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Abstract: Humankind is witnessing a gradual increase in cancer incidence, emphasizing the im-
portance of early diagnosis and treatment, and follow-up clinical protocols. Oral or mouth cancer,
categorized under head and neck cancers, requires effective screening for timely detection. This
study proposes a framework, OralNet, for oral cancer detection using histopathology images. The
research encompasses four stages: (i) Image collection and preprocessing, gathering and prepar-
ing histopathology images for analysis; (ii) feature extraction using deep and handcrafted scheme,
extracting relevant features from images using deep learning techniques and traditional methods;
(iii) feature reduction artificial hummingbird algorithm (AHA) and concatenation: Reducing feature
dimensionality using AHA and concatenating them serially and (iv) binary classification and perfor-
mance validation with three-fold cross-validation: Classifying images as healthy or oral squamous
cell carcinoma and evaluating the framework’s performance using three-fold cross-validation. The
current study examined whole slide biopsy images at 100× and 400×magnifications. To establish
OralNet’s validity, 3000 cropped and resized images were reviewed, comprising 1500 healthy and
1500 oral squamous cell carcinoma images. Experimental results using OralNet achieved an oral
cancer detection accuracy exceeding 99.5%. These findings confirm the clinical significance of the
proposed technique in detecting oral cancer presence in histology slides.

Keywords: oral cancer; OSCC; VGG16; DenseNet201; OralNet; classification

1. Introduction

The incidence of cancer in the human population is steadily increasing due to various
factors, necessitating the need for appropriate screening and diagnosis to enable timely
detection and treatment. Recent literature has confirmed that cancer rates are rising among
individuals regardless of age, race and sex, leading to the development and implementation
of numerous awareness programs and clinical protocols aimed at reducing the impact of
the disease [1–3].

According to the 2020 report by the World Health Organization (WHO), cancer is
responsible for 10 million deaths worldwide. The report also highlights that the low- and
lower-middle-income countries account for approximately 30% of cancer cases caused by
infections such as human papillomavirus (HPV) and hepatitis. Early detection and effective
treatment have the potential to cure many types of cancer, leading to the development of
various clinical protocols for cancer detection and assessment of its severity [4].

The Global Cancer Observatory’s (Globocan2020) report for 2020 provides compre-
hensive information on new cancer cases and cancer-related deaths globally. It presents
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country-wise and gender-wise statistics regarding cancer-related deaths. Recent research
suggests that oral cancer (OC), a type of cancer affecting the lip and oral cavity, ranks 16th
in terms of its occurrence and death rates globally. Early detection and treatment are pivotal
in achieving complete remission, particularly in regions such as Asia, where the incidence
of OC is significantly higher (65.8% of global cases) with a death rate of approximately 74%.
Notably, the use of tobacco is identified as a major causal factor for OC [5].

The clinical diagnosis of the OC involves several steps, including symptom analysis,
personal examination by a clinician, medical image-assisted detection and confirmation of
cancer severity through a biopsy test. Microscopic analysis plays a crucial role in identifying
the stage and severity of oral squamous cell carcinoma (OSCC), the most common type of
oral cancer worldwide.

In the recent literature, researchers commonly employ microscopy images for the
detection of OSCC, often utilizing machine-learning (ML) and deep-learning (DL) tech-
niques [6–8]. This proposed research aims to develop a DL-assisted diagnosis system
called OralNet using microscopic images provided by Rahman et al. [9]. The dataset used
for this study consists of H&E-stained tissue slides collected, prepared and catalogued
by medical experts. The slides were obtained from 230 patients using a Leica ICC50 HD
microscope. The dataset contains two categories of images: 100× magnification (89 healthy
and 439 OSCC) and 400×magnification (201 healthy and 495 OSCC) [10]. For this work,
1500 RGB-scaled images were extracted through image cropping, resulting in 1500 healthy
and 1500 OSCC images for the proposed DL approach.

The developed OralNet consists of the following stages: (i) Image collection, crop-
ping and resizing, (ii) deep-features extraction using pretrained models, (iii) handcrafted
feature extraction, (iv) feature optimization using the artificial hummingbird algorithm
(AHA) and (v) binary classification using a three-fold cross validation. Each pretrained DL
model employed in this study generates one-dimensional (1D) features, features of size
1 × 1 × 1000, providing comprehensive information about the normal and OSCC images.
Additionally, handcrafted features such as local binary pattern (LBP) with various weights
and discrete wavelet transform (DWT) are combined with the deep features to improve
detection accuracy in OC detection with OralNet.

In this study, OralNet is separately implemented on the histology images at 100× and
400× magnifications, and the results are presented and discussed. OralNet utilizes the
following classification approaches: (i) individual deep features (DF), (ii) dual-deep features
(DDF), (iii) ensemble deep features (EDF), (iv) DF + HF, (v) DDF + HF and (vi) EDF + HF.
The achieved results are compared and verified. The experimental outcome demonstrates
that using DDF + HF achieves a detection accuracy of over 99.5% when employing classifiers
such as SoftMax, decision-tree (DT), random-forest (RF) and support-vector-machine (SVM)
with a linear kernel for both 100× and 400×magnified histology slides. Additionally, the
K-nearest neighbors (KNN) classifier achieves 100% detection accuracy with the chosen
image database.

The proposed OralNet framework, utilizing DL and ML techniques, demonstrates
high accuracy in detecting OSCC in microscopic images, making it clinically significant.
It holds promise for future applications in examining H&E-stained tissue slides obtained
from the cancer clinics.

This research work focuses on the development of the OralNet framework and makes
several significant contributions, including:

a. Verification and confirmation of the performance of pretrained DL schemes in de-
tecting OSCC on H&E-stained tissue slides: The study validates the effectiveness of
various pretrained DL models in accurately identifying OSCC in histology slides.

b. Enhancement of OSCC detection performance through the combination of deep
features with local binary pattern (LBP) and discrete wavelet transform (DWT): By in-
tegrating handcrafted features such as LBP and DWT with deep features, the research
improves the overall accuracy and effectiveness of OSCC detection.
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c. Feature optimization using the artificial hummingbird algorithm (AHA): The study
utilizes AHA to identify the optimal combination of deep and handcrafted features,
leading to improved performance in detecting OSCC.

d. Classification using individual, serially fused and ensemble features: The research
explores different approaches to feature combinations and evaluates their performance
for OSCC detection. This includes utilizing individual deep features, fusing them
sequentially with handcrafted features and constructing ensemble features to achieve
optimal classification results.

The major contributions of this research work involve validating pretrained DL
schemes for OSCC detection, enhancing detection performance through feature combina-
tion, optimizing features using AHA and evaluating the performance of various feature
fusion and ensemble techniques in OSCC classification.

This research work is divided into several sections. Section 2 details the methodology
and implementation of the proposed OralNet framework. Sections 3 and 4 present the
experimental results and conclude the research, respectively.

Automatic disease diagnosis has become a standard practice in modern healthcare
and the effectiveness of automated diagnostic systems largely relies on the quality and
diversity of the disease dataset used for training. When utilizing a clinical database, it
becomes possible to develop and implement a diagnostic scheme that performs well in real
clinical settings.

With the increasing incidence rates of cancer, there is a growing need for improved
diagnostic accuracy. Machine learning (ML) and deep learning (DL) techniques have
been proposed and applied to enhance cancer diagnosis. In this research, the focus is
on oral cancer (OC), which is a prevalent oral health issue globally, particularly in Asia.
While various computerized methods have been developed for cancer diagnosis using
medical imaging, DL-supported approaches have shown greater efficiency in achieving
higher accuracy.

Table 1 provides a summary of selected OC detection methods reported in the liter-
ature, highlighting the different techniques and their respective performances in detect-
ing OC.

Table 1. Summary of automatic oral cancer detection methods.

Procedure and Outcome Reference

In this study, a 12-layer deep convolutional neural network (CNN) was implemented to perform the segmentation
of oral squamous cell carcinoma (OSCC) from the selected histology slides. The proposed CNN architecture was
specifically designed to accurately identify and delineate the boundaries of OSCC regions within the slides. The
experimental results demonstrated a segmentation accuracy exceeding 97%, indicating the effectiveness of the
CNN-based approach in accurately segmenting OSCC from histology slides.

[11]

In this scheme, an ensemble deep features (EDF) approach was utilized in combination with the empirical wavelet
transform feature for the detection of oral squamous cell carcinoma (OSCC) and oral cancer (OC). The EDF method
incorporates multiple deep learning features to enhance detection accuracy. Through the integration of the empirical
wavelet transform feature, which captures relevant information from the input data, the scheme achieved a
detection accuracy of 92%. This demonstrates the efficacy of the proposed approach in accurately identifying OSCC
and OC cases.

[12]

The implementation of AlexNet, a popular deep learning architecture, was employed to detect oral squamous cell
carcinoma (OSCC) images from the selected database in this study. By utilizing the AlexNet model, the research
achieved an impressive accuracy of 97.66% in accurately identifying OSCC cases. The results indicate the
effectiveness of the implemented AlexNet model in accurately detecting and distinguishing OSCC images within
the database.

[13]



Biomolecules 2023, 13, 1090 4 of 24

Table 1. Cont.

Procedure and Outcome Reference

In this study, a deep transfer learning approach was utilized to detect oral squamous cell carcinoma (OSCC) images
from histology images magnified at 100× and 400×. By leveraging transfer learning techniques, the model was able
to leverage knowledge from pretrained networks to enhance its performance in OSCC detection. Using ensemble
features, the implemented approach achieved high detection accuracies of 98% for 100×magnified images and 96%
for 400×magnified images. These results demonstrate the effectiveness of the deep transfer learning approach in
accurately identifying OSCC cases in different magnifications of histology images.

[14]

The detection of oral squamous cell carcinoma (OSCC) from histopathological images using deep learning (DL)
techniques was examined in this study. By combining the features extracted from VGG16, InceptionV3 and
ResNet50 models, a classification accuracy of 97% was achieved. This highlights the effectiveness of utilizing a
fusion of DL features from different models for accurate OSCC detection in histopathological images. The results
demonstrate the potential of DL-supported methods in improving the accuracy of OSCC classification and
enhancing the diagnostic capabilities of oral cancer detection systems.

[15]

In this study, an automatic detection scheme for oral squamous cell carcinoma (OSCC) from histology images using
machine learning (ML) techniques was introduced. By incorporating morphological and texture features and
employing the DT classifier, the scheme achieved an impressive detection accuracy of 99.78%. This demonstrates the
efficacy of utilizing ML-based approaches in accurately identifying OSCC cases from histology images. The
inclusion of morphological and texture features enhances the discriminatory power of the classifier, leading to
highly accurate detection results.

[16]

In this research, a machine learning (ML)-based approach was employed for the detection of oral squamous cell
carcinoma (OSCC). The detection scheme utilized histogram and grey-level co-occurrence matrix features. By
incorporating principal component analysis (PCA)-based feature generation, the proposed method achieved a
remarkable detection accuracy of 100%. This highlights the effectiveness of the ML approach in accurately
identifying OSCC cases using extracted features derived from the histogram and grey-level co-occurrence matrix.
The utilization of PCA for feature generation further enhanced the accuracy of the detection process.

[17]

In this study, transfer learning with a convolutional neural network (CNN) was employed to classify histology
images. By leveraging the knowledge and pretrained weights from an existing CNN model, the implemented
transfer learning approach achieved a high classification accuracy of 97.50%. This demonstrates the effectiveness of
transfer learning in leveraging pre-existing CNN architectures to improve the accuracy of histology image
classification. The results highlight the potential of utilizing transfer learning techniques for the accurate and
efficient classification of histology images in various medical applications.

[18]

In this research, a convolutional neural network (CNN) was utilized for the automatic classification of oral cancer
(OC) images. By implementing the CNN architecture, the study achieved an impressive classification accuracy of
96.77% in distinguishing between healthy and oral squamous cell carcinoma (OSCC) images. This highlights the
effectiveness of CNN-based methods in accurately classifying OC images and differentiating between healthy and
cancerous samples. The results demonstrate the potential of CNNs as a valuable tool in the automatic detection and
classification of OC, aiding in early diagnosis and improved patient outcomes.

[19]

Using a transfer learning scheme, this research implemented a detection method for oral cancer (OC) based on
capsule networks. The capsule network architecture demonstrated its efficacy in accurately detecting OC, achieving
a binary accuracy of 97.35%. By leveraging pretrained weights and knowledge from existing models, the transfer
learning approach enhanced the performance of the capsule network in classifying OC images. These findings
highlight the potential of capsule networks and transfer learning in improving the accuracy of OC detection,
offering promising prospects for enhancing diagnostic capabilities in oral cancer screening.

[20]

In this study, a 10-layer deep learning (DL) scheme was implemented for the detection of oral squamous cell
carcinoma (OSCC) from histology images. The proposed DL scheme achieved a high detection accuracy of 97.82%.
By leveraging the multi-layer architecture, the DL model effectively learned and extracted discriminative features
from the histology images, enabling the accurate identification of OSCC cases. The results highlight the potential of
DL techniques in improving the detection and diagnosis of OSCC, contributing to more efficient and reliable
screening processes in clinical settings.

[21]

This research provides a comprehensive review of oral cancer (OC) detection using a variety of machine learning
(ML) and deep learning (DL) techniques. The study focuses on analyzing a clinical database and thoroughly
discusses the findings. The results of the research demonstrate the effectiveness of computerized schemes in
accurately analyzing and interpreting clinical data associated with OC. By leveraging ML and DL procedures, the
study highlights the potential of these approaches in improving the detection and diagnosis of OC. The
comprehensive analysis of the clinical database reinforces the significance of computerized methods in enhancing
our understanding and management of OC, contributing to more effective and efficient healthcare practices.

[22]
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In a recent study by Alab et al. [22], a comprehensive review of oral cancer (OC)
detection using various computer algorithms was conducted. The findings of this research
confirmed that previous works have achieved detection accuracies of up to 100%. Addi-
tionally, a recent deep learning (DL) study by Das et al. [21] demonstrated the clinical
significance of DL-based OSCC detection, highlighting the need for a new DL scheme to
assist doctors in OC diagnosis. Further, a few recent works also demonstrate the image sup-
ported detection of the OSCC [23,24]. Motivated by these findings, the proposed research
aims to develop a novel scheme called OralNet for the detection of cancer in histology
slides. To improve the accuracy of the detection, this work incorporates a combination
of deep and handcrafted features optimized with the artificial hummingbird algorithm
(AHA). By integrating these techniques, the study aims to achieve enhanced accuracy and
contribute to the field of OC diagnosis.

2. Materials and Methods

This section of the research focuses on implementation of the proposed OralNet
scheme, which involves stages ranging from image resizing to classification. The main
objective of OralNet is to classify histology slides into healthy or oral squamous cell carci-
noma (OSCC) classes, considering both 100× and 400×magnifications. The subsections
within this part of the study describe the construction of OralNet and its evaluation using
the selected performance metrics.

2.1. OralNet Framework

Figure 1 illustrates the proposed framework for oral cancer (OC) detection, depicting
the various stages involved in the disease detection process.

Stage 1 represents the initial screening phase, where an experienced clinician performs
a personal examination to identify any oral abnormalities. This is followed by confirmation
using a specific clinical protocol. If abnormalities are detected, biopsy samples are collected
from the affected area, and microscopic images are obtained using a digital microscope at a
chosen magnification level. These images are then used for further analysis to determine
the presence and severity of the cancer.

Stage 2 focuses on the implementation of the proposed OralNet scheme for automatic
cancer detection. Firstly, the acquired images are resized to a predetermined level. Then,
relevant features are extracted using a combination of deep learning techniques and hand-
crafted approaches. To reduce the dimensionality of the extracted features, an optimized
feature reduction technique called LBA (artificial hummingbird algorithm) is applied. The
reduced features are then concatenated sequentially to form a new one-dimensional (1D)
feature vector. This feature vector plays a crucial role in effectively classifying the images
into healthy and OSCC classes, resulting in improved performance metrics.

Stage 3 evaluates the performance of the proposed approach based on the obtained
performance metrics. The confirmed OSCC diagnosis and its severity are documented in
a report, which is shared with the healthcare professional responsible for planning and
implementing the appropriate treatment using recommended clinical procedures.

The presented framework encompasses screening, automatic detection, verification and
treatment stages, providing a comprehensive approach for OC detection and management.

The proposed OralNet in this research combines deep and handcrafted features to
achieve accurate classification of oral histology images into healthy and OSCC categories.
One of the key strengths of this scheme is its ability to handle images captured at both
100× and 400× magnifications, ensuring improved detection accuracy regardless of the
magnification level. By utilizing the artificial hummingbird algorithm (LBA) to optimize
and serially concatenate features from VGG16, DenseNet201 and the handcrafted feature
extraction process, the proposed scheme achieves a remarkable detection accuracy of 100%
when employing the K-nearest neighbors (KNN) classifier.
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Figure 1. Developed scheme to detect the OC using the histology slides.

2.2. Image Database

In order to validate the clinical significance of the computerized disease detection
procedure, it is crucial to utilize a dataset consisting of histology slides collected from real pa-
tients. In this study, the OC dataset obtained from [10], which comprises 1224 H&E-stained
histology slides captured using a Leica ICC50 HD microscope (Leica, Wetzlar, Germany), is
employed for assessment. The dataset includes 518 images recorded at 100× magnification
and 696 images captured at 400× magnification. Each image has a pixel dimension of
2048 × 1536 × 3 pixels. It is worth noting that this dataset contains a larger number of
OSCC slides compared to healthy histology slides. For further details about this database,
reference can be made to the work conducted by Rahman et al. [9]. Figure 2 illustrates a
sample image from each class, with Figure 2a representing a healthy histology slide and
Figure 2b displaying an OSCC slide.
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2.3. Test Image Generation

The DL-assisted disease detection using the medical images is crucial for accurate and
timely diagnosis, reducing the burden on healthcare professionals. However, computerized
image examination procedures have limitations and require preprocessed images as input.
Image resizing is a critical step in the computerized disease diagnosis process to ensure
compatibility with the algorithms used.

The proposed scheme in this research utilizes pretrained DL methods which require
the image to be resized to a specified pixel value (224× 224× 3). The raw histology slides
are first subjected to cropping and resizing to obtain the necessary test images for extracting
deep and handcrafted features. In this process, image sections without vital information are
discarded. Following this procedure, a total of 1500 histology slides in the healthy/OSCC
class are obtained for both the 100× and 400×magnified images. These images are then
utilized to evaluate the performance of the developed OralNet scheme. Figure 3 showcases
the histology slides collected using a 100×microscopy image, while Figure 4 displays the
images derived from the raw images magnified at 400×. These images serve as the basis
for evaluating the performance of the OralNet scheme.
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2.4. Feature Extraction and Reduction

The accuracy of automatic data analysis using computerized algorithms relies heavily
on the information contained within the selected database and the mining procedures
applied to extract relevant features. These mined features from the medical dataset are
then used to train and evaluate the performance of the implemented computer algorithm
for automatic disease detection. To prevent overfitting, feature reduction techniques
are employed, and the performance of the developed scheme is assessed using a 3-fold
cross validation.

Recent research in the field has demonstrated that integrating deep features and
handcrafted features leads to improved detection accuracy in automatic disease detection.
In the proposed OralNet scheme, the integration of deep and handcrafted features is utilized
to enhance classification accuracy. Additionally, to mitigate the risk of overfitting, feature
optimization based on the AHA (adaptive harmony search) algorithm is implemented,
reducing the number of image features considered in the detection process.

2.4.1. Deep-Features Mining

The key features from the selected histology images are extracted using pretrained
deep learning (PDL) methods. These PDL schemes are computer programs specifically
designed for tasks in the medical imaging domain, such as recognizing specific types of
medical images, detecting abnormalities and making predictions about a patient’s health.
PDL schemes are valuable tools for healthcare professionals as they enable quick and
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accurate identification of abnormalities in medical images, aiding in informed decision-
making and treatment planning.

In this study, several PDL schemes were considered, including VGG16, VGG19,
ResNet18, ResNet50, ResNet101 and DenseNet201. Detailed information about these
schemes can be found in the literature [25–29]. Each PDL approach produces a one-
dimensional (1D) feature vector of size 1 × 1 × 1000, which is utilized to evaluate the
classifier’s performance in categorizing the images into healthy and OSCC classes.

2.4.2. Handcrafted Features Mining

In the field medical image processing, the use of handcrafted features in machine
learning-based image classification tasks is well-established [30–32]. Recent studies in med-
ical image classification have shown that integrating deep features with handcrafted fea-
tures leads to improved diagnostic accuracy compared to using deep features alone [33–35].
Handcrafted features such as local binary patterns (LBP) [36,37] and discrete wavelet
transform (DWT) are commonly employed by researchers in medical image classification
tasks [38–40]. These features are combined with the deep features to enhance disease
detection performance.

In this research, the weighted LBP method proposed by Gudigar et al. [41] was
employed to extract LBP features. The weights used in the LBP calculation ranged from
1 to 4 (W = 1 to 4). The resulting LBP patterns for healthy and OSCC images are shown in
Figure 5a–d representing different weight values. Each LBP pattern generates a 1D feature
vector of size 1 × 1 × 59, which is expressed in Equations (1)–(4). The overall LBP feature
vector is represented by Equation (5).

LBPw1(1×1×59) = LBP1(1,1), LBP1(1,2), . . . , LBP1(1,59) (1)

LBPw2(1×1×59) = LBP2(1,1), LBP2(1,2), . . . , LBP2(1,59) (2)

LBPw3(1×1×59) = LBP3(1,1), LBP3(1,2), . . . , LBP3(1,59) (3)

LBPw4(1×1×59) = LBP4(1,1), LBP4(1,2), . . . , LBP4(1,59) (4)

LBP(1×1×236) = LBPw1(1×1×59) + LBPw2(1×1×59) + LBPw3(1×1×59)
+LBPw4(1×1×59)

(5)
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In addition to LBP, this study also incorporated DWT features. The DWT scheme
was applied to each test image, resulting in the image being decomposed into four compo-
nents: approximate, vertical, horizontal and diagonal coefficients, as illustrated in Figure 6.
Figure 6a,b depicts the corresponding outcomes for the healthy and OSCC categories,
respectively, represented using a hot color map. From each image, a 1D feature vector of
size 1 × 1 × 45 was extracted, as shown in Equations (6)–(9). The complete DWT feature
vector is represented by Equation (10). The handcrafted features utilized in this research
are a combination of the LBP and DWT features, as expressed in Equation (11).

DWTapproximate(1×1×45) = DWT1(1,1), DWT1(1,2), . . . , DWT1(1,45) (6)

DWTvertical(1×1×45) = DWT2(1,1), DWT2(1,2), . . . , DWT2(1,45) (7)

DWThorizontal(1×1×45) = DWT3(1,1), DWT3(1,2), . . . , DWT3(1,45) (8)

DWTdiagonal(1×1×45) = DWT4(1,1), DWT4(1,2), . . . , DWT4(1,45) (9)

DWT(1×1×180) = DWT1(1×1×45) + DWT2(1×1×45) + DWT3(1×1×45)
+DWT4(1×1×45)

(10)

Handcra f ted f eatures(1×1×416) = LBP(1×1×236) + DWT(1×1×180) (11)
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Figure 6. The DWT patterns achieved for a chosen image. (a) Healthy; (b) OSCC.

2.4.3. Hummingbird Algorithm for Feature Optimization

The artificial hummingbird algorithm (AHA) procedure was developed based on
artificially mimicked foraging behaviors in hummingbirds (HB) [42]. When searching for
food sources (flowers), HBs take into account various factors such as flower type, nectar
quality, refill rate and previous visits. In the AHA optimization exploration, each flower
represents a solution vector, and the nectar replenishing rate serves as the fitness value for
the algorithm. The AHA is initiated with assigned values for the HBs and the flowers (food
sources). The performance of the AHA is monitored using a visit table that keeps track of
the number of visits by HBs to each food source. Food sources that receive more visits are
considered more valuable and are given higher priority for nectar collection [43–45].
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The artificial hummingbird algorithm (AHA) classifies hummingbirds (HB) into three
distinct foraging patterns: territorial, guided and migration, as depicted in Figure 7. These
foraging patterns involve three-dimensional searches conducted by HBs in specific re-
gions using different flight paths such as axial flight, diagonal flight and omnidirectional
flight. The primary goal of HBs during their foraging activities is to efficiently locate
the optimal solution for a given problem by employing these diverse three-dimensional
search strategies.
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Initialization

Xi = L+<(U−L) f or i = j = 1, 2, . . . , n (12)

where < = random vector [0,1], L = lower limit, U = upper limit, i = quantity of flowers
and Xi = position of the ith flower.

The visit-table created in AHA is depicted below;

VTi,j = {
0 i f i 6=j
null i=j (13)

where VTi,j represents the HB’s visit to a specific flower to collect the nectar.

Guided Foraging

During this process, the HB is allowed to visit the flower that contains the highest vol-
ume of nectar and VTi,j is considered to locate the flower. When identifying the appropriate
food, the HB will perform different flight patterns as shown in the following diagram:

Axial f light = D(i) = {1 i f i=randi([1,d])
0 else for i = 1, 2, . . . , d (14)
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where d = search space and randi([1, d]) = formation of random number of value 1 to d.

Diagonal f light = D(i) = {1 i f i=P(j),j∈[1,k],P=randperm(k),k∈[2,[<∗(d−2)]+1]
0 else (15)

where randperm(k) = random permutation of integers from 1 to k

Omnidirectional f light = D(i) = 1 (16)

The guided foraging is mathematically as follows:

Vi(t + 1) = Xi,tar(t) + (a× D× (Xi(t)− Xi,tar(t))) (17)

a ∼ N(0, 1) (18)

where Xi(t) = position of the ith flower in a chosen time (t), Xi,tar(t) = target flower
and a = guiding parameter computed using normal distribution (N) having mean = 0 and
standard deviation = 1.

The position update for HD towards ith flower is;

Xi(t + 1) = {Xi(t) f (Xi(t)) ≤ f (Vi(t+1))
Vi(t+1) f (Xi(t)) > f (Vi(t+1) (19)

where f = fitness, which specifies the flower with better nectar-refilling rate.

Territorial Foraging

After consuming nectar from a target flower, the hummingbird (HB) tends to prioritize
searching for new food sources rather than revisiting familiar flowers. In the territorial
foraging process, the HB will explore and move to other available flowers within its current
location to gather additional food. This behavior reflects the HB’s tendency to maximize its
foraging efficiency by seeking out new opportunities for nourishment;

Vi(t + 1) = Xi(t) + (b×D×Xi(t)) (20)

b ∼ N(0, 1) (21)

Here b = territorial factor computed using normal distribution (N) having mean = 0
and standard deviation = 1.

Migration Foraging

When the food supply within a territory is depleted, the hummingbird (HB) will
initiate migration behavior and move to a more distant location in search of a suitable
new food source. During this process, the HB will travel over longer distances, expanding
its search range to locate the desired food source. This migration behavior allows the
HB to explore new areas and increase its chances of finding abundant and replenished
food sources.

Xworst(t + 1) = L+R(U−L) (22)

where Xworst(t + 1) = new position of the HB when the food source becomes the worst
(lack of nectar).

2.4.4. Serial Features Concatenation

In this subsection, the feature optimization technique using the artificial hummingbird
algorithm (AHA) and serial feature concatenation is presented. The AHA parameters are
set as follows: the number of HBs (hummingbirds) is N = 25, the search dimension is
D = 2, the maximum number of iterations is Iter_max = 2500 and the stopping criteria are
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based on the maximization of the Cartesian distance (CD) between features or reaching the
maximum number of iterations.

The AHA optimization process aims to find the individual features that are most
relevant for distinguishing between healthy and OSCC samples based on the CD. The AHA
algorithm helps in identifying the optimal features by iteratively exploring the feature
space. The optimization and serial concatenation process is illustrated in Figure 8.
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Once the optimal features are determined, a new 1D feature vector is generated by
concatenating these features in a sequential manner. This concatenated feature vector
is then utilized to evaluate the performance of the proposed OC detection scheme. The
effectiveness of the feature optimization and serial concatenation approach is verified by
comparing the detection results with previous studies [46,47].

The proposed work utilizes the artificial hummingbird algorithm (AHA) to identify the
optimal values of deep and handcrafted features. The AHA helps in reducing the feature
space and selecting the most discriminative features for the detection of oral cancer. These
reduced features are then combined to form a new one-dimensional (1D) feature vector.

By integrating the reduced features, the proposed scheme aims to improve the perfor-
mance of oral cancer detection. The new 1D feature vector captures the essential information
from both the deep and handcrafted features, providing a comprehensive representation of
the histology images. This combined feature vector is then used to evaluate the effective-
ness of the proposed scheme in accurately detecting oral cancer. The utilization of AHA
for feature optimization and the subsequent combination of reduced features into a 1D
feature vector contribute to enhancing the performance of the proposed scheme for oral
cancer detection.

2.5. Performance Evaluation and Validation

To validate the performance of the OralNet system, it is crucial to evaluate it using
clinical-grade datasets, as this helps establish the significance of the oral squamous cell
carcinoma (OSCC) detection system at the developmental stage. In this study, a dataset
consisting of 3000 test images (1500 healthy and 1500 OSCC) was utilized to assess the
effectiveness of the developed OralNet, considering both 100× and 400× magnification
images. The true-positive (TP) and true-negative (TN) images, representing the actual
healthy and OSCC categories, were used for validation.

In cases where the implemented scheme detects false-positive (FP) or false-negative
(FN) values in addition to TP and TN, these values are used to construct a confusion
matrix and calculate various performance metrics. These metrics include accuracy (AC),
misclassification (MC), precision (PR), sensitivity (SE), specificity (SP) and F1-score (FS),
which are essential for assessing the validity of the implemented scheme. The mathematical
notations for these measures can be found in Equations (23)–(28) in the literature [48,49].

Furthermore, these measures are computed independently for each classifier, includ-
ing SoftMax, decision-tree (DT), random-forest (RF), K-nearest neighbors (KNN) and
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support-vector machine (SVM) with a linear kernel [50,51]. Additionally, receiver operating
characteristic (ROC) curves are constructed based on sensitivity and specificity, which serve
as a means to further verify the validity of the method. The achieved accuracy demonstrates
the superiority of the proposed scheme, thereby confirming its clinical importance. The
performance of the OralNet system is validated using clinical-grade datasets, and various
performance metrics, including accuracy and ROC curves, supporting the effectiveness
and clinical significance of the proposed scheme in detecting OSCC.

AC =
TP + TN

TP + TN + FP + FN
× 100 (23)

MC = 100− AC (24)

PR =
TP

TP + FP
× 100 (25)

SE =
TP

TP + FN
× 100 (26)

SP =
TN

TN + FP
× 100 (27)

FS =
2TP

2TP + FN + FP
× 100 (28)

2.6. Implementation

The developed OralNet system was implemented on a workstation with the following
specifications: Intel i5, 16 GB RAM and 4 GB VRAM. Python 3.11.2 was used as the
programming language for executing the work. The results obtained from each technique
were individually presented and discussed. The prime focus of this study was on the deep
features obtained through the pretrained deep learning (PDL) schemes, which served as
the key information for the disease detection task.

For the classification task, 80% of the data (2400 images) was used for training, 10%
(300 images) for validation and the remaining 10% (300 images) for testing, following
a 3-fold cross-validation approach. The parameters assigned for these schemes were as
follows: learning rate of 1 × 10−5, Adam optimization, max pooling, ReLU activation, a
total of 1500 iterations, total epochs of 150 and SoftMax as the default classifier.

The experimental investigation considered different combinations of deep features
(DF), deep and handcrafted features (DDF, EDF) and their ensemble with handcrafted
features (DF + HF, DDF + HF, EDF + HF). The performance was evaluated based on
computed metrics for both 100× and 400× histology slides. Initially, DF-based classification
was implemented using a 1D feature vector of size 1 × 1 × 1000. Based on the achieved
classification accuracy, DenseNet201 was ranked as the top-performing PDL approach,
followed by VGG16 and ResNet101, for both 100× and 400× image categories. The
ensemble of these three PDL features was considered as EDF, and its optimized value was
used for EDF + HF. Furthermore, the AHA optimized features of VGG16 and DenseNet201
were serially concatenated to obtain DDF.

The computation of EDF in this work was based on the approach proposed by Kundu
et al. [52]. The selection of EDF was done by considering performance measures such as
accuracy (AC), precision (PR), sensitivity (SE), specificity (SP) and F1-score (FS) of VGG16,
ResNet101 and DenseNet201, as depicted in Equations (29)–(31) in the literature. The
developed OralNet system was implemented on a workstation with specific specifications,
and the performance of various PDL approaches and their combinations with handcrafted
features was evaluated. The selection of the best-performing features was based on the
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computed performance measures, ensuring the optimal performance of the system for both
100× and 400× histology slides.

Ai = (ACi, PRi, SEi, SPi, FSi) (29)

Computation of the ensemble probability score is presented below;

ensj =
∑i w(i) × pj

(i)

∑i w(i)
(30)

where w(i) = ∑xεAi tanh(x)

predictionj = argmax
(
ensj

)
(31)

The AHA-based optimization helps to obtain optimal values of VGG16 (1× 1× 371),
DenseNet201 (1× 1× 416), HF (1× 1× 103) and EDF (1× 1× 366). These features are then
serially integrated to obtain other feature vectors as shown in Equations (32)–(34).

DDF(1×1×787) = VGG16(1×1×371) + DenseNet201(1×1×416) (32)

(DDF + HF)(1×1×890) = DDF(1×1×787) + HF(1×1×103) (33)

(EDF + HF)(1×1×469) = EDF(1×1×366) + HF(1×1×103) (34)

3. Result and Discussions

This section presents the experimental results obtained from the proposed work on
the oral cancer (OC) histology image database for binary classification using three-fold
cross-validation. The chosen pretrained deep learning (PDL) schemes were analyzed on the
histology image database at 100×magnification. Each PDL was trained for 150 epochs, and
the best result from the three-fold cross-validation was selected for evaluation. The VGG16
scheme was used for classification, and the outcome is illustrated in Figure 9. Figure 9a
shows a test image, while Figure 9b–f depicts the results of various convolutional layers
using the Viridis color map. These images demonstrate the transformation of the test image
into features as it passes through the layers of the VGG16 scheme, resulting in a 1D feature
vector of size 1 × 1 × 1000. The accuracy, loss and ROC curve achieved with this process
are presented in Figure 10. Figure 10a,b shows the training and validation accuracy and
loss, respectively, while Figure 10c displays the ROC curve with an area under the curve of
0.957, confirming the improved classification accuracy achieved by VGG16.

The effectiveness of this scheme is further confirmed using a confusion matrix (CM),
which provides important measures such as true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). Using these values, additional metrics including
accuracy (AC), misclassification (MC), precision (PR), sensitivity (SE), specificity (SP), and
F1-score (FS) are computed. Figure 11 presents the CM obtained with various PDL schemes
using the SoftMax classifier. Figure 11a shows the CM for VGG16, while Figure 11b–f
depicts the CM for other PDL schemes with the SoftMax classifier.

The performance metrics obtained from the CM are computed and presented in
Table 2 for both 100× and 400×magnified histology slides. The table demonstrates that
PDL schemes such as VGG16, ResNet101 and DenseNet201 achieve higher classification
accuracy compared to VGG19, ResNet18 and ResNet50. These top-performing schemes are
then used to obtain deep and handcrafted features (DDF and EDF) after possible feature
reduction with the artificial hummingbird algorithm (AHA), as discussed in Section 2.6.
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Figure 11. Confusion matrix obtained during the classification of 100× histology images. (a) VGG16;
(b) VGG19; (c) ResNet18; (d) ResNet50; (e) ResNet101; (f) DenseNet201.

Table 2. Classification results achieved with PDL schemes with SoftMax classifier.

Image Scheme TP FN TN FP AC MC PR SE SP FS

100×

VGG16 142 11 143 4 95.0000 5.0000 97.2603 92.8105 97.2789 94.9833

VGG19 146 8 138 8 94.6667 5.3333 94.8052 94.8052 94.5205 94.8052

ResNet18 134 19 146 1 93.3333 6.6667 99.2593 87.5817 99.3197 93.0556

ResNet50 135 18 147 0 94.0000 6.0000 100 88.2353 100 93.7500

ResNet101 141 12 143 4 94.6667 5.3333 97.2414 92.1569 97.2789 94.6309

DenseNet201 144 9 143 4 95.6667 4.3333 97.2973 94.1176 97.2789 95.6811

400×

VGG16 141 7 144 8 95.0000 5.0000 94.6309 95.2703 94.7368 94.9495

VGG19 139 10 142 9 93.6667 6.3333 93.9189 93.2886 94.0397 93.6027

ResNet18 140 8 138 14 92.6667 7.3333 90.9091 94.5946 90.7895 92.7152

ResNet50 139 13 141 7 93.3333 6.6667 95.2055 91.4474 95.2703 93.2886

ResNet101 141 7 142 10 94.3333 5.6667 93.3775 95.2703 93.4211 94.3144

DenseNet201 143 5 143 9 95.3333 4.6667 94.0789 96.6216 94.0789 95.3333

The overall performance of the selected PDL schemes is further verified using the
glyph plot, as shown in Figure 12. This plot confirms that DenseNet201 and VGG16
are ranked 1st and 2nd, respectively, based on their achieved classification accuracy.
Figure 12a,b displays the glyph plots for 100× and 400× images, respectively.
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Once the performance of VGG16 with the SoftMax classifier was verified, its effec-
tiveness was further evaluated using other classifiers such as DT, RF, KNN and SVM, as
shown in Table 3. For the 100× image database, the SoftMax classifier exhibited superior
results compared to the other methods. However, for the 400× images, the KNN classifier
achieved higher accuracy compared to the other methods, including the SoftMax classifier.
A similar evaluation process was conducted for DenseNet201, and the results are presented
in Table 4. This table confirms that the KNN classifier outperformed other classifiers for
both the 100× and 400× images in terms of classification accuracy.

Table 3. Evaluating the performance of the VGG16 with different binary classifiers.

Dimension Classifier TP FN TN FP AC MC PR SE SP FS

100×

SoftMax 142 11 143 4 95.0000 5.0000 97.2603 92.8105 97.2789 94.9833

DT 142 6 142 10 94.6667 5.3333 93.4211 95.9459 93.4211 94.6667

RF 144 7 138 11 94.0000 6.0000 92.9032 95.3642 92.6174 94.1176

KNN 140 9 144 7 94.6667 5.3333 95.2381 93.9597 95.3642 94.5946

SVM 141 10 143 6 94.6667 5.3333 95.9184 93.3775 95.9732 94.6309

400×

SoftMax 141 7 144 8 95.0000 5.0000 94.6309 95.2703 94.7368 94.9495

DT 142 10 143 5 95.0000 5.0000 96.5986 93.4211 96.6216 94.9833

RF 141 7 142 10 94.3333 5.6667 93.3775 95.2703 93.4211 94.3144

KNN 143 5 143 9 95.3333 4.6667 94.0789 96.6216 94.0789 95.3333

SVM 142 9 143 6 95.0000 5.0000 95.9459 94.0397 95.9732 94.9833

Table 5 displays the results obtained for the DDF-based classification of the selected
OC histology images. It demonstrates that the KNN classifier achieves better accuracy
for the 100× histology slides. In the case of 400× histology images, both DT and KNN
classifiers exhibit higher accuracy compared to the other classifiers employed in this study.

Table 6 presents the classification results obtained using EDF. It confirms that the
KNN classifier yields better accuracy for the 100× images. For the 400× images, the
accuracy achieved with the RF and KNN classifiers is comparable and superior to that
of the SoftMax, DT and SVM classifiers. The results presented in Tables 5 and 6 indicate
that the classification accuracy is generally higher for the 100× images compared to the
400× images.
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Table 4. Evaluating the performance of the DenseNet201 with different binary classifiers.

Dimension Classifier TP FN TN FP AC MC PR SE SP FS

100×

SoftMax 144 9 143 4 95.6667 4.3333 97.2973 94.1176 97.2789 95.6811

DT 143 8 140 9 94.3333 5.6667 94.0789 94.7020 93.9597 94.3894

RF 142 9 144 5 95.3333 4.6667 96.5986 94.0397 96.6443 95.3020

KNN 144 8 144 4 96.0000 4.0000 97.2973 94.7368 97.2973 96.0000

SVM 143 4 143 10 95.3333 4.6667 93.4641 97.2789 93.4641 95.3333

400×

SoftMax 143 5 143 9 95.3333 4.6667 94.0789 96.6216 94.0789 95.3333

DT 141 8 143 8 94.6667 5.3333 94.6309 94.6309 94.7020 94.6309

RF 142 10 143 5 95.0000 5.0000 96.5986 93.4211 96.6216 94.9833

KNN 144 3 143 10 95.6667 4.3333 93.5065 97.9592 93.4641 95.6811

SVM 144 5 142 9 95.3333 4.6667 94.1176 96.6443 94.0397 95.3642

Table 5. Evaluating the performance of DDF with different binary classifiers.

Dimension Classifier TP FN TN FP AC MC PR SE SP FS

100×

SoftMax 146 3 146 5 97.3333 2.6667 96.6887 97.9866 96.6887 97.3333

DT 146 6 145 3 97.0000 3.0000 97.9866 96.0526 97.9730 97.0100

RF 147 4 144 5 97.0000 3.0000 96.7105 97.3510 96.6443 97.0297

KNN 147 2 146 5 97.6667 2.3333 96.7105 98.6577 96.6887 97.6744

SVM 143 6 147 4 96.6667 3.3333 97.2789 95.9732 97.3510 96.6216

400×

SoftMax 145 3 146 6 97.0000 3.0000 96.0265 97.9730 96.0526 96.9900

DT 145 6 147 2 97.3333 2.6667 98.6395 96.0265 98.6577 97.3154

RF 146 3 143 8 96.3333 3.6667 94.8052 97.9866 94.7020 96.3696

KNN 146 7 146 1 97.3333 2.6667 99.3197 95.4248 99.3197 97.3333

SVM 146 5 144 5 96.6667 3.3333 96.6887 96.6887 96.6443 96.6887

Table 6. Evaluating the performance of EDF with different binary classifiers.

Dimension Classifier TP FN TN FP AC MC PR SE SP FS

100×

SoftMax 145 4 144 7 96.3333 3.6667 95.3947 97.3154 95.3642 96.3455

DT 145 6 145 4 96.6667 3.3333 97.3154 96.0265 97.3154 96.6667

RF 146 3 143 8 96.3333 3.6667 94.8052 97.9866 94.7020 96.3696

KNN 145 6 146 3 97.0000 3.0000 97.9730 96.0265 97.9866 96.9900

SVM 145 4 145 6 96.6667 3.3333 96.0265 97.3154 96.0265 96.6667

400×

SoftMax 146 4 143 7 96.3333 3.6667 95.4248 97.3333 95.3333 96.3696

DT 145 4 144 7 96.3333 3.6667 95.3947 97.3154 95.3642 96.3455

RF 144 7 146 3 96.6667 3.3333 97.9592 95.3642 97.9866 96.6443

KNN 145 6 145 4 96.6667 3.3333 97.3154 96.0265 97.3154 96.6667

SVM 143 6 146 5 96.3333 3.6667 96.6216 95.9732 96.6887 96.2963

The results of the classification task using the integrated deep and handcrafted features
(DDF + HF) are presented in Table 7. The table confirms that the KNN classifier achieves a
detection accuracy of 100% for both 100× and 400× images. Additionally, other classifiers
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also achieve a detection accuracy of over 98.5%, demonstrating the effectiveness of the
proposed OralNet in detecting oral cancer from the histology slides.

Table 7. Evaluating the performance of DDF + HF with different binary classifiers.

Dimension Classifier TP FN TN FP AC MC PR SE SP FS

100×

SoftMax 147 2 149 2 98.6667 1.3333 98.6577 98.6577 98.6755 98.6577

DT 148 0 149 3 99.0000 1.0000 98.0132 100 98.0263 98.9967

RF 149 2 149 0 99.3333 0.6667 100 98.6755 100 99.3333

KNN 151 0 149 0 100 0.0000 100 100 100 100

SVM 150 1 149 0 99.6667 0.3333 100 99.3377 100 99.6678

400×

SoftMax 148 1 149 2 99.0000 1.0000 98.6667 99.3289 98.6755 98.9967

DT 150 2 148 0 99.3333 0.6667 100 98.6842 100 99.3377

RF 149 0 150 1 99.6667 0.3333 99.3333 100 99.3377 99.6656

KNN 150 0 150 0 100 1.0000 100 100 100 100

SVM 148 1 151 0 99.6667 0.3333 100 99.3289 100 99.6633

The performance of the integrated ensemble deep and handcrafted features (EDF + HF)
is evaluated using the selected database, and the results are presented in Table 8. The table
shows that the considered feature vector enables achieving a classification accuracy of
over 99% for each classifier in the chosen image datasets. This further confirms that the
EDF + HF approach provides a higher detection accuracy for the given database.

Table 8. Evaluating the performance of EDF + HF with different binary classifiers.

Dimension Classifier TP FN TN FP AC MC PR SE SP FS

100×

SoftMax 149 0 149 2 99.3333 0.6667 98.6755 100 98.6755 99.3333

DT 148 2 149 1 99.0000 1.0000 99.3289 98.6667 99.3333 98.9967

RF 150 1 147 2 99.0000 1.0000 98.6842 99.3377 98.6577 99.0099

KNN 149 2 149 0 99.3333 0.6667 100 98.6755 100 99.3333

SVM 149 0 148 3 99.0000 1.0000 98.0263 100 98.0132 99.0033

400×

SoftMax 149 1 148 2 99.0000 1.0000 98.6755 99.3333 98.6667 99.0033

DT 148 1 149 2 99.0000 1.0000 98.6667 99.3289 98.6755 98.9967

RF 149 2 149 0 99.3333 0.6667 100 98.6755 100 99.3333

KNN 150 1 148 1 99.3333 0.6667 99.3377 99.3377 99.3289 99.3377

SVM 149 0 148 3 99.0000 1.0000 98.0263 100 98.0132 99.0033

To visualize the overall performance of the chosen classifiers, Tables 7 and 8 are
represented graphically using a spider plot in Figure 13. Figure 13a,b presents the results
for DDF + HF with 100× and 400× images, respectively, highlighting the effectiveness of
the KNN classifier in detecting OSCC. Figure 13c,d depicts the outcomes achieved with
EDF + HF, indicating that the classification accuracy of this approach is also high and
comparable to DDF + HF for both image cases.
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Figure 13. Overall performance evaluation of the OralNet using the spider plot for the chosen
histology database. (a) DDF + HF (100×); (b) DDF + HF (400×); (c) EF + HF (100×); (d) EF + HF
(400×).

This proposed research work introduces the novel OralNet scheme for improved
examination of OC histology images with higher accuracy. The evaluation of this scheme is
conducted using 100× and 400×magnified microscopy images, and the results obtained
validate the effectiveness of the proposed approach in achieving better detection accuracy
when employing serially concatenated deep and handcrafted features. The limitation of
this study is that the performance of the outcome may change based on the dimension of
the data and the training hyperparameter.

In the future, this scheme holds potential for evaluation of clinically collected OC
histology images. By applying the OralNet approach to real-world data, its performance
and reliability can be further assessed, contributing to the development of an advanced
and clinically relevant OC detection system.

4. Conclusions

Oral cancer is a critical medical condition, and early detection and treatment are
crucial for successful outcomes. Biopsy-supported diagnosis, which involves microscopic
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examination of histology slides, is a common clinical procedure for confirming the presence
and severity of cancer. This research focused on the analysis of microscopic images taken
at 100× and 400× magnification to develop a novel OralNet scheme for examining and
classifying healthy and OSCC (oral squamous cell carcinoma) images. The main objective of
this study was to implement a binary classifier with a three-fold cross-validation technique
to accurately classify the chosen image dataset. Various feature vectors were considered,
and the integrated deep and handcrafted features (DDF + HF) demonstrated superior
detection accuracy compared to other feature combinations explored in this research.
The dataset used for assessment consisted of 3000 images, with an equal distribution of
1500 healthy and 1500 OSCC samples. The experimental results of the proposed EDF + HF
approach yielded a classification accuracy of over 99%, showcasing its effectiveness in
accurately identifying healthy and OSCC images. The DDF + HF-based classification
also exhibited excellent performance, with the KNN classifier achieving a remarkable
100% accuracy. Furthermore, the proposed OralNet scheme outperformed similar existing
works in the literature in terms of classification accuracy. These findings strongly support
the effectiveness of the DDF + HF-based approach for oral cancer detection using histology
images. In future research, it would be valuable to validate and assess the performance of
the proposed scheme with clinically collected histology slides, providing an opportunity to
evaluate its effectiveness in real-world scenarios.
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