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Abstract: Background: The bladder exstrophy-epispadias complex (BEEC) is a spectrum of congenital
abnormalities that involves the abdominal wall, the bony pelvis, the urinary tract, the external geni-
talia, and, in severe cases, the gastrointestinal tract as well. Methods: Herein, we performed an exome
analysis of case-parent trios with cloacal exstrophy (CE), the most severe form of the BEEC. Fur-
thermore, we surveyed the exome of a sib-pair presenting with classic bladder exstrophy (CBE) and
epispadias (E) only. Moreover, we performed large-scale re-sequencing of CBE individuals for novel
candidate genes that were derived from the current exome analysis, as well as for previously reported
candidate genes within the CBE phenocritical region, 22q11.2. Results: The exome survey in the CE
case-parent trios identified two candidate genes harboring de novo variants (NR1H2, GKAP1), four
candidate genes with autosomal-recessive biallelic variants (AKR1B10, CLSTN3, NDST4, PLEKHB1)
and one candidate gene with suggestive uniparental disomy (SVEP1). However, re-sequencing did
not identify any additional variant carriers in these candidate genes. Analysis of the affected sib-pair
revealed no candidate gene. Re-sequencing of the genes within the 22q11.2 CBE phenocritical region
identified two highly conserved frameshift variants that led to early termination in two independent
CBE males, in LZTR1 (c.978_985del, p.Ser327fster6) and in SLC7A4 (c.1087delC, p.Arg363fster68).
Conclusions: According to previous studies, our study further implicates LZTR1 in CBE formation.
Exome analysis-derived candidate genes from CE individuals may not represent a frequent indicator
for other BEEC phenotypes and warrant molecular analysis before their involvement in disease
formation can be assumed.
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1. Introduction

The bladder exstrophy-epispadias complex (BEEC; OMIM %600057) characterizes a
spectrum of human congenital anomalies comprising malformations of the urinary tract and
the genitalia, pelvis, abdominal wall, and, occasionally, the spine and gastrointestinal tract [1,2].
The BEEC encompasses a vast severity spectrum incorporating different phenotypes, including
epispadias (E) as the mildest phenotype, classic bladder exstrophy (CBE) as the intermediate
and most common form, and cloacal exstrophy (CE) as the most severe phenotype [3]. CE
is also referred to as OEIS (omphalocele, exstrophy, imperforate anus, and spinal defects)
complex [4]. Epidemiological studies state the incidence rates at about 2.4:100,000 births for E,
1–2:50,000 births for CBE, and 0.5–1:200,000 births for CE [1], with an overall birth prevalence
of 1:10,000 in children of European descent [3]. A male-to-female ratio ranging from 1.5:1 to
6:1 [5] is reported, with CBE being more frequent in males and CE being more common in
females [6]. Additional anomalies of the urinary tract, such as an ectopic kidney, a horseshoe
kidney, renal hypo- or agenesis, and ureteropelvic junction obstruction are present in one-third
of all cases, mainly in the form of the CE phenotype [2,5]. Both sexes are affected by impaired
sexual function and fertility issues [2,7–9]. Fertility in men is decreased due to low ejaculation
volumes and poor sperm quality [8,9].

Multiple findings suggest that genetic factors play an important role in BEEC etiol-
ogy: (i) increased recurrence risk for the siblings of CBE individuals [5,10,11], (ii) increased
recurrence risk for the offspring of affected individuals [11], (iii) a higher concordance
rates among monozygotic compared to dizygotic twins [12], and (iv) the report of several
multiplex families in the literature [13]. Previously, candidate genes for monogenic forms
were identified through array-based molecular karyotyping [14] and exome analysis [3].
Using exome analysis, we recently identified SLC20A1 as a monoallelic candidate gene
for CE [15]. To identify further candidate genes, we performed exome analysis in 14 CE
case-parent trios and in one affected sib-pair (CBE and epispadias only). To prioritize the
identified candidate genes, we re-sequenced 480 BEEC individuals for the prioritized can-
didate genes. Furthermore, we re-sequenced previously reported candidate genes within
the CBE phenocritical region, 22q11.2 [14]. Based on our findings, we suggest that the gene
LZTR1 is involved in CBE formation.

2. Materials and Methods
2.1. Individuals

Exome analysis was performed in 14 CE case-parent trios and 1 affected sib-pair
presenting with CBE and epispadias only. The complete re-sequencing cohort comprised
480 BEEC individuals (310 males and 169 females; in 1 case, the gender was unknown).
Ethical consent was obtained by the Ethics Committee of the Medical Faculty of the Univer-
sity of Bonn (Lfd.Nr.031/19). Written informed consent was provided by all participating
families prior to the study.

2.2. DNA Preparation and Exome Sequencing

The DNA of individuals and their parents was extracted from saliva samples, using the
Oragene DNA Kit (DNA Genotek Inc., Ottawa, ON, Canada), or from blood samples using
the Chemagic Magnetic Separation Module I (Cheagen, Baesweiler, Germany). In the first
step, exome sequencing was performed for 14 CE case-parent trios and 1 affected CBE and E
sib-pair at the Next-Generation Sequencing Laboratory of the Cologne Center for Genomics
(CCG), using the Agilent SureSelect Human All Exon V6 for 12 families, the NimbleGen
SeqCap EZ Human Exome Library v 2.0 for 2 families, and the Agilent SureSelect All Exon
V7 for 1 family. After validation (2200 TapeStation; Agilent Technologies, Santa Clara, CA,
USA) and quantification (Qubit System; Invitrogen, Waltham, MA, USA), pools of libraries
were generated and subsequently sequenced on the Illumina HiSeq 4000 sequencing
instrument, using a paired-end 2 × 100 bp protocol. The mean coverage of the presented
exome data was 70,933 reads. In total, 92.31% of the targeted bases were covered by at
least 20×. Since we filtered the reads with a minimum coverage of 10×, all the prioritized
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variants were validated using Sanger sequencing. Data analysis and filtering of the mapped
target sequences were accomplished using the “Varbank” exome and genome analysis
pipeline, version 2.0 (https://varbank.ccg.uni-koeln.de, accessed on 1 May 2000).

2.3. Filtering

The exome data were filtered for different inheritance patterns (autosomal-dominant
variants, autosomal-recessive genes with homozygous and compound heterozygous vari-
ants, and uniparental-disomy disease variants) and underwent a visual quality-control
check with Varbank2. We filtered all case-parent trios for de novo mutational events and
autosomal-recessive disease variants. In the case of a dominant (de novo) disease model,
we only considered those variants with a minor allele frequency (MAF) in gnomAD [16] of
<0.00001. We excluded low-quality variants within the targeted regions and the flanking
100 bp. In the case of a recessive disease model, we only considered those variants with a
MAF in gnomAD of ≤0.01. Filtering further included the following algorithm, involving:
(a) variants present in gnomAD [16] v.2.1; (b) GnomAD [16] (the number of “loss of func-
tion” mutations with “homozygous individuals” and the number of “missense” mutations
with homozygous individuals); (c) conservation of amino acids (aa) across the species Hs
(Homo sapiens), Mm (Mus musculus), Gg (Gallus gallus, Xt (Xenopus tropicalis), Dr (Danio
rerio) [17]; (d) conservation of bases across species (Hs, Mm, Gg, Xt, Dr) [17]; (e) prediction
tools (PolyPhen-2 [18], SIFT [19], CADD [20]), (see Table A1 in Appendix A), (f) the pres-
ence of described knockout animal models (Mm, Dr) [21,22]; (g) the presence of expression
data (https://proteinatlas.org, accessed on 1 May 2000) [23]; (h) the affection of functional
protein domains [24]; (i) STRING (computational predicted interaction) [25]; (j) OMIM (the
gene–phenotype relationship; https://omim.org/, accessed on 1 May 2000); (k) entries in
GeneMatcher [26]; (l) entries in Phenoscanner [27,28]; (m) entries in ClinVar [29]; (n) entries
in PubMed [25].

2.4. Molecular Inversion Probe (MIP) Assay and Sanger Validation

In the second step, prioritized candidate genes were re-sequenced using a “Molecular
Inversion Probe (MIP) Assay” for the entire BEEC cohort. We included the 7 candidate genes
prioritized in our exome analysis, along with 7 candidate genes that were previously described
in the 22q11.2 CBE phenocritical region [14,30,31]. To cover all 192 protein-coding-transcripts
of these 14 candidate genes, 335 MIPs were designed with amplicon lengths of between 165
and 189 bp (see Table S1 in the Supplementary Materials), using an in-house version of the
MIPgen tool [32]. Three balancing runs and one re-balancing run of the MIPs were performed
using the MiSeq® with Reagent Kit v2 (Illumina, San Diego, CA, USA). The final pooled MIP
libraries were then sequenced with the NovaSeq 6000® SP XP-Workflow Reagent Kit v1.5 (300
cycles), using 2 × 125 bp. A Q30-Score of 82.93% was reached. The sequencing identified
1252 variants, of which only those variants that were covered by more than 10 reads were
considered. To prioritize these variants, we applied the filter algorithm described above. Final
validation of the remaining variants found in individuals and their parents was performed
via Sanger sequencing with an ABI 3730 XL DNA analyzer (Life Technologies/Thermofisher,
Schwerte, Germany) by Azenta Life Science.

3. Results
3.1. Exome Analysis

Filtering of the CE case-parent exome data identified seven candidate genes. These
genes comprised two candidate genes with autosomal-dominant monoallelic de novo vari-
ants (NR1H2, GKAP1), three candidate genes with autosomal-recessive biallelic compound
heterozygous variants (CLSTN3, AKR1B10, NDST4), one candidate gene with an autosomal-
recessive biallelic homozygous variant (PLEKHB1), and one candidate gene with suggestive
uniparental disomy (SVEP1). All variants were validated by Sanger sequencing. Exome
analysis of one affected sib-pair did not identify any plausible variants/candidate genes.

https://varbank.ccg.uni-koeln.de
https://proteinatlas.org
https://omim.org/
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3.1.1. Autosomal-Dominant Candidate Genes (GKAP1, NR1H2)
GKAP1 (G KINASE-ANCHORING PROTEIN; OMIM *611356)

Individual 420_501 was found to carry a novel de novo heterozygous missense variant,
c.737A>C (p.Gln246Pro), in exon 8 (Ensembl GRChr37/hg19 transcript ENST00000376371.7)
of GKAP1. However, SpliceAI predicts a high chance of donor loss for this variant so it
might not be a missense but, instead, a splicing variant.

The variant was predicted to be deleterious in SIFT and benign in PolyPhen-2, with a
CADD13-PHRED score of 26.1. The aa is evolutionarily conserved down to Mm and Gg
(Gln), while Xt and Dr show unalienable bases in the gap region. Our in-house murine
transcriptome database of relevant uro-rectal tissue shows expression over the whole
time period, with an upregulation in E15.5: log2FoldChange (15.5) of 0.99659903 and a
p-value (15.5) of 3.1474 × 10−8, with a baseMean (15.5) of 949.642679. GKAP1 has not been
associated with any human disease phenotype so far (Table 1).

Table 1. Molecular details and clinical features of individuals with autosomal-dominant monoallelic
de novo variants.

Individual 420_501

Gene GKAP1 NR1H2

GRCH37/hg19 chr9:86383734 chr19:50882024

Transcript NM_025211 NM_007121
c.change c.737A>C c.718C>T
p.change p.Gln246Pro p.Arg240Cys

Variant consequence Missense Missense

Zygosity Heterozygous Heterozygous

Exon 1 8/13 6/10

MAF gnomAD v2.1
(homozygotes) Not reported Not reported

Mode of Inheritance De novo De novo

SIFT (5.2.2) Deleterious (0.01) Deleterious (0.01)
PolyPhen-2 (2.2.2) Benign (0.011) Probably damaging (0.931)

CADD13_PHRED v1.6 26.1 28.5

Sex Female

Primary phenotype CE

All information about the transcript refers to the canonical transcript. 1 Exon: the number before the slash indicates
the affected exon. The number after the slash indicates the number of exons in this gene.

NR1H2 (NUCLEAR RECEPTOR SUBFAMILY 1, GROUP H, MEMBER 2; OMIM *600380)

Individual 420_501 was found to also carry a novel de novo heterozygous mis-
sense variant c.718C>T (p.Arg240Cys) in exon 6 (Ensembl GRChr37/hg19 transcript
ENST00000253727.10) of NR1H2. The variant was predicted to be deleterious in SIFT
and probably damaging in PolyPhen-2, with a CADD13-PHRED score of 28.5. The aa
is highly conserved down to Mm, Gg, Xt, and Dr. Our in-house murine transcriptome
database did not show any expression of this variant during the embryonic stages of E10.5,
E.12.5, and E15.5. NR1H2 has not been associated with any human disease phenotype so
far (Table 1).

3.1.2. Autosomal-Recessive Candidate Gene with Homozygous Variants (PLEKHB1)
PLEKHB1 (PLECKSTRIN HOMOLOGY DOMAIN_CONTAINING PROTEIN; FAMILY B;
MEMBER 1; OMIM *607651)

We identified one autosomal-recessive candidate gene, PLEKHB1, for which individual
420_501 carried a homozygous missense variant, c.76G>A (p.Gly26Ser) in exon 2 of 8 (Ensembl
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GRChr37/hg19 transcript ENST00000354190.10) (Table 2). It was predicted to be deleterious
by SIFT and probably damaging by PolyPhen-2, with a CADD13_PHRED score of 28.4. The
aa is conserved to Mm. Our in-house murine transcriptome database shows the continuous
expression of this variant during the embryonic stages E10.5, E.12.5, and E15.5. The protein
has only one annotated domain (aa21-128) and the variant lies at the beginning of this domain.
PLEKHB1 has not been associated with any disease phenotype so far.

Table 2. Molecular details and clinical features of individual with autosomal-recessive biallelic
homozygous variants.

Individual 420_501

Gene PLEKHB1

g.DNA position (GRCH37/hg19) chr11:73360114

Transcript NM_021200
c.change c.76G>A
p.change p.Gly26Ser

Variant consequence Missense

Zygosity Homozygous

Exon 1 2/8

MAF gnomAD v2.1 0.0001189

(homozygotes) (0)

Mode of Inheritance Autosomal recessive

SIFT (5.2.2) Deleterious (0)
PolyPhen-2 (2.2.2) Probably damaging (1)

CADD13_PHRED v1.6 28.4

Sex Female

Primary phenotype CE

All information about the transcript refers to the canonical transcript. 1 Exon: the number before the slash indicates
the affected exon. The number after the slash indicates the number of exons in this gene.

3.1.3. Autosomal-Recessive Candidate Genes with Compound Heterozygous Variants
(CLSTN3, AKR1B10, and NDST4)
CLSTN3 (CALSYNTENIN; OMIM *611324)

Individual 390_501 carried two compound heterozygous missense variants, c.2285A>T
(p.Gln762Leu) and c.2626C>T (p.Arg876Cys), in exons 15 and 17 of 18 (Ensembl GRChr37/hg19
transcript ENST00000266546.11) of CLSTN3 (Table 3). The variants are predicted to be tol-
erated and deleterious in SIFT, benign and possibly damaging in PolyPhen-2, and have a
CADD13_PHRED score of 20.2 and 25.3, respectively. The bases are conserved over Mm and
Gg (A/C). Xt and Dr show base variations for chr12:7303179 and the base is conserved for Dr at
chr12:7310183. Our in-house murine transcriptome database shows the continuous expression
of Clstn3 during the embryonic stages E10.5, E.12.5, and E15.5. CLSTN3 has not been associated
with any disease phenotype so far.

AKR1B10 (ALDO-KETO REDUCTASE FAMILY 1, MEMBER B10; OMIM *604707)

Individual 644_501 carried two compound heterozygous missense variants, c.121C>T
(p.Arg41Trp) and c.124C>T (p.His42Tyr), in exon 2 of 10 (Ensembl GRChr37/hg19 transcript
ENST00000359579.5) of AKR1B10. The protein consists of seven binding sites. Both variants
are found just before the second nicotinamide adenine dinucleotide phosphate (NADP+)
binding site (aa 44). Both variants were predicted to be deleterious by SIFT and probably
damaging by PolyPhen-2, with CADD13_PHRED scores of 26.6 and 25.1. The aa are
highly conserved down to Mm, Gg, Xt, and Dr (Arg and His). Our in-house murine
transcriptome database shows expression during the embryonic stages E10.5, E.12.5, and
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E15.5, with an upregulation in E15.5 (log2FoldChange (15.5) of 1.44652099 and a p-value
(15.5) of 1.3823 × 10−22, with a baseMean (15.5) of 775.040889. AKR1B10 represents a
human NADPH-dependent reductase belonging to the aldo-keto reductase (AKR) 1B
subfamily. The enzyme is highly expressed in the epithelial cells of the stomach and
intestine [33]. Interestingly, the disruption of NAD synthesis has previously been associated
with congenital malformations in humans and mice [34]; however, AKR1B10 has not been
associated with any human disease phenotype so far.

Table 3. Molecular details and clinical features of individuals with autosomal-recessive biallelic
compound heterozygous variants.

Individual 390_501 644_501 828_501

Gene CLSTN3 AKR1B10 NDST4

g.DNA position
(GRCH37/hg19)

chr12:7303179 and
chr12:7310183

chr7:134215449 and
chr7:134215452

chr4:115792043 and
chr4:115997415

Transcript NM_014718 NM_020299 NM_022569
c.change c.2285A>T and c.2626C>T c.121C>T and c.124C>T c.1600G>A and c.778C>G
p.change p.Gln762Leu and p.Arg876Cys p.Arg41Trp and p.His42Tyr p.Val534Met and p.Leu260Val

Variant consequence Missense and Missense Missense and Missense Missense and Missense

Zygosity Heterozygous Heterozygous Heterozygous

Exon 1 15/18 and 17/18 2/10 and 2/10 7/14 and 2/14

MAF gnomAD v2.1
(homozygotes)

Not reported and
0.00004277 (0)

0.0001026 (0) and
Not reported

0.0001562 (0) and
0.00005672 (0)

Mode of Inheritance Compound Heterozygous Compound Heterozygous Compound Heterozygous

SIFT (5.2.2)

PolyPhen-2 (2.2.2)

CADD13_PHRED v1.6

Tolerated (0.54) and
deleterious (0)

Benign (0.015) and possibly
damaging (0.841)

20.2 and 25.3

Deleterious (0) and
deleterious (0) Probably
damaging (0.987) and

probably damaging (0.978)
26.6 and 25.1

Deleterious (0.02) and
tolerated (0.2)

Benign (0.083) and
possibly damaging (0.506)

23.4 and 22.7

Sex Male Female Male

Primary phenotype CE CE CE

All information about the transcript refers to the canonical transcript. 1 Exon: the number before the slash indicates
the affected exon. The number after the slash indicates the number of exons in this gene.

NDST4 (N-DEACETYLASE/N-SULFOTRANSFERASE 4; OMIM *615039)

Individual 828_501 carried two compound heterozygous missense variants, c.1600G>A
(p.Val534Met) and c.778C>G (p.Leu260Val), in exons 7 and 2 of 14 (Ensembl GRChr37/hg19
transcript ENST00000264363.7) of NDST4. The variants are predicted to be deleterious
and tolerated by SIFT and to be benign and possibly damaging by PolyPhen-2, with
CADD13_PHRED scores of 23.4 and 22.7, respectively. The first aa is conserved down to
Mm and the second variant is highly conserved down to Dr (Leu) for p.Leu260Val. Our
in-house murine transcriptome database shows expression during the embryonic stages
E10.5, E.12.5, and E15.5, with an upregulation in E15.5: log2FoldChange (15.5) of 3.99343455
and a p-value (15.5) of 1.3107 × 10−12, with a baseMean (15.5) of 30.375819.

Both variants reside within the first heparan sulfate N-deacetylase 4 region. So far,
NDST4 has not been associated with any human disease phenotype.

3.1.4. Uniparental Disomy of SVEP1
SVEP1 (SUSHI, VON WILLEBRAND FACTOR TYPE A, EGF, AND PENTRAXIN
DOMAINS-CONTAINING 1; OMIM *611691)

Individual 181_501 carried a novel homozygous missense variant, c.5939C>T (p.Thr1980Ile),
in exon 36 of 48 (Ensembl GRChr37/hg19 transcript ENST00000374469.6) of SVEP1 (Table 4).
The variant was predicted to be tolerated by SIFT and probably damaging by PolyPhen-2, with
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a CADD13_PHRED score of 23.8. The aa is evolutionarily conserved over Mm, Gg, Xt, and
Dr (Thr). Our in-house murine transcriptome database shows the continuous expression of
Svep1 during the embryonic stages E10.5, E.12.5, and E15.5. SVEP1 has not been associated with
any human disease phenotype so far. A literature search revealed that the Svep1 homozygous
mutant embryos display multiple defects, such as edema, but also show abnormal development
of the kidney and pelvis at E15.5 and E18.5 [35].

Table 4. Molecular details and clinical features of an individual with a uniparental isodisomy variant.

Individual 181_501

Gene SVEP1

g.DNA position (GRCH37/hg19) chr9:113189907

Transcript NM_153366
c.change c.5939C>T
p.change p.Thr1980Ile

Variant consequence Missense

Zygosity Homozygous

Exon 1 36/48

MAF gnomAD v2.1 Not reported

Mode of Inheritance Uniparental disomy

SIFT (5.2.2) Tolerated (0.1)
PolyPhen-2 (2.2.2) Probably damaging (0.985)

CADD13_PHRED v1.6 23.8

Sex Male

Age of onset Congenital

Primary phenotype CE

All information about the transcript refers to the canonical transcript. 1 Exon: the number before the slash indicates
the affected exon. The number after the slash indicates the number of exons in this gene.

Overall, none of the variants found in our exome analysis can be classified as pathogenic,
according to the ACMG classification criteria [36]. Hence, all variants that were prioritized
and validated with Sanger sequencing should currently be interpreted as a variant of
uncertain (or unknown) significance (VUS).

3.2. MIP Assay

To investigate the overall contribution of the above-mentioned candidate genes to
BEEC, we re-sequenced those genes identified through exome analysis (NR1H2, GKAP1,
CLSTN3, AKR1B10, NDST4, PLEKHB1, and SVEP1) and genes from the CBE phenocritical
region, 22q11.2 (LZTR1, SLC7A4, AIFM3, SNAP29, THAP7, P2RX6, CRKL) in a cohort of
480 BEEC individuals. As outlined earlier, none of the individuals included in the MIP
assay were included in our prior exome analysis.

Unfortunately, we did not identify any additional putative disease variants in the
above-mentioned exome analysis-derived candidate genes. However, we identified two
putative disease-causing variants in LZTR1 and SLC7A4 (Table 5). Sanger sequencing
validated both variants. Due to a lack of paternal DNA and additional information such
as family history, it remains unclear whether the variants did or did not occur de novo.
Neither mother carried the respective variant. Both frameshift variants led to an early
termination (Figure 1).
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Table 5. Molecular details and clinical features of individuals with variants in LZTR1 and SLC7A4.

Individual 136_501 458_501

Gene LZTR1 SLC7A4

g.DNA position (GRCH37/hg19) chr22:21346103-21346110 chr22:21384536

Transcript NM_006767 NM_004173
c.change c.978_985del c.1087delC
p.change p.Ser327ter6 p.Arg363ter68

Variant consequence Frameshift Frameshift

Zygosity Heterozygous Heterozygous

Exon 1 9/21 3/5

gnomAD MAF Not reported Not reported

Mode of Inheritance N/A N/A

Sex Male Male

Primary phenotype CBE CBE

All information about the transcript refers to the canonical transcript. 1 Exon: the number before the slash indicates
the affected exon. The number after the slash indicates the number of exons in this gene.
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Figure 1. Sanger sequencing results for families with variants in LZTR1 and SLC7A4. The red arrow
indicates the position of base deletions. Amino acids in black show the wild type. Amino acids in red
indicate changes due to deletion. Family 136: Individual 136_501 carries a heterozygous c.978_985del
(p.Ser327fster6) deletion in LZTR1. The mother, individual 136_402, shows the wild-type sequence.
Family 458: Individual 458_501 carries a heterozygous c.1087delC (p.Arg363fster68) deletion in
SLC7A4. The mother, individual 458_402, shows the wild-type sequence.

3.2.1. LZTR1 (LEUCINE ZIPPER-LIKE TRANSCRIPTIONAL REGULATOR 1; (OMIM
*600574)

Individual 136_501 presented with CBE and carried a heterozygous frameshift variant,
c.978_985del (p.Ser327ter6), in exon 9 (Ensembl GRChr37/hg19 transcript ENST00000215739.8)
of LZTR1. The protein consists of six Kelch repeats and two BTB domains. The variant leads
to a frameshift that affects the Kelch 5 (295aa-341aa) repeat and leads to an early termination.
Our in-house murine transcriptome database shows continuous expression throughout the
embryonic stages E10.5, E.12.5, and E15.5.

Dominant variants in LZTR1 have been associated with Noonan syndrome 10 (OMIM
#616564) and Noonan syndrome 2 (OMIM #605275) and susceptibility to Schwannomato-
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sis (OMIM #615670). However, more interestingly, the deletion of LZTR1 has been as-
sociated with the formation of congenital anomalies of the kidneys and urinary tract
(CAKUT) [14,30,31,37,38]. LZTR1 (c.978_985del, p.Ser327fster6) fulfills the ACMG criteria
of pathogenicity (PVS1, PM2) [36]. However, this frameshift has previously been associated
with Schwannomatosis and cardiovascular phenotypes (VCV001709123.4) and not with
CBE, leaving some uncertainty about the involvement of this variant in CBE formation.

3.2.2. SLC7A4 (SOLUTE CARRIER 7 FAMILY 4; OMIM *603752)

Individual 458_501 presented with CBE and carried a novel heterozygous frameshift variant,
c.1087delC (p.Arg363fster68), in exon 3 (Ensembl GRChr37/hg19 transcript ENST00000382932.2)
of SLC7A4. The protein transcribes to 13 helical transmembrane domains. The variant is located
between domains 7 (318-338aa) and 8 (365-385aa) and leads to an early termination. Our in-house
murine transcriptome database shows the expression of Slc7a4 throughout the time points E10.5,
E.12.5, and E15.5, with an upregulation in E15.5: log2FoldChange (15.5) of 1685 and a p-value
(15.5) of 7.4 × 10−11, with a baseMean (15.5) of 130.324411. SLC7A4 has not been associated with
any human disease phenotype so far. SLC7A4 (c.1087delC, p.Arg363fster68) fulfills the ACMG
criteria of a VUS in the current context (PM2) [36]. In particular, the lack of functional data and
the lack of proof of a de novo occurrence of this variant suggests this variant to be VUS.

4. Discussion

Here, we used exome analysis with CE case-parent trios and large-scale re-sequencing
for the identification of novel candidate genes and putative disease variants in the identi-
fied candidate genes. The exome survey in the CE case-parent trios identified two candi-
date genes harboring de novo variants (NR1H2 and GKAP1), four candidate genes with
autosomal-recessive biallelic variants (AKR1B10, CLSTN3, NDST4, and PLEKHB1), and one
candidate gene with suggestive uniparental disomy (SVEP1). However, re-sequencing did
not identify any additional variant carriers in these candidate genes.

Hitherto, 22q11.2 microduplication has been the only genetic risk factor that has
been found to be significantly enriched among CBE individuals [1,14,30,31]. This finding
prompted us to re-sequence CRKL, LZTR1, THAP7, SLC7A4, AIFM3, SNAP29, and P2RX6,
which reside in the 22q11.2 phenocritical region. We thereby discovered two possible
disease-causing frameshift variants that lead to early termination in LZTR1 and SLC7A4.

In a male CBE individual, we identified a frameshift variant in LZTR1 (c.978_985del,
p.Ser327fster6). LZTR1 is thought to be involved in a variety of inherited and acquired
human disorders [39] and has been highlighted as a candidate gene for urogenital malfor-
mations [30,31,40,41]. LZTR1 belongs to the BTB-Kelch superfamily, which play important
roles during fundamental cellular processes, such as the regulation of gene expression,
cell morphology, and migration [31], which are highly conserved during evolution [30].
Ubiquitous expression in mice (E9.5) has been shown in a previous study [30] and our
in-house murine transcriptome database underlines these findings. This further reinforces
LZTR1 as a potential candidate gene for the BEEC phenotype.

Most recently, Lundin et al. found a novel variant (p.Ser698Phe) in LZTR1 in one
BEEC individual. Functional evaluation of the LZTR1 p.Ser698Phe variant in live NIH 3T3
cells showed that the concentration and cytoplasmic mobility differ between Lztr1-wt and
Lztr1-mut, indicating the potential functional effect of LZTR1-Mut [31].

This information supports our finding and suggests LZTR1 to be a strong candidate
gene for CBE formation, warranting the functional characterization of all those LZTR1
variants that have been described in association with CBE.

In a second male individual with CBE, we identified a frameshift variant in SLC7A4
(c.1087delC, p.Arg363fster68). SLC7A4 belongs to a family of cationic amino acid trans-
porters. All exons of SLC7A1, SLC7A2, and SLC7A4 are of similar or equal length; analysis
of exon 3 of SLC7A4 shows corresponding exons in SLC7A1 and SLC7A2, which suggests
that it may encode an important functional or regulatory domain [42]. Contrary to earlier
reported findings of Slc7a4 expression at E9.5 (the transcript was present but there was
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no expression) [30], the expression of Slc7a4 in our in-house transcriptome database of
uro-rectal tissue was continuous and upregulated during E15.5. While gains or losses
in the chromosomal region 22q11.2, encompassing SLC7A4 (OMIM *603752), have been
associated with CAKUT or BEEC, no single base variant in SLC7A4 has been associated
with the human CAKUT or BEEC disease phenotypes so far.

5. Conclusions

An exome survey of case-parent trios with CE has identified novel candidate genes.
These novel candidate genes require further investigation via larger re-sequencing analysis
or functional in vitro or in vivo studies to support their involvement in the development
of this disease before they can be annotated as BEEC-associated candidate genes. The
re-sequencing of all genes residing in the CBE phenocritical region 22q11.2 has provided
further support for LZTR1 being implicated in CBE formation and suggests SLC7A4 as a
potential novel CBE candidate gene.
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Appendix A

Table A1. Prediction Tools.

Prediction Tool Reference Scores

SIFT (5.2.2) 1
0.0 to 0.05: predicted deleterious with 0.0 more
confidently predicted to be deleterious.
0.05 to 1.0: predicted to be tolerated (benign).
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Table A1. Cont.

Prediction Tool Reference Scores

PolyPhen-2 (2.2.2) 2
0.0 to 0.15: predicted to be benign.
0.15 to 1.0: predicted to be possibly damaging.
0.85 to 1.0: more confidently predicted to be damaging.

CADD13_PHRED v1.6 3.

Ranking score rather than prediction or default cut-off;
higher scores more likely to be deleterious.
Scaled score:
10 = top 10% of all reference genome SNVs
20 = top 1% SNVs
30 = 0.1% of most deleterious possible substitutions in
the human genome

1 SIFT: predicts if an amino acid substitution affects protein function. 2 PolyPhen-2: predicts the impact of an
amino acid substitution on the structure and function of human protein. 3 CADD13_PHRED v1.6: predicts the
deleteriousness of single nucleotide variants and insertion/deletion variants in the human genome by integrating
multiple annotations (including conservation and functional information).
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