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Abstract: Uveal melanoma (UVM) is a highly aggressive ocular cancer with limited therapeutic options
and poor prognosis particularly for patients with liver metastasis. As such, the identification of new
prognostic biomarkers is critical for developing effective treatment strategies. In this study, we aimed
to investigate the potential of an ultraviolet light response gene signature to predict the prognosis
of UVM patients. Our approach involved the development of a prognostic model based on genes
associated with the cellular response to UV light. By employing this model, we generated risk scores
to stratify patients into high- and low-risk groups. Furthermore, we conducted differential expression
analysis between these two groups and explored the estimation of immune infiltration. To validate
our findings, we applied our methodology to an independent UVM cohort. Through our study, we
introduced a novel survival prediction tool and shed light on the underlying cellular processes within
UVM tumors, emphasizing the involvement of immune subsets in tumor progression.

Keywords: uveal melanoma; gene expression signatures; prognostic factors; bioinformatics

1. Introduction

Uveal melanoma (UVM) is a rare and aggressive cancer that arises from the pigmented
cells of the eye. Although UVM accounts for only 5% of all melanomas, it is the most
common primary intraocular tumor in adults [1]. While the majority of UVM patients are
diagnosed with primary tumors, approximately 50% of them develop metastatic disease,
which is associated with poor survival rates due to the lack of effective treatment options [2].
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Currently, the main treatment for UVM includes resection, enucleation, and radiation
therapies. However, one of the major clinical challenges in UVM metastatic treatment is the
lack of effective systemic therapies. Although several treatments have been explored, such
as chemotherapy, immunotherapy, and targeted therapy, none of them have shown the
expected clinical benefit in randomized controlled trials [3]. Therefore, the development of
novel and effective therapies for UVM remains an important unmet medical need.

The clinical challenges of UVM are complex and multifaceted. In addition, this tumor
is highly heterogeneous, and its molecular and genetic characteristics vary widely among
patients [4]. Prognostic gene expression signatures have emerged as a promising tool
to predict the risk of UVM metastasis and guide treatment decisions. Multiple studies
have identified gene expression profiles that correlate with UVM metastasis and overall
survival [5,6]. These gene signatures can be used to classify UVM patients into low- and
high-risk groups, with the high-risk group having a significantly higher risk of developing
metastasis and a worse prognosis. While gene expression profiling has shown promise
in predicting UVM prognosis, it is important to note that these gene signatures are still a
prognostic tool and not a diagnostic test [7].

Ultraviolet (UV) radiation is a well-known risk factor for cutaneous melanoma, and
recent studies have suggested that it may also play a role in UVM development. However,
epidemiological and genetic data, as well as the optical properties of the ocular media,
lead to controversial conclusions concerning the involvement of solar UV radiation as a
risk factor for uveal melanoma [8]. While some studies [9], reported inconclusive findings
and the absence of a clear association between UV radiation exposure and UVM, other
investigations [10], identified potential links between UVM and factors such as eye color
and UV radiation exposition. UV-induced DNA damage is considered a critical event in
cutaneous melanoma UVM pathogenesis, which may lead to the activation of oncogenes
and/or inactivation of tumor suppressor genes, ultimately leading to tumor initiation and
progression [11]. Nonetheless, genetic analyses seem to validate the influence of UV light as
a carcinogen responsible for the development of uveal melanomas. UV hallmark mutations
(CpG→ TpA) are found in the codon 183 of GNAQ and GNA11 and in the RAC1 gene. This
mutational homology can be interpreted as a clue as to the implication of UV light in the
etiology of uveal melanoma [8].

These contrasting findings highlight the need for additional studies to elucidate the
role of UV radiation as a risk. Therefore, in this study, we propose the hypothesis that
identifying and characterizing genes involved in the UV light response could offer valu-
able insights into the mechanisms driving UVM tumorigenesis. In this study, based on a
set of HALLMARK_UV_RESPONSE_UP genes from the Molecular Signatures Database
(MSigDB), which represent gene expression patterns related to the response to cellular UV
radiation, we conducted a bioinformatic analysis to identify a gene signature indicative of
UV light response in UVM patients and we evaluated their use as a prognostic tool. Our
findings may offer novel insights into the diagnosis, prognosis, and management of patients
with UVM. Nonetheless, it is important to note that clinical and histopathologic data should
be used in conjunction with these gene signatures to make informed treatment decisions.

2. Materials and Methods
2.1. Data Resources

The RNA sequencing data UVM were acquired from The Cancer Genome Atlas (TCGA)
(database (https://portal.gdc.cancer.gov/, accessed on 8 December 2022). The gene expres-
sion quantification method used was HTSeq (high-throughput sequencing), and the unit of
measurement for the gene expression dataset was FPKM-UQ (fragments per kilobase million
with upper quartile normalization). The expression values were further transformed using
the logarithm base 2, following the unit “log2(fpkm-uq + 1)”. The FPKM-UQ unit considers
gene length and read counts from RNA sequencing data to estimate gene expression levels.
The data selection criteria consisted of 80 UVM patients diagnosed with UVM who had
available expression and clinical information.

https://portal.gdc.cancer.gov/
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2.2. Gene Prioritization

To identify genes associated with the cellular UV light response, a set of 158 genes
was obtained from the Hallmark_UV_Response_UP gene signature, which is available in
Molecular Signatures Database (MSigDB) (http://www.gsea-msigdb.org/gsea/index.jsp,
accessed on 17 December 2022). The HALLMARK_UV_RESPONSE_UP gene set used in
our study is derived from MSigDB, a well-established resource for gene set enrichment
analysis. The MSigDB includes a diverse collection of over 10,000 gene sets representing
various biological processes and diseases. To address redundancy and heterogeneity, the
MSigDB employs a refinement process called “hallmarks,” which involves clustering and
consensus methods to determine stable partitions. The refined gene sets undergo iterative
refinement and independent validation. The HALLMARK_UV_RESPONSE_UP gene set
specifically captures coherent expression patterns related to cellular UV radiation response.
These hallmarks have undergone meticulous generation and refinement to provide more
concise and reliable inputs for gene set enrichment analysis [12].

2.3. Ultraviolet Light Response Prognostic Model

A univariate Cox regression analysis was performed using the 158 UV light response
signature genes to identify potentially prognostic genes in the UVM TCGA cohort. The
survival module from the Tumor Immune Estimation Resource (TIMER) tool (http://timer.
comp-genomics.org/, accessed on 17 December 2022) was utilized for this purpose. Genes
showing significant correlation with UVM patient survival were selected for the final
prognostic model. We utilized a ridge regression approach, implemented through the R
package “glmnet,” to stratify risk based on gene expression data. A subset of genes was
obtained, and their corresponding coefficients were determined to calculate the risk score.
The gene expression of each gene from the defined model was multiplied by the ridge
regression coefficient calculated for that gene in the final model. The low- and high-risk
groups were established using the median value of the risk scores as the threshold. Patients
below the median were classified as the low-risk group, while those at or above the median
were classified as the high-risk group. This methodology facilitated the quantification of
risk based on gene expression levels, resulting in the classification of 40 UVM patients into
the high-risk group and the remaining 40 into the low-risk group.

To evaluate the prognostic value of the established prognostic model, a survival anal-
ysis was conducted using the UCSC XENA browser (http://xena.ucsc.edu/, accessed on
17 December 2022) with the high-risk and low-risk patient groups [13]. Additionally, receiver
operating characteristic (ROC) curves were used to assess the accuracy of the model.

2.4. Analysis of Clinicopathological Features in Relation to Risk Groups

To assess the potential association between clinicopathological features of UVM and
the low-risk or high-risk groups, we constructed frequency distributions using the clinical
data of the 80 UVM patients. The statistical software SPSS v21.0 (IBM Corp., Armonk, NY,
USA) was employed for this analysis.

2.5. Functional Enrichment

To compare the gene expression levels between UVM patients with low-risk scores and
high-risk scores, we performed a differential expression analysis using the UCSC XENA
browser. The gene expression data were normalized using the log transformation method
to ensure suitable data distribution for analysis. The differential expression analysis was
conducted using the limma_voom method, incorporating precision weight estimation
based on the observed mean-variance relationship in the data. A significance threshold of
0.05 was applied to identify genes with a statistically significant difference in expression,
controlling the false discovery rate (FDR). Additionally, a log fold change threshold of
1.5 was set to identify genes with substantial changes in expression levels between the
two groups. Then, using as an input the list of the top 100 Differentially Expressed Genes
(DEGs) overexpressed in the high-risk group we conducted Gene Ontology (GO) and

http://www.gsea-msigdb.org/gsea/index.jsp
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Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using the Enrichr web tool
(https://maayanlab.cloud/Enrichr/, accessed on 10 November 2022) [14]. The enriched
functional analysis results were visualized using the “SRplot” R package, which generated
Enrichment Bubble plots and volcano plots.

2.6. Gene Set Enrichment Analysis

We analyzed RNA sequencing data from 80 UVM patients obtained from the TCGA
project. We conducted gene set enrichment analysis (GSEA) [15] using all the hallmark gene
sets from MSigDB. The enrichment scores were calculated to assess the overrepresentation
of gene sets within the dataset. Permutation testing was performed to determine the statis-
tical significance of the enrichment scores, and the FDR was used to control for multiple
hypothesis testing. Additionally, we employed principal component analysis (PCA) for data
visualization and generated classical GSEA plots to visualize the enrichment scores.

2.7. Analysis of the Immune Microenvironment Infiltration

To calculate immune and stromal cell infiltration for each of the 80 UVM samples
from the TCGA, we used the R package “xCell” [16]. The analysis was conducted using
the website (https://xcell.ucsf.edu/ accessed on 10 November 2022). We evaluated the
differential expression of immune and stromal cells’ infiltration between the high-risk and
low-risk UVM patients, with a significance level of p < 0.05.

2.8. Association of Gene Expression and Clinicopathological Features

We utilized the publicly available R2 platform (https://hgserver1.amc.nl/cgi-bin/r2
/main.cgi, accessed on 3 January 2023) to investigate potential associations between gene
expression levels from the genes in our model and clinical traits in the 80 patients from the
TCGA UVM cohort.

2.9. Validation Cohort

To validate our prognostic model, we utilized transcriptomic information from a
cohort of 63 uveal melanoma patients, including their molecular profiles derived from
gene expression microarrays performed on enucleated primary tumors [17]. The analysis
involved the use of Affymetrix U133plus2 Arrays to analyze the transcriptomes of the
63 UVM patients.

2.10. Statistical Analysis

The frequency of clinicopathological variables between the high-risk and low-risk UVM
groups was compared using the chi-square or Fisher exact tests. The normality assumptions
for continuous data were evaluated using the Kolmogorov–Smirnov test. To assess differences
in survival based on gene expression or between the low-risk and high-risk groups, the log-
rank test was conducted. Differences in immune and stromal cell infiltration, between the
high-risk and low-risk UVM groups were calculated using the Mann–Whitney U test. A
p-value of < 0.05 was considered statistically significant for all the comparisons using either
SPSS v21.0 (IBM Corp., Armonk, NY, USA) or R software (v4.0.2, https://www.r-project.org/,
accessed on 3 January 2023).

3. Results
3.1. Identification of UV Response-Related Genes with Prognostic Potential in Uveal Melanoma

The study flow diagram is presented in Figure 1A. Initially, a univariate Cox model was
utilized to analyze 158 genes associated with UV light response [12]. This analysis aimed to
identify UV response genes that could potentially impact the prognosis of UVM patients.
Among the initial pool of 158 genes, 61 genes demonstrated prognostic potential. The analy-
sis was conducted on a sample of 80 UVM patients obtained from the TCGA project. The
results, including the hazard ratio (HR) and its corresponding 95% confidence interval, can
be found in Supplementary Table S1. To further refine the gene list for constructing the

https://maayanlab.cloud/Enrichr/
https://xcell.ucsf.edu/
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
https://www.r-project.org/
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prognostic signature, we utilized a Ridge regression model. As a result, 11 UV response
genes were included in the final prognostic model, which is listed in Figure 1B.
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Figure 1. (A) The flowchart provides a comprehensive summary of the main methods employed in
this study. (B) The forest plot depicts the prognostic model for UVM patients, illustrating hazard
ratios (HR) and their corresponding 95% confidence intervals. Genes with protective effects are
represented by green boxes, while genes associated with risk effects are represented by pink boxes.

3.2. Characteristics of Population

The demographic and clinical features of the 80 UVM patients from the TCGA project are
detailed in Table 1. To compare patients at high-risk or low-risk, we analyzed the distribution
of clinicopathological characteristics within the UVM TCGA cohort. The analysis showed
that the high-risk group exhibited a higher frequency of cytogenetic abnormalities and
a greater number of patients with residual tumors after treatment, in comparison to the
low-risk group (p < 0.05).
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Table 1. Baseline clinicopathological data and correlations between risk score signatures.

Variable All (n = 80) Low Risk (n = 40) High Risk (n = 40) p Value

Age
<60 36 (43.8%) 22 14

0.115 a
≥60 44 (56.2%) 18 26

TNM (Tumor/Node/Metastasis)
T2 4 4 0

0.068 bT3 36 15 21
T4 38 21 17
Missing data 2 0 2
N0 76 39 37

0.304 b
NX 4 1 3
M0 73 38 35

0.482 bM1 3 1 2
MX 4 1 3

Pathologic stage
IIA 4 3 1

0.376 b

IIB 32 16 16
IIIA 27 15 12
IIIB 10 5 5
IIIC 3 0 3
IV 4 1 3

Cytogenetic abnormality
Chr 1 loss 3 2 1

0.042 b

Chr 1 loss Chr 3 loss 2 0 2
Chr 1 loss Chr 3 loss Chr 8q gain 4 0 4
Chr 3 loss 2 1 1
Chr 3 loss Chr 6p gain 1 1 0
Chr 3 loss Chr 6p gain Chr 8q gain 5 3 2
Chr 3 loss Chr 8q gain 18 8 10
Chr 6p gain 11 9 2
Chr 6p gain Chr 8q gain 5 5 0
Chr 8q gain 1 1 0
Missing data 28 10 18

Gender
Female 35 19 16

0.490 b
Male 45 21 24

Histological type
Epithelioid Cell 13 5 8

0.322 bEpithelioid Cell Spindle Cell 21 9 12
Spindle Cell 30 19 11
Spindle Cell Epithelioid Cell 16 7 9

Cancer status
Tumor free 54 31 23

0.050 a
With tumor 26 9 17

Tumor basal diameter count
From 7 to 16 27 10 17

0.174 a≥16 52 30 22
Missing data 1 0 1

Tumor tissue site
Choroid 56 29 27

0.818 aChoroid Ciliary body 22 10 12
Choroid Ciliary body Iris 2 1 1

TNM tumor classification: T: primary tumor size and extent, higher numbers indicating increasing tumor size. The
N: involvement of regional lymph nodes, higher numbers indicating increasing nodal involvement. M: metastasis,
categorized as M0 (no distant metastasis), M1 (presence of distant metastasis), or MX (distant metastasis cannot
be assessed). p values of the Fisher test (a), chi-square test (b).
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3.3. Survival and Clinicopathological Features Associated with Defined UV Response Risk Scores

Survival analysis was conducted to evaluate the prognostic model. The Kaplan–Meier
(KM) survival curve for the low-risk and high-risk groups showed that patients in the high-
risk group experienced a more significant decrease in survival rate (Figure 2A). Additionally,
individual survival analyses were performed for each gene included in the prognostic
model stratifying the UVM cohort by the median value of the gene expression (Figure 2B–L).
The significant differences (p < 0.05) in survival outcomes observed upon upregulation of
CXCL2, IL6, TCHH, PDAP1, and CHRNA5, and downregulation of CDK2, RXRB, CCND3,
POLR2H, and WIZ in individual gene analyses suggest the potential of the gene expression
profiles included in the model for personalized prognosis of UVM patients.
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Figure 2. Survival analysis based on the prognostic model. (A). KM survival curve for the patients
in the low- and the high-risk groups, the survival rate of patients in the high-risk group suffered a
more drastic decrease. KM survival curves for the 11 genes of the prognostic model on the UVM
TCGA cohort stratified by the gene median value of expression. Upregulation of CXCL2, IL6, TCHH,
PDAP1, CHRNA5, BID (B–G) and downregulation of CDK2, RXRB, CCND3, POLR2H, and WIZ
(H–L) were indicators of worse survival. The differences were statistically significant (p < 0.05).

A ROC curve was used to demonstrate the prognostic ability of the UV response
signature model in predicting patient survival based on gene expression data. The corre-
sponding area under the curve (AUC) values for 1, 2, 3, and 4 years were 0.69, 0.79, 0.84, and
0.86, respectively (Figure 3). The ROC analysis suggested that the accuracy of the model
increased progressively over time, as evidenced by the AUC values. These findings suggest
that the UV response signature model could provide dependable long-term prognostic
information for patients.
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3.4. Functional Enrichment Analysis of UVM Patients by Their Risk Score

GO enrichment analysis showed that several biological processes and molecular func-
tions were enriched in differential genes between the high-risk and low-risk groups. These
included cytokines signaling pathways, cellular response to cytokine stimulus, and reg-
ulation of immune response for biological processes, and chemokine receptor binding,
chemokine activity, interleukin 6 receptor binding, and interleukin 1 receptor binding for
molecular functions (Figure 4A–C). Moreover, the differential expression analysis revealed
that immune-associated genes and extracellular matrix genes were upregulated in the
high-risk group (Figure 4D). In our GSEA analysis, we conducted a principal component
analysis (PCA) to assess the variance explained by different components in the defined
high-risk and low-risk groups. The PCA figure revealed that PC1 accounted for 7.6% of
the variance, PC2 accounted for 5.9% of the variance, and PC3 accounted for 3.3% of the
variance (Supplementary Figure S1). In our GSEA analysis comparing uveal melanoma
patients under high- and low-risk scores, we observed normalized enrichment scores (NES)
for several biological processes. Specifically, we found notable enrichment in the inflam-
matory response, epithelial to mesenchymal transition, and interferon gamma response
(Supplementary Figure S2).
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3.5. Estimation of the Stromal and Immune Cells Infiltration Analysis

We used the “xCell” deconvolution algorithm to estimate the levels of infiltration of
64 immune and stromal cell lineages to investigate the relationship between tumor immune
response and our risk model. Our results showed that the levels of immune infiltration were
different between the two risk groups. Specifically, we found that the high-risk group had
significantly higher levels of stromal cell infiltration, such as melanocytes and myocytes,
as shown in Figure 5B,C. Furthermore, we observed that the high-risk group tended to
have higher levels of immune cell lineages, including pan-macrophages and M2 polarized
macrophages, dendritic cells (DC), immature dendritic cells (iDC), plasmacytoid dendritic
cells (pDC), and plasma cells. In contrast, hematopoietic stem cells (HSC) were enriched in
the low-risk group in the tumor microenvironment, as shown in Figure 5A.
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Figure 5. Estimation of immune and stromal cell infiltration in UVM patients. (A). Dispersion plots
showed differential infiltration of immune cells between the low and high UVM risk groups, higher infil-
tration of dendritic cells (DC), immature dendritic cells (iDC), pan macrophages also M1 or M2 subtype,
plasmacytoid dendritic cells (pDC), and plasma cells, were observed in the high-risk group (p < 0.05),
whereas hematopoietic stem cells (HSC) were enriched in the low-risk group (p < 0.05). Differential
stromal cell infiltration was observed between the low and high UVM risk groups. (B). Melanocytes
were found to be overrepresented in the high-risk group. (C). Finally, myocytes were found to be
enriched in the low-risk group compared to the high-risk group.

3.6. Prognostic Model Genes Association with Clinicopathological Features of UVM Patients

The analysis revealed that the expression levels of RXRB and CDK2 were higher in
lower pathological stages of the tumor (Figure 6A,B). Conversely, the expression levels of
IL6 and CHRNA5 were lower in tumor-free patients after initial treatment compared to
those who still had remaining tumors (Figure 6C,D). Additionally, higher expression levels
of PDAP1 and CHRNA5 were found in patients who experienced new tumor events after
initial treatment (Figure 6D,E). Finally, POLR2H and CDK2 were found to be upregulated
in patients with chromosomal disomies compared to those with chromosomal monosomies
(Figure 6F,G).
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Figure 6. Association of 11 prognostic genes with clinicopathological features of UVM patients.
Panels (A,B) show that RXRB and CDK2 expression levels were higher in lower pathological stages
of the tumor. Panels (C,D) show that IL6 and CHRNA5 expression levels were lower in patients
who were tumor-free after initial treatment. Panels (E,F) show that PDAP1 and CHRNA5 expression
levels were higher in patients who presented a new tumor event after initial treatment. Finally, panels
(G,H) show that POLR2H and CDK2 were upregulated in patients who had chromosomal disomies
compared to those bearing chromosomal monosomies.

3.7. Validation of the UV Response Gene Signature in the Context of a Metastatic UVM Cohort

During the validation phase, we assessed the prognostic performance of the UV
light signature in the GSE22138 cohort [17]. We leveraged the ridge regression coefficients
obtained from the TCGA training dataset, in which 11 genes were identified, and applied
the formula outlined in Section 2.3 to compute a risk score for each patient in the validation
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cohort. We subsequently stratified the validation cohort into low-risk (n = 31) and high-risk
(n = 32) groups based on the median risk score. Our analysis revealed that patients in the
high-risk group had significantly worse metastasis-free survival (MFS), as illustrated in
the KM survival curve (p-value = 0.0033) shown in Figure 7A. We validated the predictive
performance of our UV response signature prognostic model for metastasis-free survival in
an independent cohort. Our results indicate that the model exhibited a strong predictive
ability, with AUC values of 0.69, 0.74, and 0.68 for 1, 2, and 3 years, respectively (Figure 7B).
These findings suggest that our model can provide valuable prognostic information for
patients with regard to their metastasis-free survival outcomes.
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Figure 7. (A). Metastasis-free survival analysis based on the prognostic model in the GSE22138
validation cohort. A KM survival curve shows the patients in the low-risk (n = 31) and high-risk
(n = 32) groups, indicating a more drastic decrease in survival rates for patients in the high-risk group.
(B). The ROC curve of metastasis-free survival for different years in the validation cohort shows that
the model had a potent predicting ability, with AUC values of 0.69, 0.74, and 0.68 for 1 year, 2 years,
and 3 years, respectively.

4. Discussion

The amount and quality of melanin in the eyes and skin provide varying levels of
protection against ultraviolet radiation (UVR), which can cause physical or genomic damage
to cells [18,19]. The eyes are at risk of oncogenic transformation into melanoma due to their
exposure to UVR while producing visual input [10,20,21]. However, current classifications
by the World Health Organization suggest that UVM is triggered by risk factors other than
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cumulative solar damage [9,22]. Nevertheless, evidence suggests that some UVMs possess
molecular signatures reflective of UVR damage, even in those originating from the choroid,
which is the most common UVM origin. This suggests that UVR in some cases, is involved
in the etiology of UVM [18,23].

In this study, we developed a prognosis model based on the expression of genes as-
sociated with cellular UV response. The model allowed us to stratify patients into low- or
high-risk score groups, our findings demonstrate a clear association between specific gene
expression levels and adverse tumor outcomes. The forest plot in Figure 1B highlights that
high expression levels of CXCL12, IL6, TCHH, PDAP1, CHRNA5, and BID are linked to
an increased risk of poor outcomes, indicating a direct influence of these genes on tumor
prognosis. Figure 2A further emphasizes the impact of gene expression levels on overall
patient survival, reinforcing the potential of the genes in our model as prognostic markers
for uveal melanoma. Our analysis of clinicopathological variables in Table 1 shows that the
association between the altered genes and tumor outcomes is independent of traditional
clinicopathological features. Although we observed one association with cytogenetic abnor-
mality, no significant associations were found with other clinicopathological variables. This
strengthens the notion that the influence of these genes on tumor outcomes is direct and not
solely dependent on clinicopathological factors. Additionally, Figure 4 provides insights into
the underlying biological processes associated with the altered genes in the high-risk group,
aligning with known biological functions and pathways related to tumor progression. This
concordance between gene expression and established biological processes further supports
the causal relationship between altered genes and adverse tumor outcomes. Importantly,
our model accurately predicted metastasis-free survival of UVM patients (Figure 7).

The identification of UV light response genes in UVM could be a valuable step toward
understanding its pathogenesis. UVR has been identified as a potential risk factor for UVM
development, and UV-induced DNA damage is considered an important event in UVM
pathogenesis [8,24]. However, this is the first study to propose that a gene expression
signature associated with UV light response could provide valuable insights into UVM
prognosis. Additionally, understanding the mechanisms underlying the UV light response
could lead to the development of novel therapies that target these genes and their pathways.
Thus, the identification of UV light response genes holds the potential for improving the
prognosis and treatment of UVM patients. However, it is important to acknowledge that the
genes identified in our prognostic model can also be modulated by various environmental
and cellular processes. For example, the gene CXCL2 can be influenced by other factors
including viral infections [25]. Therefore, to accurately quantify the UV radiation exposure
of UVM patients, it is crucial to conduct epidemiological studies that consider and account
for UVR dosimetry and other potential modulating factors.

Our developed prognostic model demonstrates its capability to predict overall survival
and metastasis-free survival in UVM patients, exhibiting a favorable performance with an
area under the receiver operating characteristic curve (AUC) of 0.84 at 36 months (Figure 3).
It is important to acknowledge the existence of alternative prognostic methods in the field.
For instance, Cao et al. [26] proposed a pyroptosis gene signature-based prognostic model,
achieving a ROC AUC of 0.88 for predicting five-year survival. Similarly, Cui et al. [27]
developed a prognostic model utilizing autophagy signatures, which reached a ROC AUC of
0.91 for predicting one-year survival. In another study, Zhao et al. [28] applied a deep learning
model focusing on the hypoxia phenotype, successfully predicting survival outcomes and
tumor aggressiveness. By comparing our proposed model with these existing methods, we
aim to underscore the potential of exploring gene expression data for predicting UVM patient
survival. Moreover, we emphasize the significance of the cellular response to UV radiation
as a potential mechanism in uveal melanoma.

In addition to the wide use of transcriptional signatures to predict the survival of
patients with UVM, other layers of omics information have also been exploited. In one study,
the authors conducted whole-genome sequencing of 103 UVM samples from different sites
of the uveal tract was performed. Most UVM had a low tumor mutation burden (TMB),
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but two subsets with high TMB were identified: one driven by germline MBD4 mutation
and another by ultraviolet radiation (UVR) exposure, which was restricted to iris UVM. All
tumors had a known UVM driver gene mutation, and three other significantly mutated genes
were identified (TP53, RPL5, and CENPE) [24]. The immune system has been extensively
studied in the context of predicting the prognosis of UVM patients. Several studies have used
gene expression profiles to identify immune cell subtypes and genetic markers associated
with immunotherapy response. A six-immune cell signature was identified and used to
determine three immune subtypes with significant differences in overall survival [29].
In addition, thirteen immune cells and one stromal cell were found to be significant in
predicting poor overall survival rates in UVM patients, and a four-cell model was identified
with the high-risk group being more sensitive to immunotherapy and chemotherapy [30].
Moreover, an immune and glycolysis six-gene signature was developed using LASSO and
multivariate Cox regression analysis, which showed good predictive efficiency and was an
independent risk factor for overall survival in UVM patients. Overall, these studies highlight
the importance of the immune system and gene expression profiling in predicting the
prognosis of UVM patients and identifying potential targets for therapy [31]. We contribute
to the current knowledge by utilizing gene expression features of UV-responsive genes as a
tool for prognosticating UVM patients (Figures 1B and 2A).

There is little information regarding UV-responsive genes and their association with the
progression of ocular tumors in general. One attempt was from the study of [32], the study
aimed to investigate the role of UV radiation in the development of conjunctival malignant
melanoma. The researchers analyzed six samples for mutations of the N-Ras gene, which
is frequently found in cutaneous melanomas of sun-exposed areas. However, they could
not detect any mutations, indicating that UV exposure may not be the cause of conjunctival
melanoma development. In a seminal study, authors performed whole-genome sequencing
on 103 UVMs from different sites in the eye and found that most have a low tumor mutation
burden (TMB), but two subsets with high TMB were identified. One is driven by a germline
MBD4 mutation, and the other is linked to UVR exposure, which is restricted to the iris.
All but one tumor has a known UVM driver gene mutation, and three other significantly
mutated genes (TP53, RPL5, and CENPE) were also identified. The limited therapeutic
options for metastatic UVM have shown little impact, and these findings could provide
insights into future treatment options, especially for high-risk subsets of UVM [24]. Despite
not using genomic data from UVM patients in our study, we observed that the high-risk
group showed an association with more cytogenetic abnormalities compared to the low-risk
group. This suggests that the expression of UV-responsive genes could potentially be linked
to the genomic instability of UVM tumors, as shown in Table 1.

The clinical challenges of UVM are complex and multifaceted. The tumor is often
diagnosed at a late stage, and treatment options are limited. In addition, UVM is highly het-
erogeneous, and its molecular and genetic characteristics vary widely among patients [3]. One
of the major clinical challenges in UVM treatment is the lack of effective systemic therapies.
Although several treatments have been explored, such as chemotherapy, immunotherapy,
and targeted therapy, most of them have shown no significant clinical benefit in randomized
controlled trials [33,34]. With the exception of one study, which reported a median overall
survival of 21.7 months for patients receiving tebentafusp, a bispecific antibody that activates
T cells to target cancer cells, compared to 16 months for patients in the control group [35].
As such, there is still a significant unmet medical need for the development of innovative
and effective therapies for UVM. In this sense, our results indicate that a higher infiltration
of DC, iDC, pDC [36], and macrophages including M2 subtype [37], and plasma cells were
observed in the high-risk group. Further research is warranted to understand the roles of
these immune tumor microenvironment cells in UVM progression (Figure 5).

Despite the valuable insights gained from our study, it is important to acknowledge the
limitations encountered. Firstly, the sample size of 80 UVM patients may be considered rela-
tively small. However, uveal melanoma is a rare tumor with a low incidence in the general
population, posing challenges in obtaining a large cohort. Nevertheless, the findings from
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our study contribute to the understanding of the molecular characteristics and prognostic
factors of UVM. Another limitation pertains to the availability of complete clinicopathologi-
cal information for all patients. In retrospective studies using existing datasets, obtaining
comprehensive data for the entire cohort can be challenging. However, we made diligent
efforts to maximize the available information and transparently reported any missing or
unspecified data in our analysis. Furthermore, it is important to acknowledge inherent
limitations in our study design our study focused solely on the analysis of gene expression
and its association with prognosis, potentially excluding other important factors influencing
tumor outcomes. Future studies should aim to address these limitations by incorporating
larger patient cohorts, prospectively collecting comprehensive clinicopathological data, and
considering additional factors that may impact tumor outcomes.

In summary, our study presents a perspective on the diagnosis, treatment, and progno-
sis of UVM, which holds potential for this type of tumor with a historically poor prognosis.
The findings highlight the need for further investigation into the UVM tumor microen-
vironment, and preclinical research is necessary to expand the limited treatment options
available to UVM patients.

5. Conclusions

The identification of genes responsive to UV light has implications for the prognosis
of UVM. This knowledge could aid in developing personalized therapies that target the
pathways of these genes. Further research in this area is warranted to fully comprehend
the molecular mechanisms that underlie the response to UV light and its association with
the pathogenesis of UVM.
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