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Abstract: Cardiac tissue engineering is a promising strategy for the treatment of myocardial damage.
Mesenchymal stem cells (MSCs) are extensively used in tissue engineering. However, transformation
of MSCs into cardiac myocytes is still a challenge. Furthermore, weak adhesion of MSCs to substrates
often results in poor cell viability. Here, we designed a composite matrix based on silk fibroin (SF)
and graphene oxide (GO) for improving the cell adhesion and directing the differentiation of MSCs
into cardiac myocytes. Specifically, patterned SF films were first produced by soft lithographic. After
being treated by air plasma, GO nanosheets could be successfully coated on the patterned SF films to
construct the desired matrix (P-GSF). The resultant P-GSF films presented a nano-topographic surface
characterized by linear grooves interlaced with GO ridges. The P-GSF films exhibited high protein
absorption and suitable mechanical strength. Furthermore, the P-GSF films accelerated the early cell
adhesion and directed the growth orientation of MSCs. RT-PCR results and immunofluorescence
imaging demonstrated that the P-GSF films significantly improved the cardiomyogenic differentiation
of MSCs. This work indicates that patterned SF films coated with GO are promising matrix in the
field of myocardial repair tissue engineering.

Keywords: silk fibroin; graphene oxide; mesenchymal stem cells; cardiomyogenic differentiation;
myocardial repair

1. Introduction

Mesenchymal stem cells (MSCs) implantation is a promising strategy for myocardial
repair because MSCs are able to attenuate cardiac fibrosis and promote neovascularization
by secreting reparative paracrine factors [1–3]. More importantly, MSCs are pluripotent
cells with the ability to differentiate into cardiac myocytes, which replenish damaged heart
cells, since cardiac myocytes are incapable of regenerating themselves after birth [4–6].
Although there is great potential for cardiac repair, the therapeutic efficiency of MSCs
implantation is still limited due to poor adhesion [7,8] and low efficacy of conversion
into cardiac myocytes [9,10]. Designing artificial matrices to support cell growth has been
proposed as an effective method for improving cell adhesion and proliferation, and even for
directing pluripotent cell differentiation in tissue engineering. Artificial matrices consisting
of collagen protein and featuring nanofibrous structure, which mimic the composition
and structure of the extracellular matrix (ECM), have been reported to play an important
role in modulating stem cells’ fate [11–14]. Thus, a structured biological-derived matrix
is expected to enhance the adhesion and mediate the differentiation of MSCs for cardiac
tissue engineering.

Silk fibroin (SF) derived from Bombyx mori (B. mori) silkworm is an ideal biomaterial in
tissue engineering. It has unique qualities including biocompatibility, plasticity, biodegrad-
ability, and excellent mechanical properties [15,16], enabling SF to serve as a biomimetic
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platform for supporting cell growth [17–19]. In addition, silk fibroin matrix with an elab-
orated topological structure can be easily fabricated by lithography or electrospinning
techniques [20–22]. Some reports have demonstrated that patterned SF films are able
to guide the osteogenic or neurogenic differentiation of MSCs [23–25]. Meanwhile, car-
diac muscle tissue is characterized by anisotropy, contributing to its powerful contraction
properties [26] and specific cellular orientation and elongation [14]. Therefore, topologi-
cally structured SF matrices hold great promise for cardiac tissue engineering. Nonetheless,
how to improve the adhesive properties and biological function of the matrix are urgent
issues that remain to be solved, because SF provides only a biophysical inducing factor for
differentiation and generally low adhesion to cells.

Meanwhile, graphene oxide (GO), an oxidized derivative of graphene sheets, has
received much attention in biomedical application [27,28]. It contains active oxygen groups,
providing numerous binding sites to absorb proteins, carbohydrates, and stimulatory
factors [29–32], which are essential components in mediating the adhesion and directional
differentiation of MSCs. Moreover, with high hydrophilicity and colloidal stability, GO
has been widely used in surface functionalization modification and composite materials
construction [33–35]. Attempts have been made to produce GO and SF (GO/SF) composites,
such as nanocomposite membranes, scaffolds, and nanofibers [36–38]. The present GO/SF
composites exhibit improved mechanical and electrical ability, but less emphasis has been
placed on their biological properties. Meanwhile, functional surface coatings with GO
provide an alternative strategy for the enhancement of the bioactivity of substrates [39,40].
GO-based coatings are extremely stable and require no additional chemical treatment
during the process. Therefore, we expected that GO and SF composite matrix (GSF),
prepared by coating GO onto a patterned SF film, could form a nano-topological surface
structure and display functional groups of GO, thereby triggering the cellular adhesion
and cardiomyogenic differentiation of MSCs.

To develop such a matrix, we first designed patterned SF films by using a soft litho-
graphic technique. An SF working solution was prepared by dissolving SF in an organic
solvent (Figure 1A). The patterned SF films were fabricated by casting the working solution
onto PDMS stamps with a linear groove structure, followed by natural drying (Figure 1B).
The surfaces of the patterned SF films were then treated with air plasma to activate the
functional groups of SF (Figure 1C). Following that, we introduced GO nanosheets for
coating the surface of the patterned SF films to produce the patterned GSF (P-GSF) matrix
(Figure 1D). We used human adipose-derived mesenchymal stem cells (AMSCs) to prove
that the P-GSF films presented improved performance in cell adhesion and an orientated
tendency in cell growth, and further directed cellular differentiation into cardiac myocytes
(Figure 1E,F).
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Figure 1. Schematic diagram depicting the formation of P-GSF patterned films by the soft lithographic
method and coated with GO nanosheets as a matrix for myocardial differentiation of AMSCs. (A) SF
working solution was first prepared by dissolving regenerated SF with HFIP; (B) SF working solution
was dropped onto the PDMS stamp; (C) pattern SF films were generated after air-drying followed
by air plasma treatment; (D) monodispersed graphene oxide solution was coated onto P-SF films.
(E) P-GSF films were formed following the solvent evaporation and peeling off of film, and human
AMSCs were cultured on the P-GSF films; (F) AMSCs were induced to differentiate into cardiac
myocytes (CMCs) under the function of P-GSF matrix.
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2. Materials and Methods
2.1. Fabrication of P-GSF Films

Lyophilized SF powder was derived from B. mori cocoons by following our previous
protocol [41]. The powder was dissolved in hexafluoroisopropanol (HFIP) to acquire
a working solution with concentration of 6 wt%. Poly(dimethylsiloxane) (PDMS, Sylgard
184, Dow Corning, Midland, TX, USA) stamp was used in our study to produce the
patterned surface of the matrix. PDMS prepolymer was first cast on a silicon substrate
with linear groove topography surface (period: 606 nm, width: 330 nm, depth: 190 nm,
GermanTech Co., Ltd., Beijing, China). Then, the PDMS stamp was peeled from the silicon
substrate after solidification for 2 h at 85 ◦C. The PDMS stamp was cleaned with acetone
and isopropanol, respectively, several times before use. Patterned SF films (P-SF) were
fabricated by casting 100 µL of SF working solution on the PDMS stamp and air-drying
at room temperature. The films were soaked in 80% methanol solution for 2 h to induce
insolubility in water. Then, the P-SF films were treated with air plasma for 1 min at
a 50 W radio frequency. For coating GO nanosheets onto the surface of P-SF films, GO
aqueous solution with various contents (0.05–1%) was added dropwise onto the films. After
natural drying, the films were washed with deionized water and vacuum dried at room
temperature.

2.2. Characterization of P-GSF Films

The protein adsorption of P-GSF films with various GO contents was evaluated using
bovine serum albumin (BSA) and fetal bovine serum protein (FBS), respectively, following
the protocol of the BCA protein assay kit (Beyotime Biotechnology, Beijing, China). The
mechanical properties of the films were determined by the tensile tests, in which the films
were cut into strip shapes and the stretch speed was 0.1 mm/s. The respective surface
topographies of GO-coated SF films (GSF), patterned SF films (P-SF), and GO-coated
patterned SF films (P-GSF) were obtained by scanning electron microscope (SEM). Raman
spectra and Raman scanning images of films were analyzed under a 532 nm laser irradiation
by microscopic imaging Raman spectrometer (DXR2, Thermo Fisher Scientific, Waltham,
MA, USA). The surface hydrophilicity of films was characterized by measurement of the
water contact angle.

2.3. Cell Adhesion Assay

Human adipose-derived mesenchymal stem cells (hAMSCs, Cyagen Biosciences,
Guangzhou, China) were used in our study and cultured in a complete medium contain-
ing FBS, penicillin–streptomycin, and L-glutamine (HUXMD-90011, Cyagen Biosciences,
Guangzhou, China). The GSF, P-SF, and P-GSF films were pretreated with 75% ethanol
for 2 h for sterilization and were rinsed with PBS three times. The films were then placed
on the bottom of 24-well plates, and a tissue culture plate (TCP) was set as the control
group. hAMSCs at a density of 1.0 × 104 cells/cm2 were seeded on different films and
the control plates. After culturing for 1 h and 4 h, respectively, the cells in all groups were
washed three times with PBS to remove the non-adherent cells. Following that, the cells
were fixed in 4% formalin solution for 30 min and permeated in 1% Triton X-100 for 10 min.
The cytoskeleton was stained with 480 phalloidin dye for 30 min and observed under
a confocal microscopy system (LSM710, Carl Zeiss, Oberkochen, Germany) to analysis
the cell adhesion. Immunofluorescence staining of cell adhesion proteins (vinculin and
paxillin) was also carried out to study further the cell adhesion properties. hAMSCs were
cultured for 24 h and treated with 4% formalin and 1% Triton X-100 in turn. The cells were
subsequently blocked with 5% BSA for 30 min at room temperature. After washing with
PBS three times, the hAMSCs were incubated with primary antibodies (anti-vinculin from
Invitrogen, anti-paxillin from Abcame, Cambridge, UK) overnight at 4 ◦C, followed by
treatment with Alexa Fluor 488 (Abcame, Cambridge, UK) and Alexa Fluor 594 (Abcame,
Cambridge, UK), respectively, for 30 min. Finally, after washing with PBS three times,
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the fluorescence was observed with LSCM. The semiquantitative analysis of the mean
fluorescence intensity of the adhesion protein was performed in Image J software (V 1.8.0).

2.4. Cell Morphology and Viability Assay

hAMSCs at a density of 1.0 × 104 cells/cm2 were seeded on 24-well plates, covered
with different films and cell plate, respectively. After being cultured for 24 h, the cells’ cy-
toskeletons were stained by 480 phalloidin dye according to the above-mentioned protocol.
The fluorescence images of cell morphology were acquired under LSCM. The morphologies
of hAMSCs in different groups were also characterized using scanning electron microscopy
(SEM, SU8010, Hitachi, Tokyo, Japan). The samples were first fixed with 2% glutaraldehyde
overnight at 4 ◦C and then washed with PBS twice. After that, cells were treated with 1%
osmic acid for 1 h and dehydrated with gradient ethanol for 15 min each time. Finally, the
samples were dried with a critical point drier and coated with gold before SEM observation.
Pseudo-color processing was used in the image analysis to highlight the cells’ morphology.

The cell viability of hAMSCs on different films were assessed using a Cell Counting
Kit-8 (CCK-8, Dojindo, Tokyo, Japan). After hAMSCs were cultured for 1 d, 3 d, and 5 d on
the 96-well plates covered with films, 10 µL of working solution was added and incubated
for another 2 h at 37 ◦C. After that, 100 µL of supernatant from each well was transferred to
the new 96-well plates, and the absorbance of each well was determined at 450 nm.

2.5. Cardiomyogenic Differentiation of hAMSCs on P-GSF Films

For cardiomyogenic differentiation, the hAMSCs (1.0 × 104 cells/cm2) at passage
4–5 were implanted on 6-well plates covered with different films and cultured in the
complete medium (Cyagen Biosciences, Guangzhou, China) for 24 h. Then, the medium
was discarded and the cells were treated with an inducing medium (complete medium
containing 10 µM 5-azacytidine (5-aza)) for 24 h. After that, the inducing medium was
replaced with new complete medium and cultured for 14 d and 28 d, respectively. The
culture medium was changed every three days.

Cardiac troponin T (cTnT) and connexin 43, two important effector proteins of car-
diomyocytes, were selected and detected by immunofluorescence staining. The hAMSCs
were fixed with 4% formalin and blocked in 2% BSA. Then, the cells were incubated with
the primary antibodies (anti-cTnT and anti-connexin 43) overnight at 4 ◦C, followed by
staining with the secondary antibody (Alexa Fluor 594, Abcame Cambridge, UK) at room
temperature for 1 h. Finally, the cells were stained by 480 phalloidin to indicate the cy-
toskeleton. For real-time polymerase chain reaction (PCR), the total RNA of hAMSCs
cultured on different films was extracted using a total RNA extraction kit (Solarbio, Beijing,
China). After reverse transcription and purification, the mRNA levels of cTNT, connexin
43, and GATA binding protein 4 (GATA 4) of hAMSCs in different groups were determined
by real-time RT-PCR analysis using a TaqMan primer-probe. All primers (Sangon Biotech,
Shanghai, China) were designed and are listed in Table 1 with GAPDH as a reference gene.

Table 1. Primer Sequences Used for Reverse Transcription Polymerase Chain Reaction Gene Expres-
sion Analysis.

Genes 5′-3′ Primers

GAPDH
forward TGACGCTGGGGCTGGCATTG
reverse GGCTGGTGGTCCAGGGGTCT

cTnT
forward GGCAGCGGAAGAGGATGCTGAA
reverse GAGGCACCAAGTTGGGCATGAACGAC

Connexin 43
forward ACT GGC GAC AGA AAC AAT TCT TC
reverse TTC TGC ACT GTA ATT AGC CCA GTT

GATA-4
forward TCCCTCTTCCCTCCTCAAAT
reverse TCAGCGTGTAAAGGCATCTG
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2.6. Statistical Analysis

The data were calculated and are presented as mean values ± standard deviation (SD),
n = 3. One-way analysis of variance was adopted to statistically analyze the data. Differ-
ences between groups were considered statistically significant at p < 0.05, and extremely
significant at p ≤ 0.01.

3. Results
3.1. Formation and Characterization of P-GSF Films

The surface micro-morphology of patterned SF films was observed by SEM (Figure 2).
As expected, the P-SF films featured dimensions including a linear groove structure with
a line width of about 300 nm and depth of nearly 200 nm (Figure 2B), largely replicated
from the PDMS stamps. As a control, the GSF films exhibited the typical ridge structure of
GO (Figure 2A). The P-GSF films turned from transparent to deep brown as the content
of GO coating increased (Figure S1A). Protein adsorption on the films was analyzed to
evaluate their biocompatibility. The results indicated that the GO coating promoted protein
adsorption (Figure S1B,C); P-GSF films with a higher GO content can adsorb more BSA or
FBS in the first 24 h, implying that it can enhance cell attachment. GO coating also resulted
in an increase in the elastic modulus of P-GSF films (Figure S1D). When the content of GO
increased to 0.25%, the elastic modulus of P-GSF films increased to 93 MPa, twice that of
P-SF films. However, when the content of GO was higher than 1%, the P-GSF films became
fragile. This is because the high content of GO in P-GSF films may lead to an increase of
rigidity and a decrease of toughness. SEM indicated GO with a nanofiber morphology
evenly distributed on the groove or ridge surface of the P-SF films (Figure S2). Compared
with P-GSF films with GO content at 0.25%, P-GSF films of higher GO content (0.5% and
1%), showed an increase in the size of the GO nanofibers and a decrease in the width of the
grooves, finally completely covering the patterned surface of the P-SF films. This means
that the GO coating with a content of 0.25% was more suitable for constructing a P-GSF
matrix with a desirable surface structure (Figure 2C) for directing the orientation and
promoting the adhesion of AMSCs. Raman spectroscopy presented peaks at 1600 cm−1 and
1340 cm−1, which can be assigned to the G band and D band of GO, further confirming the
coating with GO (Figure S3A). Raman imaging indicated that GO was evenly distributed on
the surface of the P-SF films (Figure S3B). The water contact angle of the SF and P-SF films
was 76.5◦ and 69.4◦, respectively. However, the water contact angle of GSF and P-GSF films
decreased to 60.4◦ and 58.0◦, respectively, implying that GO coating treatment improved
the hydrophilicity of the SF films because of the introduction of oxygen-compound groups
from GO (Figure S3C).
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3.2. Cell Adhesion of AMSCs

We used human adipose mesenchymal stem cells (hAMSCs) to investigate the early
cell adhesion to the GSF, P-SF, and P-GSF films (Figure 3A). Cells cultured on TCP plates
were used as a control. Relatively few HAMSCs were observed in the TCP and P-SF
groups after culturing for 1 h, whereas more cells adhered on the GSF and P-GSF films
and exhibited a more stellate-patterned phenotype. After culturing for 4 h, rapid hAMSCs
spreading was observed on the GSF and P-GSF films, but those cultured on the TCP plates
remained spindled or narrow, a morphological feature of non-spreading hAMSCs. The
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results indicated that GO coating successfully enhanced cell adhesion on the SF matrix
and promoted cell spreading on the surface of the GSF and P-GSF films. In addition,
two adhesion-associated proteins of hAMSCs, vinculin and paxillin, were also labelled by
immunofluorescence staining. As shown in Figure 3B, in all groups, vinculin and paxillin
were obviously expressed around the cell nucleus, indicating that the two proteins played
a role in the adhesion of hAMSCs. The fluorescence intensity of paxillin in hAMSCs cultured
on the P-GSF films was higher than for the other three groups (Figure S4), indicating that
the GO coating and patterned structure both contributed to the cell adhesion.
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Figure 3. Cell adhesion morphology and adhesion-associated protein analysis of AMSCs on TCP,
GSF films, P-SF films, and P-GSF films. (A) The adhesion morphology of AMSCs in different groups
cultured for 1 and 4 h. (B) Adhesion-associated proteins of cells cultured on TCP, GSF films, P-SF
films, and P-GSF films, visualized by immunofluorescence staining (B).

3.3. Cell Proliferation and Cell Morphology of AMSCs

The cell morphology of AMSCs cultured on TCP, GSF, P-SF and P-GSF for 24 h was
characterized by CLSM and SEM, respectively (Figure 4A). AMSCs exhibited a starfish-
shaped morphology when grown on TCP and GSF films, without obvious orientation
distribution. By contrast, AMSCs on the patterned surfaces of P-SF and P-GSF films were
oriented along the direction of grooves, with a spindle-shaped phenotype morphology.
The results demonstrated that the designed pattern provided suitable guidance to lead
the cell alignment. The cell proliferation of AMSCs was analyzed by culturing AMSCs on



Biomolecules 2023, 13, 990 7 of 11

different matrices for 1, 3, and 5 d, respectively. Figure 4B shows that the absorbance of
all groups increased over time, indicating the positive proliferation of AMSCs cultured
on the substrate throughout the whole culture period. Cells cultured for 5 d were lower
in number on the P-GSF films than the other three matrices, without statistical difference.
This may be because some AMSCs cultured on P-GSF films progressed to differentiation
rather than continually proliferating. Therefore, the results indicate that P-GSF films could
serve as a matrix to maintain cell growth.
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Figure 4. Growth morphology and proliferation of AMSCs on different films. (A) Growth morphology
of AMSCs on TCP, GSF, P-SF, and P-GSF films cultured for 24 h. Left column shows fluorescence
images by cytoskeleton staining, right column shows the relative scanning electron microscope
images with pseudo-color treatment. (B) Cell proliferation of AMSCs in different groups cultured for
1, 3 and 5 d, determined by MTS analysis.

3.4. Cardiomyocytes Differentiation and Cardiac-Specific Gene Expression of AMSCs

We investigated whether the culture of AMSCs on P-GSF films promoted their car-
diomyogenic differentiation by evaluating myocyte-related gene expression through a qRT-
PCR assay. The gene expression of gap junction proteins (connexin 43) and cardiomyogenic
contractile proteins (cTnT) were significantly higher in the P-GSF group compared with
TCP, GSF, and P-GSF groups on day 14 and day 28 (Figures S5A and 5A). Cardiomyogenic
transcriptional factor (GATA4) expression exhibited no difference among all groups when
AMSCs were cultured in the earlier period (day 14), and its expression was maximal in the
P-GSF group on day 28. This means that transformation of AMSCs into cardiomyocytes
may have been activated in the early days and finally completed in the later period. The
gene expression of connexin 43 was higher in the GSF group than the TCP or P-SF groups,
while cells cultured on P-SF films expressed more cTnT than TCP or GSF. This is because the
GO coating focused on the promotion of cells adhesion and junction, but the patterned struc-
ture provided an inducer of mechanical stress for cells. In addition, immunofluorescence
staining of connexin 43 and cTnT confirmed the gene analysis results (Figures 5B and S5B).
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When cultured on day 14, AMSCs cultured on the P-GSF films had recognizable connexin
43-positive and cTnT-positive staining, but no significant red fluorescence was observed in
the other groups (Figure S5B). On day 28, red fluorescence was observed in the GSF, P-SF,
and P-GSF groups, and the P-GSF group had the most positive cells expressing connexin 43
or cTnT protein. Taken together, the above results consistently verify that the P-GSF films
can act as an ideal matrix to direct the cardiomyogenic differentiation of AMSCs. In our
study, 5-aza was added into the medium to induce cardiomyogenic differentiation in first
24 h, according to previous studies. Therefore, we analyzed the retention ability of 5-aza
on different matrices. As expected, P-GSF films can retain more 5-aza than GSF, P-SF, and
TCP after 24 h (Figure S6), indicating that more inducer may participate in promoting the
differentiation of cardiac myocytes.
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Figure 5. Assessment of cardiomyogenic differentiation of AMSCs on TCP, GSF, P-SF, and P-GSF
films. (A) Relative levels of mRNAs for connexin 43, cTnT, and GATA4 of AMSCs cultured on
different films for 28 d. Immunofluorescence images of (B) connexin 43 and (C) cTnT proteins in
human AMSCs seeded in different groups for 28 d. Connexin 43 and cTnT were stained by Alexa
Fluor 594-labeled antibody (red). Cell cytoskeletons were stained with phalloidin (green). * p < 0.05,
** p < 0.01, data are presented as mean ± SD, n = 3.

4. Discussion

Cardiomyocyte differentiation of stem cells has always been a great challenge. Car-
diomyocytes are sensitive to a series of growth factors, including connexin 43, endothelial
growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) [42–44], and it takes a long
time to complete the transformation of pluripotent cells into cardiomyocytes. In this study,
we constructed an artificial matrix consisting of SF and GO to explore the possibility of
cardiomyocyte differentiation by stem cells on our matrix to facilitate myocardial repair by
tissue engineering.

Numerous studies have shown that cell morphology, viability, and even biological
function can be affected by the surrounding environment of cells [45,46]. Mature car-
diomyocytes exhibit a fibrous structure. Therefore, we firstly designed a patterned SF
film (Figure 2), providing conditions that included a topographic structure to direct the
growth of stem cells (Figure 4). Meanwhile, graphene oxide (GO) is regarded as an ex-
cellent functional material. The sheet structure and large number of bonding sites enable
GO to efficiently bind or stimulate biological factors when used in vivo. Byung-Soo Kim
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considered that GO can potentiate the myocardial repair efficacy of mesenchymal stem cells
by stimulating the expression of angiogenic growth factors and gap junction proteins [47].
However, the scaffolds from GO alone are fragile, although GO is reported to be of high
mechanical strength. Our results also proved that excess GO (higher than 1%) attenuated
the elastic modulus of composite GO-SF films (Figure S1D). Furthermore, the biosafety
of GO is another concern. In our study, a coating method was applied to introduce GO
into our matrix. The proliferation results for the cells indicated that the P-GSF films were
biocompatible (Figure 4). We also conducted an adsorption experiment with proteins
(FBS and BSA) and chemical substances (5-aza). FBS is an essential nutrient component
in the culture of cells, while 5-aza plays an important role in inducing the cardiomyocyte
differentiation of stem cells. The results indicated that the adsorption of FBS and 5-aza
significantly increased when GO was coated on the matrix (Figures S1C and S6). This may
explain why stem cells cultured on P-GSF films had faster adhesion behavior and higher
efficiency of cardiomyocyte differentiation.

Overall, our results for cell morphology, adhesion, and differentiation confirmed the
underlying mechanisms which make P-GSF films suitable for myocardial repair tissue
engineering. In the follow-up study, we will conduct in vivo research to further validate
the efficiency of our matrix for the repair of myocardial injury.

5. Conclusions

We designed a novel matrix using SF films coated with GO nanosheets to promote the
cell adhesion and cardiomyogenic differentiation of MSCs. The resultant P-GSF films have
a nano-topographic surface with ordered grooves interlaced by GO ridges. In the testing,
the P-GSF films exhibited a higher hydrophilicity and protein adsorption capacity than P-SF
films, which further promoted the early adhesion of MSCs. More importantly, the P-GSF
films directed the growth orientation of MSCs into a linear arrangement, and induced
their differentiation into cardiac myocytes, as demonstrated by relative gene expression
and immunofluorescence. Our work indicates that P-GSF films are promising matrices for
supporting the growth and differentiation of MSCs into cardiac myocytes for enhancing
myocardial tissue regeneration.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom13060990/s1, Figure S1: Characterization of P-GSF films; Figure S2:
Surface morphology of P-GSF films in different contents of GO coating visualized by SEM; Figure S3:
The Raman spectra analysis and surface wettability evaluation of different films; Figure S4: The
mean fluorescence intensity of vinculin and paxillin proteins treated by immunofluorescence staining;
Figure S5: Assessment of cardiomyogenic differentiation of AMSCs on TCP, GSF, P-SF, and P-GSF
films; Figure S6: Adsorption and retention comparison of 5-AZA of TCP, P-SF, GSF, and P-GSF films.
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