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Drug delivery, mainly a professional term in pharmaceutics, is a field of interdisci-
plinary intersection and integration [1–3]. Besides pharmaceutics, it is also a popular topic
in tissue engineering, medical engineering, food engineering, hygiene, agriculture, and
forestry [4]. Small drugs are administered directly in a pure state due to a number of
reasons such as possible toxicity, effectiveness, and patients’ compliance. Drug delivery
often involves the reasonable selection of drug carriers and additives, which are expected to
safely escort the drug molecules to the lesion site (the right section of Figure 1). Thus, two
issues are naturally the key elements in developing novel drug delivery systems (DDSs).
One is the properties of a drug carrier and its advantages as a drug-loaded matrix. The
other is the material conversion techniques by which the drug, the carrier, and the additive
are processed into a suitable DDS.

Polymers and lipids are the most important drug carriers both in pharmaceutical
industries and laboratories [5–7]. Other carriers include inorganic materials (such as silicon,
carbon nano tubes, and graphene), surfactants, and organic–inorganic composites (such as
MXene and metal–organic frames). During the past several decades, the synthetic polymers
that have been approved by the FDA for pharmaceutical applications are extremely limited,
although petroleum-based materials are booming (such as polyester fiber, polyamide fiber
or nylon, and polyacrylonitrile). The mainstream of pharmaceutical excipients is always
natural polymers and their derivatives (such as cellulose, polysaccharides, proteins, and
nucleic acids) [8–10]. Due to being originally derived from biomass, natural polymers
always exhibit fine biocompatibility, low toxicity, and biodegradability [11,12]. These
natural polymers belong to the category of biomacromolecules, which can be extracted
from plants, animals, and microorganisms.

Biomolecules can be categorized according to their molecular weights, i.e., biomacro-
molecule and small molecules (such as those typically smaller than 500 Da). Furthermore,
these biomacromolecules and small biomolecules can be divided into three categories
according to their potential applications, i.e., inert, positively active, and negatively active
(or toxic) (the left section of Figure 1). In terms of the contribution of biomolecules to drug
delivery, half of the history of pharmaceutics is the history of the usage of biomolecules.
First of all, there are numerous active pharmaceutical ingredients (APIs) that are small
biomolecules (such as the famous curcumin and quercetin for antibacterial applications,
paclitaxel for anti-tumor performances, helicid for calming down emotions, and artemisinin
as the most effective drug for treating malaria resistance) or biomacromolecules (such as
penicillin, insulin, calcitonin, and many other active proteins). They are positively active
ingredients that can be achieved from biomass. Certainly, there are also some negatively
active ingredients regardless of small molecules or macromolecules. They are toxic and
should be avoided from human beings, such as highly toxic Aflatoxin B1 [13,14], snake
venom and various other animal and plant toxins. Secondly, inert small biomolecules
are frequently explored as drug delivery carriers. One of the famous small molecules
frequently utilized for drug delivery are lipids. They are the main component of the cell
membrane, and are thus highly biocompatible and nontoxic. Because of their excellent
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lipophilic characteristics, the trans-membrane properties should be remarkably increased
for drug absorbance when it is encapsulated into a lipid product. Meanwhile, lipid coating
can also be explored for an improved drug sustained release profile [15].
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Figure 1. Strengthening the drug delivery applications of biomolecule-based nano products through
electrospinning.

Thirdly, inert biomacromolecules are popular in developing a wide variety of novel
DDSs. Compared with petroleum-based synthetic polymers, inert biomacromolecules have
obvious advantages for carrying drugs and for the related drug delivery applications [16].
Some typical inert biomacromolecules are the most brilliant stars in developing novel DDSs,
such as cellulose, chitosan, zein, silk fibroin, gelatin, hyaluronic acid, and collagen [17–19].
These inert biomacromolecules are not only biocompatible and safe for usage, but also
have excellent processability [20]. Drugs and inert biomacromolecules can be transferred
into almost all kinds of formats at a wide scale, such as traditional tablets, capsules,
microparticles, nanoparticles, nanofibers, and their combinations such as microparticles-
on-a-nanofiber and beads-on-a-string products [21,22].

In this nano era, the amount of research on nano products is tremendous (in Web
of Science, there are 1,558,808 items when “nano” is utilized as a topic to search at
https://www.webofscience.com/wos/alldb/basic-search (accessed on 14 July 2023)). How-
ever, commercial nano products are still very limited. The reasons are complex, including
but not limited to the following: (1) their complex production processes, regardless of
“bottom-up” or “top-down” methods for nanofabrication; (2) their poor robustness and
continuity; (3) the few reasonable evaluation methods and standards of the commercial
products; (4) the limited alternative raw materials. Particularly notable is the fourth one;
facing the serious situation of continuous depletion of fossil resources and increasing en-
vironmental pollution, a shift towards environmentally friendly and efficient renewable
biomolecules as raw materials is an inevitable trend. For medical applications such as
drug delivery, this trend is even more important. It is anticipated that the combination of
biomolecules and electrospinning will provide potential useful solutions for these issues,
and thus strengthen the drug delivery applications of biomolecule-based nano products.

https://www.webofscience.com/wos/alldb/basic-search
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Electrospinning, as a typical top-down method for creating nano products character-
ized by Taylor cone (the bottom section of Figure 1), has a series of advantages over many
other “top-down” and “bottom-up” nanofabrication processes [23–26]. Catering to the three
directions of nano science and engineering, electrospinning is also moving forward along
three directions: (1) smaller to picotechnology; (2) more order such as various nanoarrays;
(3) more complex structures such as multi-chamber structures and nano devices [27,28].
Among these, the complex nanostructures are a highlight point, regarded as representing
the advancements of nano science and engineering [28]. It has been broadly demonstrated
during the past several decades that electrospinning can remarkably strengthen the drug
delivery applications of biomolecules through the creation of biomolecule-based medicated
nanofibers [20]. Accompanying the developments of electrospinning, these strengthening
effects could be further enhanced in the future.

In general, DDSs composed of electrospun biomolecule-based nanofibers can be
those: (1) containing pharmaceutical active biomolecules (both small biomolecules and
biomacromolecules) as the guest ingredients, which are very common in developing
medicated nanofibers; (2) containing inert biomacromolecules as the matrices to load
drugs; (3) containing inert small molecules as drug carriers or additives in electrospun
nanofibers for a better drug delivery effect. As electrospinning progresses, its advantages
in promoting the drug delivery applications of biomolecules will be further developed.

Electrospinning can further enrich biomolecule-based nano DDSs from different as-
pects. First of all, electrospinning is able to greatly increase the numbers of novel DDSs
through various effective approaches. Several examples are included as follows: (1) new
electrospun biomolecule-based nanocomposites or nanohybrids to take advantages of the
small diameter, large porosity, and huge surface properties of nanofibers, in which new
types of biomolecules (whether macromolecules or small molecules, pharmaceutically
inert or active) are encapsulated as guest ingredients or as the filament-forming matrices;
(2) electrospun complex structure-based multiple-functional nano products with one or
more biomolecules as the candidates, which include 2-layer or 3-layer core–shell, 2-section
or 3-section Janus, and the multiple-chamber combinations of core–shell and Janus as
DDSs [29–34]; (3) the organization of electrospun biomolecule-based nanofibers in a layer-
by-layer manner or with other intermediate products (such as casting films and fabrics) for
a better drug delivery application [35]; and (4) advanced trans-scale functional products
such as microparticles-on-a-nanofiber hybrid DDSs [36]. Accompanying the developments
of these new DDSs, the related process–property and structure–performance relationships
can be elucidated to provide new professional knowledge (Figure 1).

Secondly, the most recent developments of electrospinning have revealed that un-
spinnable fluids can take part in multiple-fluid electrospinning processes [37,38]. Thus,
many biomolecules, whether small molecules or macromolecules, can be processed into
nanofibers with other matching components [39,40]. Meanwhile, the combinations of elec-
trospinning with other electrohydrodynamic atomization processes or traditional chemical
and physical methods are elevated in the literature, which provides numerous opportu-
nities for biomolecules to be incorporated into drug delivery applications, such as the
combination of electrospraying and electrospinning [36].

Thirdly, many electrospun nanofibers are approaching industrial production, and
commercial products based on the progresses of electrospinning are seeing production on a
large scale. Without doubt, these progresses would be conducive to the commercial DDSs
of biomolecules in future. Medicated nanoparticles are the most frequently reported nano
products for drug delivery [41–43]. Compared with nanoparticle-based products, some
nanofiber-based products have obvious advantages in medical transitions for potential
clinical applications, particularly some membrane-based medical devices such as wound
dressings, oral disintegrating films, and smart skin [44,45].

Fourthly, electrospinning can improve biomolecule-based nano DDSs from a social
and economic standpoint. Electrospinning is a single-step and straightforward process
for creating nano products, which means that its production cost and time consumption
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are competitive. Particularly, some studies have noted the energy-saving effects of special
electrospinning apparatuses [46]. In addition, as a multiple-field interaction direction,
electrospun biomolecule-based DDSs contain many useful teaching materials for science
education, engineering education, innovation education, and even safety education in
higher education institutes and universities [47,48].

In summary, electrospun biomolecule-based nanofibers, as a kind of combined product
holding the advantages of both biomolecules and electrospinning, are expected to strongly
expand and strengthen the numbers of novel DDSs in the near future. It can be expected that
these DDSs would accelerate and strengthen the applications of biomolecules in a number
of fields, particularly in pharmaceutics, medical devices, food packaging engineering, tissue
engineering, and agriculture and livestock.
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