifiable
properties, and versatility of these biomaterials have made them attractive candidates
for various tissue engineering applications [10,17]. This review will discuss the previous
applications of biological macromolecule-based scaffolds in UTE. In addition, the clinical
translation feasibility of these grafts will be discussed, and the current challenges will
be highlighted.

2. Urethra Defects and Their Current Treatment Options

The urethra is a flexible tubular structure primarily responsible for eliminating urine
from the body. In men, the urethra is considerably longer than females (20 cm compared to
4 cm) and is also responsible for the discharge of semen [18]. In males, the urethra consists
of the prostatic and membranous segments (posterior urethra) after leaving the bladder.
The anterior urethra (bulbar and penile urethra) is the most distal and longest portion,
mainly surrounded by the corpus spongiosum. On the other hand, the short female urethra
is bordered by the anterior wall of the vagina. Each structural component of the urethra
plays a vital and distinct role in its normal function. The malfunctioning of these elements
(mucosa, submucosa, and muscle layers) can lead to severe urinary problems [18,19]. The
histologic features of the urethral epithelial layer vary, transitioning from a transitional
epithelium near the bladder neck to a pseudostratified columnar epithelium in the anterior
urethra and a stratified squamous epithelium at the external orifice (meatus). This epithelial
layer acts as a highly impermeable barrier against harmful urine elements and protects
the submucosa fibroblasts from leakage, preventing inflammatory reactions. The muscular
layer is primarily composed of smooth muscle cells arranged in outer circular and inner
longitudinal layers. Additionally, striated muscle fibers form a circular arrangement around
the membranous urethra in males and the urethra at the pelvic floor level in females,
forming a striated muscle sphincter. All these structural components collectively contribute
to the passive viscoelastic properties necessary for proper urethral function [19,20].

Any congenital disorder or acquired condition affecting the structural elements of
the urethral wall can compromise normal urethral function. Congenital disorders, such as
posterior urethral valves, urethral atresia, urethral polyps, hypospadias, epispadias, and
megalourethra, can impact normal urethral development and function [21]. Additionally,
strictures in the urethral wall caused by traumatic injuries, infection, iatrogenic damage or
tumor resection can impair urethral function [22]. Urethral stricture, a relatively common
urologic complication affecting approximately 0.6% of men, carries a significant social and
economic burden, with reported annual medical costs of around $200 million in 2000 [23].
Stricture formation begins with urethral wall injury, followed by urine extravasation, which
triggers a sequence of fibrotic reactions. These reactions alter the normal composition of
the urethral connective tissue, resulting in a decrease in collagen type III/I and smooth
muscle/collagen ratios (Figure 1) [24,25].

Ultimately, the fibrotic process significantly narrows the urethral lumen, causing
symptomatic obstructive voiding. Untreated strictures can lead to complications, such as
a thick-walled trabeculated bladder, acute retention, prostatitis, epididymo-orchitis, and
hydronephrosis. Consequently, surgical intervention is often necessary in most stricture
cases [22].
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cellular matrix (ECM) components leads to the progression into subsequent phases of urethral stric-

ture. Phase 2 depicts constriction resembling an iris. Phase 3 indicates that the fibrotic reaction has 

infiltrated the spongiosum, causing minimal fibrosis in the sponge-like tissue. Phase 4 represents a 

partial spongiofibrosis affecting the full thickness of the tissue. Phase 5 demonstrates the extension 

of fibrosis beyond the corpus spongiosum into surrounding tissues. Phase 6 signifies the develop-
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Figure 1. Illustration demonstrating the underlying processes of urethral stricture. Phase 1 displays
a folding of the mucosal layer. At this stage, minor abnormalities in the transformed tissue result
in the leakage of urine, triggering the initiation of a fibrotic response. Increased accumulation of
extracellular matrix (ECM) components leads to the progression into subsequent phases of urethral
stricture. Phase 2 depicts constriction resembling an iris. Phase 3 indicates that the fibrotic reaction
has infiltrated the spongiosum, causing minimal fibrosis in the sponge-like tissue. Phase 4 represents
a partial spongiofibrosis affecting the full thickness of the tissue. Phase 5 demonstrates the extension
of fibrosis beyond the corpus spongiosum into surrounding tissues. Phase 6 signifies the development
of a complex urethral stricture that may lead to the formation of a fistula. Adopted from reference [26].

The choice of surgical method for urethral stricture management depends on the size,
location, and recurrence history of the stricture [27]. Urethral dilation, performed through
various methods, is suitable for limited and short strictures. Urethrotomy, involving limited
incisions in the scar tissue of small strictures to increase the urethral lumen caliber and
allow tissue healing, is another method. However, the recurrence rate of urethrotomy
increases significantly with the length of the treated strictures [28]. Urethroplasty, with a
long-term success rate of 80–90%, is considered the gold standard treatment for urethral
stricture [29]. End-to-end anastomotic urethroplasty is an effective method for strictures
shorter than 2 cm, but it is not suitable for longer strictures [26]. Urethroplasty using onlay
or inlay grafts is the preferred method for extensive strictures due to its straightforward
graft harvesting procedure and high long-term success rate. Various graft types from
different sources, including skin, bladder mucosa, rectal mucosa, and oral mucosa (buccal
or lingual), have been utilized for this purpose [30]. Oral mucosa is the most commonly
used graft due to ease of harvest, absence of hair, adaptation to a moist environment, and
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relatively low morbidity. However, autologous graft application for stricture management
has limitations and complications, such as potential donor site morbidity and a shortage of
donor tissue for long strictures and repeat procedures [31]. Oral mucosa grafts, in particular,
carry risks of donor site contracture, bleeding, infection, numbness, and pain [32]. Tissue
engineering of the urethra has emerged as an alternative approach that can address the
issues associated with current treatments for urethral stricture disease. Tissue engineering
shows promise by providing cell-laden scaffolds and off-the-shelf products for regenerating
urethral strictures [33].

3. Principles of UTE

There are two primary UTE approaches: acellular scaffolds and cell-seeded scaf-
folds [34]. These scaffolds come in two main types: synthetic scaffolds made from natural
or synthetic biomaterials and biological scaffolds derived from sources such as dermis,
small intestine submucosa (SIS), and bladder tissue. Scaffolds intended for UTE should
mimic the native urethra’s mechanical properties. The mechanical properties of the urethral
tissue show viscoelastic characteristics. These properties remain consistent throughout the
tissue without any variations in direction or region. These mechanical properties are closely
related to the levels of elastin and collagen present in the tissue [35]. However, replicating
this tissue’s mechanical behavior is a challenging task, as the orientation, crosslinking, or
composition of the urethra’s ECM affects the overall mechanical strength.

3.1. Acellular Scaffolds

Acellular matrices are composed of extra cellular matrix components, which provide
the necessary mechanical and biochemical cues for cell adhesion, growth and differentiation.
These scaffolds are produced through the removal of all cellular components from a tissue,
while leaving the ECM intact with its architecture and composition [36]. In the context of
UTE, acellular matrices have been used by different teams to create scaffolds for developing
the urethral tissue. Different types of scaffolding systems include SIS, bladder matrix,
dermis, and a variety of other tissues [37]. One of the major advantages of using acellular
matrices is that they can promote tissue regeneration without eliciting a significant immune
response related to the cells. Nevertheless, there has been contradictory studies regarding
rejection of acellular scaffolds, as many teams reported the incidence of immunogenic
reactions after the implantation of different acellular scaffolds [38,39]. In addition, many
teams have faced challenges with acellular tissue-based urethral grafts, mainly fibrosis
and strictures. For example, Dorin et al. used acellular matrices of bladder submucosa
for treating urethral defects in rabbits. Despite the ingrowth of the urethral cells on the
matrices, 75% of the rabbits showed strictures and fibrosis in the graft [40]. In addition, Le
Roux et al. used acellular SIS to treat different types of strictures of the male bulbar urethra
in nine patients. Within 3 months of surgery, stricture occurred in six of the patients [41]. A
similar outcome was observed in a study conducted by Hauser et al., where acellular SIS
was employed to treat urethral strictures. Out of the five patients included in the study,
four experienced the recurrence of a stricture [42].

3.2. Cell-Seeded Scaffolds

Due to the demonstrated efficacy of pre-seeded scaffolds to enhance tissue regen-
eration [43], many research groups currently utilize this strategy to repair damaged tis-
sues [34,44]. Many of the acellular scaffolds described previously can be seeded with
cells and then grafted. In this context, De Fillipino et al. conducted a study comparing
the effectiveness of unseeded matrices with cell-seeded constructs in terms of healing.
They utilized autologous bladder epithelial cells and smooth muscle cells from rabbits to
seed tubular matrices made from the acellularized bladder. The rabbits implanted with
the cell-seeded matrices exhibited no signs of strictures, whereas those implanted with
unseeded scaffolds developed strictures and experienced scaffold collapse [45]. Numerous
research teams are currently exploring the application of cell-seeded scaffolds. For exam-
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ple, Fossum et al. employed urothelial cell seeding on SIS to treat six patients diagnosed
with severe hypospadias. Their findings demonstrated successful bladder emptying for
all patients; however, some of them experienced post-intervention complications such as
strictures and fistulas [46]. After 7 years, they were all aesthetically satisfied and had a fully
functional bladder [47]. In a more recent study, Barbagli et al. conducted research on the
use of oral mucosal cells seeded on a biodegradable membrane, which were subsequently
cultured to create a graft. This innovative approach was implemented to treat patients
with recurrent strictures. The technique exhibited a success rate of 84%. Notably, one of
the key advantages of their method is that it necessitates a smaller tissue biopsy, thereby
reducing its invasiveness [48]. However, it is important to note that this approach is not
without complications. In a related study, Barghava et al. published their findings on
the treatment of urethral stricture in lichen sclerosis patients using decellularized dermis
seeded with fibroblasts and keratinocytes derived from human oral mucosa. Following the
surgery, the initial integration of the graft was 100%; however, over time, some patients
developed fibrosis [49]. Moreover, the application of cell-seeded scaffolds extends beyond
biological scaffolds. Currently, numerous synthetic and/or natural polymer-based scaffolds
are being investigated for the treatment of urethral injuries. For instance, Raya-Rivera
et al. utilized PGA/PLGA scaffolds that were seeded with autologous smooth muscle
and epithelial cells to address urethral defects. These scaffolds were implanted in five
patients with urethral defects. Remarkably, after six years of implantation, all patients
exhibited functional urethras, indicating that synthetic polymers such as PLGA can be
successfully assimilated by the human body [50]. It is also possible to combine different
types of synthetic materials in order to form a scaffold [51–53].

3.3. A New Approach: The Self-Assembly Method

The self-assembly method relies on the cells’ capability to secrete and organize their
ECM in the presence of ascorbic acid. The significant advantage of this approach is that
it eliminates the need for exogenous materials in tissue development. Due to this advan-
tage, numerous research teams have endeavored to establish a model for urethral repair
using the self-assembly method. Magnan et al. successfully created a tissue-engineered
tubular genitourinary graft utilizing dermal fibroblasts. The mechanical properties of their
graft were subsequently analyzed, revealing its suturability and even greater resilience
compared to the native porcine urethra. However, histological analysis demonstrated that
the urothelium was not well-differentiated and exhibited similarities to dermal epithe-
lium [54]. Indeed, it was later on proven that the organ-specific character of the fibroblast
cells significantly affects the urothelial cells differentiation process [55]. Following this
breakthrough, Caneparo et al. conducted a study aimed at developing a urethral substitute.
They employed a combination of vesical fibroblasts and dermal fibroblasts to enhance the
mechanical properties of the tissue-engineered grafts. Notably, the substitutes contain-
ing at least 10% dermal fibroblast composition exhibited favorable mechanical properties,
enabling manipulation by surgeons while maintaining high functionality [56]. The self-
assembly method they utilized could be a very interesting method for UTE, as it uses
autologous cells and thus reduces the risks of rejection from the patient. The schematic
illustration of the self-assembly method is shown in Figure 2.
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Figure 2. The self-assembly method involves several steps for tissue production. First, mesenchymal
cells are cultured in Petri dishes with a paper support and ascorbate (50 µg/mL) for 28 days. This
leads to the formation of ECM sheets. These sheets are then superimposed and secured together using
surgical clips, and mechanical compression is applied using metal weights (brown cubes). A sponge
(the green spongy object) is put between the metal weights and the tissue to protect tissues against
mechanical damage. The tissue construct consisting of ECM layers is then cultured to allow fusion
between the layers. Next, epithelial cells (purple cells in the figure) are seeded onto the constructs and
cultured to populate the surface. Once this is achieved, the cell-scaffold constructs are transferred to
an air–liquid interface, which promotes the maturation of the epithelium (yellow cells in the figure).
The entire production process takes approximately 60 days. Adopted from references [57,58].

4. General Characteristics of Biological Macromolecules

In UTE, biological macromolecules have emerged as promising candidates to over-
come some limitations of current scaffolding biomaterials. Proteins and polysaccharides,
incorporated into the matrix of synthetic polymers, may potentially provide adequate
structural integrity to protect the urethral lumen from collapse. Specifically, proteins
derived from ECM could successfully imitate the native tissues’ microenvironment and
can foster cell adhesion and spreading and function [59,60]. Collagen, as the main con-
stituent of native ECM, plays a fundamental role in maintaining tissue structure and
function [61,62]. Polysaccharides, which are composed of long-chain carbohydrates, are
characterized by biocompatibility, convenient hydrophilicity, adjustable biodegradability,
and abundance [63,64]. Moreover, these polymers can be modified to incorporate functional
groups or therapeutic agents and modify their properties for specific regenerative applica-
tions [65–67]. The main polymeric compounds within this class for UTE include cellulose,
chitosan, alginate, dextran, gums, and hyaluronic acid (HA). Further details regarding their
general properties and their application in urethral reconstruction are provided below.
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4.1. Collagen

Collagen, an essential structural polymer found in the ECM of various tissues, exhibits
several positive features that make it highly suitable for UTE. Firstly, collagen demon-
strates high biocompatibility, meaning it is well-tolerated by living organisms and does
not impart adverse tissue reactions. This allows collagen to be perfectly integrated with
the native tissues and promote cellular functions [62,68]. Another important characteristic
of this polymer is its biodegradability. It can be broken down by enzymatic processes
within the body, allowing its remodeling by newly synthesized tissue as the scaffold
degrades [6,69–71]. This feature improves damaged tissue’s repair, ensuring the success-
ful integration of the scaffold with the native tissue. Furthermore, through interactions
with cell surface receptors, collagen can activate intracellular signaling systems that affect
various cellular functions [6,71,72].

Collagen’s versatility is another key benefit of this protein. It exists in various types,
such as type I, II, III, and more, each with distinct characteristics and distribution patterns.
This versatility allows for the selection of specific collagen types based on the target tissue
to engineer, enhancing therapeutic outcomes. Moreover, collagen improves the formation
of new blood vessels and the infiltration of host cells [6,73].

Collagen can be loaded with various signaling cues for specific tissue engineering
applications. For instance, functional groups, growth factors, and bioactive molecules have
been embedded into the collagen matrix to accelerate tissue regeneration and promote
specific tissue functionalities [6,74–76]. Furthermore, collagen is readily available from
various natural sources, such as human or animal tissues, and can also be produced through
recombinant technologies [6,77]. On the negative side, collagen possess poor mechanical
properties, may show batch-to-batch variations in properties, and may potentially elicit
immunological reactions [78,79].

4.2. Cellulose

Cellulose, a polysaccharide present in plant cell walls or produced by some bacterial
species, holds great potential for regenerative purposes. Different types of cellulose, in-
cluding bacterial cellulose (BC), regenerated cellulose, and nanocellulose, offer distinct
properties, benefits, and disadvantages in tissue engineering, and understanding these
differences is essential for optimizing their application in tissue engineering [80–82].

BC, produced by specific bacteria, possesses various positive features that make it
highly suitable for developing tissues in vitro. It features a nanofibrillar microarchitecture
with high purity, biocompatibility, and biodegradability. BC-based scaffolds provide
excellent mechanical properties, which are crucial for supporting tissue repair. However,
the production process can be complex and time-consuming, which limits its widespread
use [83–86].

Regenerated cellulose, derived from sources like wood pulp or cotton, has gained sig-
nificant attention. It can be processed into various forms such as films, membranes, or fibers,
providing a versatile platform for various tissue engineering applications. Regenerated
cellulose offers good biocompatibility and tailorable properties. However, it has limited
biodegradability and can potentially induce long-term foreign body reactions [87–91].

Nanocellulose, comprising nanoscale cellulose fibers or particles, has emerged as a
promising material for different biomedical applications. It includes cellulose nanocrystals
and cellulose nanofibrils. Nanocellulose provides a high surface area, biocompatibility, and
tailorable properties. It can be formulated into hydrogels, aerogels, or composite scaffolds,
creating a favorable environment for various cellular activities. Furthermore, nanocellulose
can be loaded with bioactive molecules or combined with other polymers to enhance its
potential for specific tissue engineering applications. However, challenges persist in terms
of large-scale production and standardization of nanocellulose-based materials [92–96].

While cellulose-based materials hold immense potential for tissue engineering, they
also present certain challenges. One such challenge is the lack of inherent bioactivity and
lack of cell recognition sites in their structure. Cellulose-based constructs may require sur-
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face modifications or the incorporation of bioactive molecules to improve their regenerative
potential. Another challenge is the probability of immune responses or inflammation due
to impurities or residual chemicals from processing. Implementing careful purification and
sterilization methods is crucial for minimizing these effects. Additionally, the structural
rigidity of this polymer may hinder its application in certain tissue engineering scenarios
that require flexibility or dynamic mechanical properties [6,97–101].

Despite these challenges, cellulose-based materials offer several advantages in tissue
engineering. Firstly, their natural abundance and biocompatibility make them an attractive
alternative to synthetic materials. Secondly, cellulose materials can be tailored in terms
of porosity, surface topography, and mechanical properties to mimic the ECM of various
tissues. This enables improved cellular interactions and tissue integration. Moreover,
cellulose can be combined with other polymers, bioactive agents, or growth factors to
enhance its functionality and promote specific tissue regeneration processes [6,98,101–106].

4.3. Chitosan

Chitosan, a natural polysaccharide obtained from chitin, exhibits various positive prop-
erties and has gained attention for tissue regeneration. This biological macromolecule pos-
sesses excellent biocompatibility, biodegradability, and bioactivity, making it well-tolerated
by living tissues. Obtained from sustainable sources such as crustacean exoskeletons and
fungal cell walls, chitosan-based scaffolds provide a permissive environment for tissue de-
velopment. Furthermore, this polymer shows antibacterial properties, potentially reducing
the risk of infection in the scaffold’s implantation site. A notable advantage of chitosan is
its versatility in being processed into various forms. This property allows us to produce
tailorable scaffold design and bioactivity for different applications [6,107–112].

Chitosan can be chemically or physically modified to improve its scope of applications.
This versatility enables the creation of chitosan-based constructs that can foster tissue
regeneration or drive various cellular functions. Chitosan’s positive charge and functional
groups facilitate cell attachment. Furthermore, chitosan has the capability to encapsulate
and deliver bioactive molecules like growth factors, genes, and drugs, enabling controlled
and localized release for tissue regeneration [113–118].

Despite its advantages, chitosan does face certain limitations in tissue engineering. One
primary challenge is its poor mechanical properties. To enhance the mechanical properties
and stability of chitosan scaffolds, reinforcement with filler materials or combination with
other materials, such as synthetic polymers, might be pursued [119–122]. Another factor to
consider is the potential of an immunogenic response to chitosan. While it is generally well-
tolerated, individual variations in immune reactions may occur [123,124]. Thus, proper
purification techniques of chitosan materials are crucial to minimize adverse immune
responses or inflammatory reactions.

4.4. Alginate

Alginate, a natural polysaccharide obtained from seaweed, shows distinct characteris-
tics for tissue engineering and drug delivery applications. Its biocompatibility, biodegrad-
ability, and gel-forming capabilities have sparked interest to use this biomaterial as a
scaffolding system. A notable feature of alginate is its capacity to form hydrogels when
exposed to divalent cations, such as calcium ions [125–127]. This gelation process oc-
curs quickly under mild conditions, enabling the incorporation of cells and bioactive
molecules without compromising their functionality. The resulting gel structure creates a
three-dimensional environment that mimics the natural ECM [126,128–130]. Additionally,
cells tendency towards this polymer is not as strong as collagen [131]. Another significant
attribute of alginate is its tunable properties. The gelation process and mechanical strength
of alginate hydrogels can be adjusted by modifying factors such as alginate concentration,
crosslinking ion type and concentration, and gelation time [128,132,133].

Alginate hydrogels also possess a high water retention capacity, creating a hydrated
construct that can preserve cellular functions. This property facilitates nutrient exchange,
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supports cellular functions, and aids in tissue regeneration. Furthermore, the porous
nature of alginate hydrogels allows for the diffusion of oxygen, nutrients, and waste
products [128,129,134,135].

4.5. Hyaluronic Acid (HA)

HA is a naturally occurring polysaccharide found in the ECM of various tissues. This
biological macromolecule exhibits biocompatibility, ensuring it is well-tolerated by living
tissues without eliciting adverse reactions or inflammation. This quality makes it an ideal
choice for scaffolds or matrices employed in tissue engineering [136–139]. In addition,
HA demonstrates exceptional water-retention potential. This capability helps maintain
tissue hydration and lubrication, which are critical for optimal tissue function and reducing
friction [140–142]. The viscoelastic behavior of HA enables HA-based scaffolds to absorb
and distribute mechanical forces, mimicking the properties of native tissues [143–145]. HA
also interacts with receptors present on cell surfaces, such as CD44, regulating cellular
activities [139]. HA’s proangiogenic and immunomodulatory properties foster a favorable
environment for tissue regeneration [146–149]. HA can also serve as a carrier for bioactive
molecules such as growth factors, peptides, or drugs. Its capacity to retain and release these
molecules in a controlled manner can enhance tissue regeneration processes [149]. Despite
these positive features, this polymer’s high cost and poor mechanical properties hinder its
widespread use in tissue-engineered products [150,151].

4.6. Gums

Gums, natural polysaccharides derived from diverse plant sources, have emerged as
promising biomaterials for tissue engineering. They demonstrate several advantageous
properties that make them appealing for regenerative medicine. However, it is important
to acknowledge their limitations. Gums exhibit excellent biocompatibility, ensuring their
compatibility with living tissues, and minimizing adverse reactions or toxicity. This charac-
teristic is essential for graft’s integration with the native tissue. Additionally, being derived
from plants, these polymers are natural and renewable materials [152,153]. Gums display
unique physical characteristics, including customizable viscosity, ease of processing, and
gelation, therefore customizable scaffolds can be produced via this polymer [154–156].
These scaffolds have demonstrated the ability to absorb significant amounts of water and
maintain tissue moisture. Moreover, their surfaces can be easily modified with various
bioactive agents to enhance their healing potential [153,157]. However, it is worth noting
that gum-based scaffolds generally lack high mechanical properties, making them less
suitable for long-term implantation. Additionally, these polymers often lack cell recognition
sites, leading to a limited tendency for cells to interact with them [156,158–160].

4.7. Dextran

Dextran, a type of polysaccharide, has versatile properties and is being extensively ex-
plored for tissue engineering applications. Its wide range of properties and biocompatibility
make it appealing for UTE.

This biomaterial exhibits excellent cytocompatibility and imparts no toxicity towards
tissues and cells. However, the successful integration of this biomaterial into living tissues
requires incorporation of cell recognition peptides such as Arginine–glycine–aspartic acid
(RGD) into matrix of dextran-based scaffolds [161,162].

One notable characteristic of dextran is its ability to have adjustable physical prop-
erties. This adaptability enables the customization of dextran-based materials to suit
particular applications. This biomaterial also possesses good water solubility, making it
ideal candidate for developing cell delivery systems [163–165]. The optimal water retention
capacity of these scaffolds establishes a hydrated microenvironment that supports various
cellular functions. Presence of various functional groups in the polymeric backbone of
dextran enables researchers to surface-modify dextran-based constructs for various tissue
engineering and drug delivery applications [166–168].
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5. Previous Applications of Biological Macromolecule-Based Scaffolds for
Urethral Reconstruction

Although all of the biological macromolecules reviewed in this paper have potential
applicability in UTE, the researchers have only focused on collagen, chitosan, BC, and
HA. In the following sections, the previous use of these macromolecules in UTE will
be discussed.

5.1. Collagen-Based Scaffolds for UTE

Collagen scaffolds have long been utilized in various areas of tissue engineering due to
their intriguing properties, including biocompatibility with cells and bioactivity. Recently,
numerous studies have focused on pre-clinical trials involving animal models to investigate
the application of collagen scaffolds for urethral repair. In 2016, Pinnagoda et al. published
a noteworthy study on a novel approach to urethral regeneration, employing an engineered
acellular collagen scaffold to guide endogenous cell growth. They conducted implantation
of these scaffolds in 20 New Zealand white rabbits, and post-operative results revealed that
20% of the rabbits developed both fistulas and stenosis [169]. These complications may
arise due to the differential and inadequate integration of acellular scaffolds compared to
cell-seeded scaffolds. In an effort to enhance their properties and minimize post-operative
complications, other research teams have explored modifications to these collagen scaffolds.
One such study was conducted by Jia et al. in 2015, where they employed a collagen
matrix modified with collagen-binding VEGF (vascular endothelial growth factor). The
hypothesis was that VEGF-modified collagen could significantly enhance vascularization
within the neo-urethral tissue. The introduction of this molecule resulted in the promo-
tion of angiogenesis in their experimental model, which was subsequently implanted in a
beagle model [170]. The study demonstrated that Collagen-binding vascular endothelial
growth factor (CBD-VEGF) had the potential to enhance tissue regeneration and improve
the outcomes of urethral reconstruction. However, the reconstructed urethras exhibited
structural and functional differences compared to the native ones. Further experiments are
necessary to refine the model and optimize it for urethral repair. Another notable study
by Nuininga, J.E. et al. focused on a collagen scaffold modified with various factors. They
utilized tubular type I collagen supplemented with vascular endothelial growth factor
(VEGF) and fibroblast growth factor (FGF-2) to replace a segment of the urethra in a rabbit
model. The results indicated that the rabbits achieved normal urination, accompanied by
enhanced neovascularization and urothelium formation [171]. These two studies provide
evidence that the incorporation of vascularization-associated factors can stimulate angio-
genesis, leading to improved success rates of cell-free scaffold grafts by enhancing graft
integration. In the context of repairing longer urethral defects, certain research teams have
focused on developing tubular scaffolds, which are believed to be more suitable for such
cases. One notable study by Orabi et al. involved the seeding of bladder epithelial and
smooth muscle cells onto collagen-based tubular matrices. These tubular grafts were then
utilized to treat 15 male dogs with extensive urethral defects, resulting in robust tissue
development when the collagen scaffolds were seeded with cells [172]. In addition, they
conducted an implantation of tubularized collagen scaffolds without cells in six animals,
and their findings revealed that non-seeded scaffolds resulted in poor graft integration.
The significance of seeding the tubular scaffolds can be attributed to the fact that the seeded
epithelial cells establish a barrier that prevents urine leakage and potential fibrosis. Another
noteworthy example of utilizing tubularized collagen scaffolds can be seen in a preclinical
study conducted by Li et al. In their research, they seeded endothelial progenitor cells and
urothelial smooth muscle cells onto a tubular collagen matrix, which was subsequently
implanted in New Zealand White rabbits presenting with long urethral defects [173]. The
inclusion of multiple cell types in the co-culture approach was intriguing, as previous
studies primarily focused on using epithelial cells alone. The incorporation of diverse cell
types may contribute to the success of scaffold implantation by establishing a physiological
resemblance to native tissue. Both studies highlight the significance of pre-seeding collagen
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matrices before implantation in animals to prevent strictures and facilitate tissue develop-
ment. Moreover, collagen is frequently combined with other molecules to create hybrid
scaffolds. For instance, Wei et al. fabricated an electrospun scaffold using a combination
of PCL (polycaprolactone), silk fibroin, and collagen, which was then seeded with oral
mucosal cells for urethral repair [174]. Various tests conducted in this study demonstrated
that the scaffold exhibited favorable compatibility with the cells, promoting their growth
and proliferation. Although these tests were conducted solely in vitro, this study provided
promising insights by illustrating how the different components of the scaffold facilitated
cell adhesion and viability. Overall, these findings underscore the importance of utilizing
multi-cellular co-culture techniques, pre-seeding strategies, and hybrid scaffold designs to
enhance the compatibility and performance of collagen-based scaffolds in urethral repair.
Further research and in vivo studies are warranted to validate the potential clinical applica-
tions of these approaches. More tests would be needed in vivo to determine whether the
hybrid scaffold is suitable for urethral repair in humans. Moreover, hybrid electrospun
nanofibers composed of PCL/collagen/silk fibroin and PLA/collagen [175] were intro-
duced as potential candidates for UTE. Versteegden, L.R., et al. published a study in which
tubular collagen type I scaffold with noticeable radial elasticity and shape memory effect
was constructed by compression of fibrillar collagen. Human epithelial cells successfully
adhered to a hollow scaffold under dynamic conditions simulated in a bioreactor to mimic
urination conditions [176]. In a similar approach, Chengdan et al. reported the fabrication
of PCL/silk fibroin/collagen electrospun fiber loaded with autogenic oral keratinocytes
and TGF-β1 siRNA-transfected fibroblasts for urethra reconstruction. The fibrous scaffold
provided a convenient substrate for the formation and growth of the stratified epithelial
layer and capillary in the rabbit model after six months. While this study showed promising
results, other experiments would be required to make sure the RNA interference is free of
unintended off-target effects that could impact the different signaling pathways. Another
team used collagen in their hybrid scaffold by coating a polyurethane-urea hydrogel with
collagen. This scaffold was then seeded with bladder smooth muscle cells to ultimately
repair urethral defects in rabbits. The results showed that the cells could grow correctly
on the scaffold, as well as the scaffold having good stretching properties and elongation
at break. They also reported a significantly low incidence of complications like fistulas
and urethral strictures, implying that the use of collagen in their scaffolds helped with the
mechanical properties and biological compatibility with the cells used [177]. While their
hybrid scaffold showed potential for cell growth, further studies would be needed in order
to investigate the long-term effects of the synthetic scaffolds on the human body. Those
studies about hybrid scaffolds show that the benefits of each biomaterial can be maximized
by combining collagen with them.

5.2. Chitosan-Based Scaffolds for UTE

Similar to collagen, chitosan can be utilized in conjunction with other biomaterials to
create a sponge-like structure suitable for cell seeding. As an illustration, Magnan et al.
successfully seeded urothelial cells, fibroblast cells, smooth muscle cells, and endothelial
cells obtained from a porcine bladder biopsy onto a sponge, thus establishing a bladder
model. To fabricate their sponge, they combined bovine collagen, chitosan, and chondroitin
sulfates, which were dissolved in acetic acid. Similar to the study conducted by Ikeda et al.,
the solution was then freeze-dried to form the sponge. The outcomes of their investigation
demonstrated that the tissue-engineered bladder model achieved sufficient thickness and,
significantly, facilitated the formation of tube-like structures resembling capillaries [178].
Although the scaffold in this study did not consist entirely of chitosan, it demonstrated
intriguing characteristics associated with the use of this biomaterial. The findings from this
research exhibited promising results for bladder tissue engineering applications, and due
to the physiological similarities between the bladder and the urethra, chitosan could serve
as a potential scaffold for future urethral repair endeavors. While no pre-clinical animal
studies utilizing chitosan-based scaffolds for urethral repair have been published thus far,
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the compelling properties of chitosan make it a viable option for future application in the
field of urethral repair.

5.3. Cellulose-Based Scaffolds for UTE

BC is a natural polysaccharide that is produced via bacterial fermentation and is
highly biocompatible for various biomedical applications. However, BC-based scaffolding
systems are bioinert and do not efficiently integrate into the implantation site. Yang et al.
modified BC with soy protein isolate (SPI) in order to develop a biomimetic scaffold for
UTE [179]. Then, the developed constructs were used to repair a urethral defect in a rabbit
model. They showed that urethral defect repair was successful in the rabbits implanted
with BC/SPI scaffolds and did not impart any adverse tissue reactions. Despite showing
promising results, this study did not compare the healing activity of BC/SPI scaffolds with
existing urethral reconstruction materials or techniques. Without such comparisons, it is
challenging to assess the relative advantages and disadvantages of BC/SPI compared to
other options available in the field.

Although cellulose-based scaffolds are not biodegraded by human body enzymes
and may elicit foreign body reactions, this biomaterial has FDAs approval for wound
healing applications. In addition, the structural similarity of nanofibrous BC to native
ECM has added to the therapeutic appeal of this polymer. Huang et al. used BC-based
porous scaffolds for the delivery of lingual keratinocytes for UTE [180]. They produced
BC scaffolds by adding a gelatin sponge into the fermentation process. Then, lingual
keratinocytes were isolated from rabbits and seeded onto the porous delivery system.
Then, cell-seeded constructs were implanted into a rabbit ventral urethral defect model.
After 3 months of follow up, the researchers found that the rabbits treated with lingual
keratinocytes-seeded BC scaffolds maintained open the urethra’s lumen and did not show
any immunological reactions. However, urethral stricture was found in other groups.
Histological evaluations showed that the epithelium in the cell-seeded constructs was
intact and continuous during the first month post implantation. However, on the third
month, similar epithelium regeneration was seen in 3D porous BC-only scaffolds and BC
scaffolds seeded with lingual keratinocytes. This study used lingual keratinocytes as the
seeded cells for UTE. While they may demonstrate promising results in the experimental
setting, the feasibility, availability, and ethical considerations of using lingual keratinocytes
in clinical applications need to be carefully investigated.

BC-only scaffolds do not possess sufficient bioactivity to foster a robust tissue re-
generation. Therefore, it is necessary to modify their structure with supporting cells or
therapeutic agents. Adipose-derived stem cells (ASCs) are an easily accessible source of
stem cells and have a strong secretion profile that can promote the healing of various tissue
injuries. In addition, FGFR2 plays a significant role in urinary tract development and repair.
Modifying ASCs to overexpress FGFR2 can potentially enhance their secretory function
and improve their healing function in urethral defects. In this regard, Zhu et al. used
a double-modified sulfated BC for delivering FGFR2-overexpressing ASCs into a New
Zealand rabbit model of urethral defect [181]. In vitro results revealed that the modified
constructs were conductive for the cells adhesion and proliferation. In addition, an in vivo
study showed that the cell delivery system augmented the urethral defects repair by upreg-
ulating the Vascular Endothelial Growth Factor A expression. The research presents a novel
approach combining modified ASCs and biomaterials for UTE. However, standardization
of the fabrication process, quality control, and regulatory approval would be necessary
before this approach can be used in clinical practice. Meeting the rigorous standards set by
regulatory agencies particularly for using modified stem cells on human subjects can be
very challenging.

Limited angiogenesis and lack of efficient epithelialization hinder satisfactory regener-
ation of the urethra following injury. Fortunately, due to versatile properties of bacterial
cellulose, it can be combined with other scaffolding systems to augment the vascularization
process. In this regard, Wang et al. combined bacterial cellulose with bladder acellular
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matrix in order to develop a biomimetic tissue-engineered construct [182]. The devel-
oped constructs were highly similar to native urethral matrix in terms of 3D structure
and the presence of necessary ECM components such as collagen, glycosaminoglycans,
and pro-angiogenic growth factors. In vitro angiogenesis assay confirmed the formation
of capillary-like tubes on the developed scaffolds. The healing activity of these scaffolds
was investigated in a rabbit model of urethral defect. Results showed that the grafts were
well-tolerated, and they augmented the urethral defects regeneration and angiogenesis.
Although this research emphasized the effects of VEGF on the urethra defect repair, the
natural healing response in the body is mediated by complex cross-talk between various
growth factors, signaling molecules, and cells. Therefore, the effects of other signaling
pathways on the urethral defect repair should be investigated.

The bacteria responsible for producing bacterial cellulose such as Gluconacetobacter
xylinus can produce this polymer on the surface of other scaffolds. In this regard, a freeze-
dried silk fibroin matrix was utilized as a template for developing bacterial cellulose/silk
fibroin hybrid scaffold for UTE [183]. Lingual keratinocytes and lingual muscle cells were
seeded onto the constructs, and their behavior was investigated. The study showed that the
hybrid scaffold provided a permissive environment for cell adhesion and proliferation. The
healing efficacy of the developed constructs was investigated in a canine model of urethral
defect. After three months of implantation, the animals treated with the hybrid scaffold
seeded with lingual keratinocytes and lingual muscle cells significantly alleviated the
urethral stricture symptoms and showed no adverse tissue reactions. Although silk fibroin
is generally considered compatible with the body, it can still elicit an immune response or
inflammatory reactions in certain individuals. This immune reaction has the potential to
hinder the integration of tissue or lead to complications in the implanted urethral construct.
In a similar approach, Lv et al. developed a composite sponge from combination of gelatin
and bacterial cellulose for UTE [184]. The autologous lingual keratinocytes and smooth
muscle cells were seeded onto these composite scaffolds and the healing potential of the
cell-scaffold constructs was investigated in a canine model of urethral defect. The study
showed that the composite scaffolds seeded with both cell types resulted in significant
reduction in urethral stricture and a well-organized urothelium. However, it should be
noted that the urethral grafts developed from gelatin might not exhibit ideal durability, as
gelatin is highly prone to biodegradation.

5.4. Alginate-Based Scaffolds for UTE

Hydrogels can be designed to transport medications or therapeutic substances directly
to the affected area of the stricture. These incorporated drugs can specifically target in-
flammation, stimulate tissue regeneration, or minimize scarring. Consequently, hydrogels
contribute to symptom relief and promote the recovery process after urethral injuries. In ad-
dition, hydrogels offer lubrication and decrease friction within the urethra, providing relief
from discomfort and pain caused by urethral strictures. By establishing a smoother surface,
hydrogels facilitate the flow of urine, thereby diminishing the likelihood of additional injury
or irritation. In this regard, Kurowiak et al. investigated the in vitro biodegradation of
sodium alginate-based hydrogels in a urine environment to study the hydrogels’ potential
applicability to treat urethral stricture [185]. They used two different cross-linking agents to
develop the hydrogel system. This approach resulted in the production of hydrogels with a
range of mechanical properties and biodegradation rate. The mild cross-linking process of
calcium alginate hydrogels allows the incorporation of various therapeutic agents without
compromising their biological activity.

Metal stents are commonly used in the clinic for treating urethral stenosis. However,
insertion of these tubes into the urethra may cause pain during erection. In addition, the
stent may dislocate after the implantation or simply bend or undergo fracture. Therefore,
the use of biodegradable polymeric stents may potentially address these issues. In this
context, Klekiel et al. produced a biodegradable stent from sodium alginate using a
simple cross-linking method [186]. They then implanted the stents into rabbit’s urethra.



Biomolecules 2023, 13, 1167 14 of 23

They showed that their developed stent expanded well inside the urethra and caused no
significant damage to the sounding tissues. In addition, the stent allowed free urine flow
and met the required mechanical properties for a stent material. Indeed, the incorporation
of anti-fibrosis drugs into the matrix of these stents may further enhance their ability to
treat urethral stricture.

5.5. HA-Based Scaffolds for UTE

Direct endoscopic internal urethrotomy (DIU) has been widely explored for the treat-
ment of urethral strictures. However, due to the high post-operative recurrence rate, the
success rate of this treatment strategy to remain low. In a randomized controlled clinical
trial, Chung et al. investigated the effects of HA and carboxymethylcellulose injection in
inhibiting stricture recurrence after DIU [187]. In this study, 120 patients were recruited,
and they were randomly divided into two groups (60 individuals in each group). In the first
group, the patients received HA and carboxymethylcellulose instillation following the DIU.
In the second group, the patients were treated with lubricant instillation after the surgery.
Results showed that visual analogue scale (VAS) pain score and degree of satisfaction
were significantly higher in the patients treated with the HA and carboxymethylcellulose
injection. In addition, the recurrence of urethral stricture was observed in 5 patients in
the HA/carboxymethylcellulose-treated group compared to 11 lubricant-treated patients.
Therefore, the local injection of these two biopolymers is effective in preventing urethral
structure recurrence after DIU. The inhibitory effects of these two polymers on urethral
stricture could be attributed to the lack of cell recognition sites in the structure of these poly-
mers. However, the anti-stricture potential of these polymers might be further enhanced by
incorporating anti-stricture drugs into their structure. This can be carried out by physical
escalation, surface modification, or incorporation of another drug delivery system such
as nanocarriers.

HA can be used as a bioactivity enhancer of other polymeric scaffolds in UTE. In this
regard, Niu et al. surface-coated electrospun silk fibroin scaffolds with HA in order to im-
prove the epithelization process in the urethral tissue reconstruction following injury [188].
Compared with non-modified silk fibroin scaffolds, the constructs that were coated with
HA significantly improved the adhesion and proliferation of urothelial cells that were
stained positive for uroplakin-3. In vivo study in a rabbit model of urethral injury showed
that the silk fibroin scaffolds coated with HA induced the migration of urothelial cells
from the adjacent tissues and effectively restored the urothelium barrier. Although surface
coating is a simple and straightforward approach for the modification of the polymeric
scaffolds, electrospinning the polymeric blending of HA with silk fibroin may provide
more stable functionalization.

Three-dimensional bioprinting technology aims to develop personalized tissues grafts
based on patients needs and conditions. In this technology, bioinks are essential as they pro-
vide structural support, encapsulate living cells, and enable the incorporation of bioactive
factors. They act as a scaffold for tissue formation and help maintain cell viability and func-
tionality throughout the bioprinting process. The composition and properties of bioinks
are carefully designed to mimic the native tissue environment and promote successful
tissue regeneration. Zhang et al. bioprinted an artificial urethra using a bioink composed
of fibrin, gelatin, and HA. The backbone of the scaffolds was fabricated from a polymer
blend of PCL and Poly l-lactic acid-co-e-caprolacton [189]. The bioink system allowed for
efficient printing of urothelial and smooth muscle cells into the inner and outer layers of
the scaffolds. Results showed that the mechanical properties of the developed constructs
were comparable with that of native urethras’. In addition, the printed cells preserved their
viability even after 7 days of the cells printing and both cell types preserved their specific
markers’ expression. While 3D bioprinting has broken new ground in UTE, obtaining the
desired mechanical properties, including strength, elasticity, and contractility, remains a
difficult task in UTE. Additionally, ensuring proper functionality, such as maintaining urine
flow and continence, is a complex endeavor that necessitates additional research efforts.
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6. Challenges

UTE has emerged as a promising area of research in the field of reconstructive urol-
ogy, providing potential solutions for the treatment of urethral defects. In this context,
the use of biological macromolecules has gained significant attention in the develop-
ment of functional and biocompatible urethral tissue substitutes. However, the successful
clinical translation of biological macromolecule-based urethral grafts is accompanied by
various challenges.

The rapid degradation of biological macromolecule-based scaffolds poses a significant
challenge in UTE. While controlled biodegradation is essential for tissue regeneration, exces-
sively fast biodegradation may impede the formation of stable tissue structures and compro-
mise the long-term stability and functionality of the engineered urethral graft [10]. Another
challenge is the mechanical weakness exhibited by some biological macromolecules, such
as collagen, dextran, alginate, and chitosan, when used as standalone scaffolds. The me-
chanical properties of the urethral grafts are pivotal for providing structural support and
withstanding external forces. Insufficient mechanical properties may result in scaffold
collapse and impact tissue remodeling [16,190]. Immunogenicity is also a concern with
biological macromolecules. Collagen, for instance, may induce an immune response in
certain individuals, leading to inflammation or rejection [62]. Addressing immunogenicity
is essential to ensure that adverse tissue reactions will not occur after the graft’s implan-
tation. Although biological macromolecules offer favorable biocompatibility, they may
lack the intrinsic bioactivity necessary for stimulating a successful tissue repair following
tissue injuries. Without appropriate bioactive cues, the scaffolds may not adequately pro-
mote cell attachment (particularly in case of polysaccharide-based scaffolds that lack cell
recognition sites), proliferation, and differentiation, thereby limiting their effectiveness in
UTE [15,16,191].

Precisely controlling scaffold properties, including porosity, mechanical strength, pore
size, and degradation rate, can be challenging with biological macromolecule-based scaf-
folds, especially because of the batch-to-batch variations in biological macro molecules’
properties [15,192,193]. Tailoring these properties and ensuring the repeatability of the man-
ufacturing process is crucial. In this context, producing these grafts on a large scale while
maintaining consistency and quality poses scalability and standardization challenges. The
availability of clinical-grade biological macromolecules, high throughput manufacturing
technology, and scalability considerations are crucial for successful clinical translation.

Ensuring proper integration between the engineered urethral tissue and the host tissue
is vital for functional outcomes. Biological macromolecule-based scaffolds should facilitate
appropriate cell signaling, vascularization, and ECM remodeling to promote seamless
integration with the surrounding tissues and restore normal urethral function.

A specific challenge regarding the UTE is developing a functional and continuous
urothelium within the engineered tubular tissue. As these scaffolds do not possess a flat
surface, establishing a perfect air–liquid interface for the maturation of urothelium is a
challenging task. It is crucial to develop methods to generate a urothelial lining that can
effectively prevent infections and urine leakage.

Addressing these challenges requires continuous research and development efforts.
Strategies such as scaffold hybridization, incorporation of bioactive molecules or growth
factors, scaffold surface modifications, vascularization strategies, and advanced fabrication
techniques show promise in enhancing the performance of biological macromolecule-based
scaffolds for UTE.

7. Prospects and Concluding Remarks

Despite the challenges, the use of biological macromolecules in UTE shows significant
potential for advancing reconstructive urology and addressing urethral defects and urolog-
ical disorders. These biomaterials offer distinct advantages that make them promising ma-
terials for constructing urethral grafts. Firstly, these macromolecules demonstrate excellent
biocompatibility, ensuring minimal adverse reactions when in contact with living tissues.
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With the advent of new scaffold modification technologies and drug delivery systems, vari-
ous signaling cues can be incorporated into the matrix of biological macromolecule-based
scaffolds that can further enhance their potential for repairing damaged urethra. Further-
more, biological macromolecules offer versatility in scaffold design and fabrication. They
can be processed into various forms, such as hydrogels, fibers, membranes, or coatings,
allowing for customization according to the specific requirements of UTE. This versatility
enables the development of scaffolds with tailored properties.

In conclusion, the use of biological macromolecules in UTE holds great promise. Their
biocompatibility, bioactivity, modifiable properties, and versatility make them suitable
materials for scaffold construction, leading to potential improvements in treatment out-
comes, enhanced tissue regeneration, and restoration of urethral functionality. Continued
research and development in this field will contribute to advancing regenerative therapies
and benefiting individuals with urethral defects or urological disorders.
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