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Abstract: Z-DNA refers to the left-handed double-helix DNA that has attracted much attention
because of its association with some specific biological functions. However, because of its low content
and unstable conformation, Z-DNA is normally difficult to observe or identify. Up to now, there
has been a lack of unified or standard analytical methods among diverse techniques for probing
Z-DNA and its transformation conveniently. In this work, NaCl, MgCl2, and ethanol were utilized to
induce d(GC)8 from B-DNA to Z-DNA in vitro, and Fourier transform infrared (FTIR) spectroscopy
was employed to monitor the transformation of Z-DNA under different induction conditions. The
structural changes during the transformation process were carefully examined, and the DNA chirality
alterations were validated by the circular dichroism (CD) measurements. The Z-DNA characteristic
signals in the 1450 cm−1–900 cm−1 region of the d(GC)8 infrared (IR) spectrum were observed,
which include the peaks at 1320 cm−1, 1125 cm−1 and 925 cm−1, respectively. The intensity ratios
of A1320/A970, A1125/A970, and A925/A970 increased with Z-DNA content in the transition process.
Furthermore, compared with the CD spectra, the IR spectra showed higher sensitivity to Z-DNA,
providing more information about the molecular structure change of DNA. Therefore, this study has
established a more reliable FTIR analytical approach to assess BZ DNA conformational changes in
solutions, which may help the understanding of the Z-DNA transition mechanism and promote the
study of Z-DNA functions in biological systems.

Keywords: Z-DNA; FTIR; CD

1. Introduction

Deoxyribonucleic acid (DNA), as the hereditary material in biological systems, plays
an important role in life. Structural changes of DNA molecules affect the expression of
genes inside the nuclei of cells. Unlike Watson–Crick’s B-DNA, Z-DNA is a left-handed
double-stranded helix with a zigzag shape that can be transformed from B-DNA [1]. It was
found that GC bases are more easily induced to Z-DNA [2–5], and some base modifications
such as methylation of cytosine and guanine and deamination of adenine may increase the
stability of Z-DNA [6]. At present, a variety of biological functions of Z-DNA have been
revealed. In general, it is involved in gene regulation [7,8]. For example, it may induce
genetic instability and cause a variety of diseases [2,9–11]. Evidence has shown that Z-DNA
appears in the hippocampus of patients with Alzheimer’s disease, and it is speculated that
Z-DNA may be related to neurodegenerative diseases [12]. However, currently, there are
very few reports on Z-DNA research, not only because of the lack of effective tools for
Z-DNA detection but also due to its low content existing in nature.
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In order to study the properties of Z-DNA, researchers have induced the formation of
Z-DNA in vitro under special conditions such as high ionic strength, chemical modification,
and the use of binding proteins and negative superhelices [13–23]. For the detection and
analysis of Z-DNA, spectroscopic methods have been proposed and employed, such as
X-ray diffraction, circular dichroism (CD), and nuclear magnetic resonance (NMR) spec-
troscopy [1,13,21,24–29]. However, these methods either require expensive instruments and
complicated operation or cannot assess the B-Z DNA transition instantly and quantitatively.

Fourier transform infrared (FTIR) spectroscopy can probe the biochemical and struc-
tural information of analyte samples. When the composition and/or conformation of
DNA change, the peak frequency and intensity of the infrared spectroscopy will change
correspondingly. Currently, FTIR spectroscopy has already been applied in DNA structure
analysis [30,31]. The application of FTIR spectroscopy in the study of DNA conformation
has also gained encouraging attention [8,32–36]. However, previous research on Z-DNA
through FTIR had some limitations, such as the requirement of low hydration to achieve
the purpose of Z-DNA detection [30,37,38]. This hydration method may lead to changes in
the liquid environment and so bring unpredictable effects on the formation of Z-DNA. On
the other hand, it is still difficult to conduct a quantitative analysis of Z-DNA because of
insufficient identification of the Z-DNA characteristic IR bands [39,40].

In order to establish a more reliable approach for Z-DNA assessment, we tried to
induce the transformation of B-DNA into Z-DNA in solutions by a variety of standard
inducers (NaCl, MgCl2, and ethanol) without reduction of relative humidity, and then
applied FTIR spectroscopy to detect and analyze the gradual change process of the B-Z
DNA transition. It is known that NaCl, MgCl2, and ethanol are Z-DNA inducers with
good repeatability [20,21,41–43]. Especially DNA with multiple GC has a strong tendency
to form Z-DNA under these conditions [2–4]. Therefore, in the experiment, different
concentrations of NaCl, MgCl2, and ethanol solutions were used to induce the dsDNA of
d(GC)8 from B-DNA to Z-DNA. The Z-DNA transformation under different conditions
was thus observed and evaluated; in particular, the IR band at 970 cm−1 was used as the
internal standard for the potential quantitative analysis, and based on the evaluation of the
intensity ratios (A1320/A970, A1125/A970, and A925/A970), the B-Z DNA transition process
under some specific conditions was inspected and assessed.

2. Materials and Methods
2.1. Materials

The d(GC)8 sequence used in the experiment was purchased from General Biology
(Hefei, China). The concentration was 5 OD/tube (the OD value was measured at 260 nm
in the ultraviolet absorption spectrum) and the MW was 4885.16 g/mole, equivalent to
181.6 µg/tube. Tm (the temperature at which 50% nucleic acids become denatured [44,45])
was 63.9 ◦C. The solution was dissolved in buffer (50 mM NaCl, 5 mM Tris-HCl, pH = 8.0),
and the A260/A280 = 1.8–2.2 was determined by UV spectrophotometer, confirming that the
DNA had high purity. Ultra-pure Milli-Q water was used in all the experiments. The NaCl
(analytically pure) used in the experiment was purchased from Tianjin Hengxing Chemical
Reagent Manufacturing Co., Ltd. (Tianjin, China), and the MgCl2 (analytically pure) was
purchased from Tianjin Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China). Absolute
ethanol was purchased from Beijing Huateng Chemical Co., Ltd. (Beijing, China), and the
Tris (analytically pure) was from Solarbio (Beijing, China).

2.2. Induction of Z-DNA

Firstly, the purchased ssDNA was combined into dsDNA using the base comple-
mentary pairing principle. The dry nucleic acid powder was first dissolved with buffer
solution (50 mM NaCl, 5 mM Tris-HCl, pH = 8.0) and then incubated at 37 ◦C for 30 min to
obtain stable dsDNA [41], used for CD and UV detection. NaCl, MgCl2, and ethanol were
prepared in buffer solutions (50 mM NaCl, 5 mM Tris-HCl, pH = 8.0). The prepared inducer
solution was added to the dsDNA solution. The final concentrations of NaCl were 1 M,
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2 M, 3 M, 4 M, 4.5 M, and 5 M, respectively; the final concentrations of MgCl2 were 0.5 M,
1 M, 1.5 M, 2 M, 2.5 M, and 3 M, respectively; and the volume ratios of ethanol were 0.4, 0.5,
0.55, 0.6, 0.65, and 0.7, respectively. After adding the Z-DNA inducer solution, the DNA
samples were incubated at 37 ◦C for more than 4 h to stabilize the structure of the dsDNA.

2.3. FTIR Spectral Analysis

Before the FTIR spectral measurements, the dry nucleic acid powder was dissolved
with ultra-pure Milli-Q water and incubated at 37 ◦C for 30 min to obtain stable dsDNA.
Then the dsDNA was added to a CaF2 window piece drop by drop and put into a drying
oven keeping the temperature at 37 ◦C for about 20 min until the water of the DNA solution
evaporated on the window piece. Then, 5 µL of different inducing solutions were added
on the film formed by the dsDNA, the film was quickly covered with another clean CaF2
window piece, and the connection of the window piece was sealed with sealing film to
reduce the evaporation of water. The final concentrations of NaCl were 50 mM, 1 M, 2 M,
3 M, 4 M, 4.5 M, and 5 M, respectively; the final concentrations of MgCl2 were 0 M, 0.5 M,
1 M, 1.5 M, 2 M, 2.5 M, and 3 M, respectively; and the volume ratios of ethanol were 0,
0.4, 0.5, 0.55, 0.6, 0.65, and 0.7, respectively. The concentration of the DNA solution was
36.32 µg/µL. The structural changes of the dsDNA were detected by a Thermo Fisher
Scientific Nicolet iS10 infrared spectrometer.

The parameters of the infrared spectrometer were set as follows: the spectral range
was from 4000 cm−1 to 900 cm−1, the spectral resolution was 4 cm−1, and the number of
scans was 30. The software Origin 2021 was used for the spectral analysis. At least three
replicates were set for each measurement.

2.4. Circular Dichroism Analysis

Circular dichroism was conducted using a ChirascanTM Circular dichroism spectrome-
ter. The spectral scanning range was 200 nm to 350 nm, with the scanning time being 0.25 s
per point. The solution sample was put into a quartz colorimetric tube with a diameter of
1 mm. Each CD spectrum was scanned three times on average. Ultra-pure water was used
as a blank control.

3. Results

Figure 1 shows the FTIR spectra of d(GC)8 dsDNA, with the spectral assignments
given in Table 1. In this work, we mainly focused on the 1450 cm−1−900 cm−1 region of
DNA infrared spectra. In addition, the peak at 970 cm−1 is attributed to the deoxyribose
C-C stretching mode, and it is often used as an internal reference for normalization to
analyze the structural changes of dsDNA [34,46].
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Table 1. Assignment of the relevant vibrational bands used in the second derivative.

Wavenumber (cm−1) Vibrational Mode Assignment and Main Contribution

1408~1413 C3′-endo deoxyribose in Z-form helices [47–49]
1352~1357 Purine in syn conformation (sugars: C3′-endo) [47–49]
~1320 G in syn conformation (sugars: C3′-endo) [47–50]
1213~1216 Main Z-form marker, antisymmetric PO−2 stretch [47,49,51]
~1123 Z-form [47]
~1086 Symmetric stretching vibrations of phosphate moieties in nucleic acids [52–54]
1044~1069 CO stretch of backbone, strongly enhanced in Z-form DNA [47,48,55]
1010~1020 Furanose vibration, strongly enhanced in Z-form DNA [47,48]
~970 B-form: singlet at 970 (CC str of the backbone) [55]
~951 Z-form [48]
~935 B-DNA/Deoxyribose (ν(CC)ring) [56]
924~930 Z-form (ν(OPO)backbone) [47,56]

3.1. NaCl-Induced Z-DNA

Firstly, the structural changes of dsDNA induced by different concentrations of NaCl
were analyzed (Figure 2). The characteristic peaks at ~1125 cm−1 and ~925 cm−1 changed
obviously with the increase of NaCl concentration, indicating the transition from B-DNA
to Z-DNA. It was found that when the concentration of NaCl reached 3 M, the original
1068 cm−1 of FTIR spectrum disappeared, accompanied by the appearance of 1077 cm−1

and 1066 cm−1 (Figure 2a,b), and the CD spectrum at this concentration showed a trend of
Z-DNA transition (Figure 2e). These results indicated that when NaCl was over 3 M, the
transformation from B-DNA to Z-DNA occurred.
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Figure 2. FTIR spectroscopy analysis of d(GC)8 treated with different concentrations of NaCl.
(a) d(GC)8 infrared spectra treated with different concentrations of NaCl. (b) Second derivative
spectra of d(GC)8. (c) The curve fitting result under 5 M NaCl (1150 cm−1−900 cm−1). (d) The ratios
of the area of Z-DNA characteristic peaks 925 cm−1 and 1125 cm−1 to the area of internal reference
970 cm−1 peak (the value is from the fitting result of the characteristic peak, see the Supplementary
Materials). (e) CD was used to detect d(GC)8 chirality after treatment with different concentrations
of NaCl.



Biomolecules 2023, 13, 964 5 of 14

According to the peak positions indicated by the second derivative spectrum as
shown in Figure 2b, the curve fitting of the infrared spectrum from 1150 cm−1 to 900 cm−1

was achieved (Figures 2c and S1 and Table S1). Then, the intensity ratios of the Z-DNA
characteristic peak area to the internal reference area (A925/A970 and A1125/A970) were
used to evaluate the variation trend of Z-DNA content. The results showed that the relative
Z-DNA content increased with the increase of NaCl concentration (Figure 2d), and the
changes evaluated based on either A925/A970 or A1125/A970 were the same. It was found
that substantial structural transformation of DNA occurred when the NaCl concentration
was larger than 3 M. When the concentration reached 4 M, the ratios of A925/A970 and
A1125/A970 reached a plateau, indicating that most B-DNA had been transformed into
Z-DNA. In addition, I925/I970 and I1125/I970 changed with the same trend as A925/A970 and
A1125/A970, both of which changed at 3 M significantly, and reached a plateau above 4 M
(Figure S2).

The CD spectrum in the range of 220–350 nm reflects the interaction of base pairs in
the helical structure [57]. In fact, Z-DNA has an obvious structural difference from B-DNA
as shown by the CD measurement (Figure S3). According to the experimental results of
d(GC)8, the CD of Z-DNA showed a positive value near 270 nm and a negative value near
295 nm, while the CD of B-DNA showed a negative value near 255 nm and a positive value
near 285 nm [58]. BZ-DNA is the result of the coexistence of Z-DNA and B-DNA, which
showed a negative band at 295 nm for Z-DNA and a negative value at 255 nm for B-DNA,
and a positive peak between B-DNA and Z-DNA [59].

As shown by the CD spectra in Figure 2e, NaCl could induce the dsDNA transfor-
mation, which is consistent with previous studies [21,24,41,42,60]. B-DNA was obviously
transformed to Z-DNA after treatment with NaCl with a concentration greater than 4 M,
and its structural change was consistent with the concentration change trend of NaCl. Al-
though the structure of dsDNA did not change significantly when the NaCl concentration
was below 3 M, the peak intensity of the CD spectrum changed, indicating that the dsDNA
conformation was varied.

In addition, as Pohl and Jovin found that the conversion of poly(dG-dC)·poly(dG-
dC) from one conformation to another was associated with an increase in the A295/A260
ratio of the UV absorption spectrum, other research groups also applied this method to
evaluate conversion [21,61–63]. Therefore, we used this for a double check. As shown in
Figure S4, when NaCl reached 3 M, the UV absorption ratio A295/A260 gradually increased
with the increase of NaCl concentration, further confirming that the Z-DNA structure was
gradually transformed.

3.2. MgCl2-Induced Z-DNA

Furthermore, we applied the cation Mg2+ to treat d(GC)8 and analyzed the transfor-
mation law of Z-DNA. It was found that the effect of MgCl2 on dsDNA was similar to that
caused by NaCl.

The analysis in Figure 3a,b shows that in the transformation from B-DNA to Z-DNA,
the characteristic peaks at ~1125 cm−1 and ~925 cm−1 appeared, which are attributed to
Z-DNA. When the concentration of MgCl2 reached 1.5 M, the peak at 1068 cm−1 disap-
peared, and the peaks at 1077 cm−1 and 1066 cm−1 appeared (Figure 3b), similar to the
spectrum when the NaCl concentration reached 3 M. When MgCl2 increased to 2 M, the
induction effect on dsDNA was further enhanced, and the FTIR spectrum showed new
changes. Through curve fitting of the infrared spectrum from 1150 cm−1 to 900 cm−1

(Figures 3c and S5 with the fitting parameters given in Table S2), we found that the ratio of
the characteristic peak area to the internal reference area was closely related to the concen-
tration of MgCl2 (Figure 3d), indicating the structural transformation of dsDNA. Combined
with the CD spectrum and FTIR second derivative analysis, it was found that when the
concentration of MgCl2 exceeded 3 M, the conformation of DNA gradually shifted into a
new conformation. In addition to the area ratio of the characteristic peaks, we also analyzed
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the intensity ratios of the characteristic peaks (Figure S6), and found that the variation
trend was the same as that of the area ratio.
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spectra of d(GC)8 treated with different concentrations of MgCl2. (b) Second derivative of the infrared
spectrum of d(GC)8 treated with different concentrations of MgCl2. (c) The curve fitting result under
2 M MgCl2 treatment (1150 cm−1−900 cm−1). (d) The ratios of the area of the Z-DNA characteristic
peaks 925 cm−1 and 1125 cm−1 to the area of the internal reference 970 cm−1 peak (the value is
derived from the fitting results of characteristic peaks, see Supplementary Materials). (e) CD was
used to confirm the transformation effect of d(GC)8 treated with different concentrations of MgCl2.

As shown by the CD spectra in Figure 3e, MgCl2 could induce dsDNA transformation,
which is consistent with previous studies [20,41,60]. Furthermore, the CD spectral analysis
confirmed that the dsDNA structure was gradually transformed into Z-DNA when the
concentration of MgCl2 reached more than 1.5 M (Figure 3e). Compared with NaCl, MgCl2
has more electric charge and has a stronger effect on Z-DNA. When the concentration
of MgCl2 increased to 3 M, the CD spectrum of dsDNA was quite different from that of
Z-DNA, indicating that the structure of DNA had changed again, which was consistent
with previous reports [20,64]. Figure S7 shows the UV absorption spectra and A295/A260
ratio after d(GC)8 induction. It shows that A295/A260 increased with the increase of MgCl2
concentration, confirming that an increase of MgCl2 would affect the structure of dsDNA.

3.3. Ethanol-Induced Z-DNA

In addition to the cationic inducers mentioned above, we also investigated Z-DNA
induced by ethanol. DNA is insoluble in ethanol and soluble in an aqueous solution. It has
been reported that the addition of ethanol could induce the formation of Z-DNA with a
low hydration degree by reducing the hydration degree of nucleic acid [65]. In this case, we
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observed that the induction effect of ethanol on dsDNA conformation was different from
that of NaCl and MgCl2. As shown in Figure 4a,b, the peaks at 1125 cm−1 and 925 cm−1

appeared when B-DNA changed to Z-DNA, and then the peaks for dsDNA furanose and
phosphate groups at 1100 cm−1−1000 cm−1 changed. This is consistent with the change
in MgCl2 treatment. However, when the volume ratio of ethanol reached 0.6, the peak at
1068 cm−1 disappeared in the second derivative spectrum, and the peaks at 1077 cm−1 and
1066 cm−1 appeared. When the volume ratio of ethanol ranged from 0.65 to 0.7, the FTIR
spectrum of dsDNA changed obviously, and the peak at 1049 cm−1 disappeared, while the
peaks at 1042 cm−1 and 1054 cm−1 appeared (Figure 4b). This change is different from the
structural change in the case of MgCl2 treatment. To be noted, the structural changes of
dsDNA induced by excessive ethanol were weaker than those induced by excessive MgCl2.
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Figure 4. FTIR spectroscopy analysis of d(GC)8 treated with different volume ratios of ethanol
solutions. (a) d(GC)8 infrared spectrum after ethanol treatment at different volume ratios. (b) The
second derivative of IR spectrum of d(GC)8 treated with different volume ratios of ethanol. (c) The
curve fitting result at ethanol volume ratio 0.65 (1150 cm−1−900 cm−1). (d) The ratio of the area of
Z-DNA characteristic peaks 925 cm−1 and 1125 cm−1 to the area of internal reference 970 cm−1 peak
(the value is derived from the fitting results of characteristic peaks, see Supplementary Materials).
(e) The detection result of d(GC)8 CD after ethanol treatment at different volume ratios.

The relative change of Z-DNA was calculated by curve fitting in the range of
1150 cm−1–900 cm−1 of the infrared spectrum (Figure 4c and Figure S8 with the fitting
parameters given in Table S3). It can be seen that the Z-DNA level is positively correlated
with ethanol content (Figure 4d). When the volume ratio of ethanol reached 0.6, the ratio of
Z-DNA increased. This implies that most B-DNA was converted to Z-DNA at the ethanol
volume ratio of 0.6. In addition to the area ratio analysis, we also analyzed the intensity
ratio between the characteristic peak and internal reference (Figure S9), and found that its
variation trend was the same as that of the area ratio.
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As shown by the CD spectra in Figure 4e, ethanol could induce dsDNA transforma-
tion, which is consistent with previous studies [42,43]. Furthermore, CD measurements
confirmed that the dsDNA structure did change with the increase of ethanol content, and
this change was correlated with the ethanol volume ratio (Figure 4e). For the unusual result
with 0.4 proportion of ethanol, it was found that the characteristic peaks of B-DNA (i.e.,
285 nm peaks) still remained, while the peak intensity at 255 nm was different from that of
conventional B-DNA. Based on the literature [66], the special curve for the 0.4 proportion
of ethanol might be due to the synergistic effect of ethanol and NaCl in the buffer solution.
The ethanol promoted an interaction between NaCl and the anion in nucleic acid, resulting
in the CD spectra of Z-DNA at 255 nm different from that of B-DNA. Johan H. van de
Sande et al. reported the cationic promotion effect of ethanol and proved that, with an
increase of ethanol volume and/or decrease of NaCl concentration, the induction effect of
ethanol would be dominant [20]. It can also be seen from the CD spectrum that ethanol
showed the strongest effect on dsDNA when the volume ratio of ethanol was 0.65, which is
consistent with the changing trend based on the FTIR spectral analysis. Figure S10 shows
the changing trend of A295/A260 according to UV absorption statistics. The result shows
that when the volume ratio of ethanol reaches 0.6, A295/A260 increases significantly, which
further indicates that the ethanol at this content can cause structural changes in dsDNA.

3.4. Sugar Pucker Changes after Treatment with Different Inducers

In addition to the sugar–phosphate backbone structure, the sugar loop folding form is
also one of the major differences between B-DNA and Z-DNA. For d(GC)8 in Z-DNA, the
G base is in cis conformation with C3′-endo, while the C base is in inverse conformation
with C2′-endo [1,67]. Among them, C3′-endo is the main structural difference between
Z-DNA and B-DNA. The characteristic signals of C3′-endo in the FTIR spectrum include
the peaks at 1411 cm−1, 1355 cm−1, and 1320 cm−1, which are mainly concentrated in
1450 cm−1−1150 cm−1 (Figure 5a−c).
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Figure 5. Changes of infrared spectra of 1450 cm−1−1150 cm−1 and area ratio of C3′-endo to internal
reference under different inducers. (a) The infrared spectrum under different concentrations of NaCl.
(b) The infrared spectrum under different concentrations of MgCl2. (c) The infrared spectrum of
d(GC)8 treated with different volume ratios of ethanol solution. (d) Changes of A1320/A970 ratio under
different concentrations of NaCl. (e) Changes of A1320/A970 ratio under different concentrations of
MgCl2. (f) Changes of A1320/A970 ratio under different volume ratios of ethanol.

Figure 5b–d show that C3′-endo is closely related to Z-DNA as its content increased
with the increase of the content of the Z-DNA inducer, and its change trend is the same as
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that of A1125/A970 and A925/A970, indicating that Z-DNA and B-DNA can also be distin-
guished by analyzing the infrared spectral features that are related to sugar loop folding.

3.5. Z-DNA Transition in GC-Rich DNA

B-Z transition may occur in pure GC-DNA and GC-rich DNA. In reality, GC-rich
DNA is more prevalent than pure GC-DNA in a genome, so we also further examined
GC-rich DNA with the involvement of other bases in the DNA sequence [5]. For this
purpose, we also designed d(ATATGCGCGCGCGCGCGCGCATAT), where the actual
Z-DNA proportion is less than 66.7% because of the presence of a BZ junction [67,68].
As expected, FTIR spectroscopy could sensitively detect the Z-DNA transformation, and
the results of this experiment just verified the B-Z transformation trend. It can be seen
in Figure 6 that the characteristic spectral feature of Z-DNA remained, which essentially
resembles that of the pure GC-DNA, having the Z-DNA bands such as 925 cm−1, 1016 cm−1,
1125 cm−1, 1320 cm−1, etc. It can be found that the GC proportion is directly associated with
the intensities of the characteristic bands of Z-DNA. In addition, we also inspected the IR
spectrum of the negative control d(AT)8 sequence (Figure S13 in Supplementary Materials),
which showed no obvious characteristic peaks of Z-DNA in all the three induction solutions,
confirming the usefulness of FTIR spectroscopy in the identification of Z-DNA conformation
and the analysis of B-Z DNA transitions in solutions.
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Figure 6. Comparison of Z-DNA infrared spectra between pure GC-DNA d(GC)8 and GC-rich
DNA induced by different conditions. (a) FTIR spectra of d(ATATGCGCGCGCGCGCGCGCATAT)
dsDNA treated with different concentrations of NaCl, and FTIR spectra of d(GC)8 treated with 5 M
NaCl; (b) FTIR spectra of d(ATATGCGCGCGCGCGCGCGCATAT) dsDNA treated with different
concentrations of MgCl2 and FTIR spectra of d(GC)8 treated with 2.5 M MgCl2; (c) FTIR spectra of
d(ATATGCGCGCGCGCGCGCGCATAT) dsDNA treated with different volume ratios of ethanol, and
FTIR spectra of d(GC)8 treated with 0.7 volume ratio of ethanol.

4. Discussion

First of all, to establish a reliable quantitative analytical method via FTIR spectroscopy,
sufficiently stable Z-DNA should be available. In the literature, for the induction of
stable Z-DNA, the following interactions or mechanisms may be involved: (1) electrostatic
interactions between cations and DNA phosphate residues, such as NaCl, MgCl2, spermine-
functionalized C-dots, etc. [21,41,69,70]; (2) reducing the degree of hydration which may
promote the formation of Z-DNA conformations with a low degree of hydration, such
as non-oriented gel, ethanol, etc. [37,65]; (3) protein Zα domain binding to DNA, such
as ADAR1, E3L, etc. [13,71,72]; and (4) construction of negative superhelix structures,
such as circular Z-DNA [23,73]. Accordingly, in this work, we applied NaCl, MgCl2, and
ethanol to induce Z-DNA, which actually are the typical Z-DNA induction methods in the
literature [20,41–43].

Our results showed that, compared with CD methods, FTIR spectroscopy could not
only detect the structural changes of dsDNA but also provides more precise information on
the DNA structure, because it can sensitively reflect the change process of B-Z transition, or
even transition to other forms of DNA. For example, in Figure 2, multiple characteristic
peaks of Z-DNA were clearly detected by FTIR spectroscopy in the 3 M NaCl solution.
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However, Z-DNA could not readily be identified from the CD spectrum when the NaCl
concentration was below 3 M. In addition, Figure 3 shows that the characteristic peak
of Z-DNA could be detected with the 0.5 M MgCl2 treatment, while the CD spectrum at
the same concentration could only simply show some difference at the peak value of 285
nm, which was not enough to distinguish the Z-DNA content. This means that FTIR is
more sensitive than CD in the identification of Z-DNA. The same is true for the analysis
of ethanol, a noncationic inducer. As shown in Figure 4, the characteristic peak of Z-DNA
appeared when the ethanol volume ratio was 0.4, while the CD spectrum showed the
structural features of Z-DNA only when the ethanol volume ratio was 0.6. When the
volume ratio of ethanol increased to 0.65 and 0.7, the FTIR spectra of dsDNA showed many
new changes, while the CD spectra showed fewer changes.

By analyzing the second derivative FTIR spectra of B-DNA, it can be recognized
clearly that dsDNA of d(GC)8 sequence has a characteristic peak of 1068 cm−1 (Figure 2b).
Existing studies refer to a DNA structure as B*-DNA, which is characteristic of GC sequence
nucleic acids [30,31,37]. When the concentration of NaCl reached 3 M, the concentration of
MgCl2 reached 1.5 M, and the volume ratio of ethanol reached 0.6, this 1068 cm−1 peak
disappeared. With the disappearance of the 1068 cm−1 peak, two new peaks of 1077 cm−1

and 1066 cm−1 appeared (Figures 2b, 3b and 4b). This result is consistent with the study of
Z-DNA with the infrared spectrum by Christine Rauch et al. [38].

In addition to the characteristic peaks of Z-DNA, such as 1320 cm−1, 1125 cm−1, and
925 cm−1, the intensity of the 1016 cm−1 furanose peak also increased with the increase of
inducer content. Different from Z-DNA characteristic peaks, furanose also exists in B-DNA,
but is significantly enhanced in Z-DNA [47–49]. In this study, the area ratio (Figure S11)
and intensity ratio (Figure S12) of the 1016 cm−1 peak to the 970 cm−1 peak in the process
of Z-DNA transition showed a consistent variation trend with that of Z-DNA content,
suggesting that the 1016 cm−1 peak could also be used as a marker for Z-DNA transition.

Both NaCl and MgCl2 may induce dsDNA to transform into Z-DNA through electro-
static interaction. Due to the large dielectric constant of water, the combination of cation
and phosphate residues will be hindered [66]. Therefore, a high salt concentration is often
required for the induction of Z-DNA. Na+ and Mg2+ carry different amounts of charge,
resulting in different ion concentrations. In addition, when the concentration of MgCl2 is
too high, the electrostatic interaction between MgCl2 and nucleic acid exceeds the require-
ment of Z-DNA structure transformation, which would then cause the DNA structure to
change further.

Z-DNA is a conformation with a low degree of hydration. Ethanol solution can in-
crease the degree of environmental hydration to induce the formation of Z-DNA. When the
proportion of ethanol in the solution is too high, it will also go beyond the hydration range
of Z-DNA. Compared with other inducers, ethanol induced Z-DNA showed significant
difference in the FTIR range of 1100 cm−1−1000 cm−1, indicating that the induction mech-
anism of ethanol is different from that of the cation. In addition, ethanol as a polar organic
solvent has a much lower permittivity than water, thus allowing the neutralization of phos-
phate residues by cations in solution [74]. Johan H. van de Sande et al. also demonstrated
the induction of Z-DNA using ethanol with a volume ratio of 0.2 and 1 mM MgCl2 [20].

No matter what kinds of inducers were used in this study, all the above results
showed that the use of FTIR spectroscopy could identify Z-DNA readily, monitor the
B-Z DNA transition quickly, and evaluate the Z-DNA content quantitatively. Based on
the results of this work, we will further continue to study the DNA B-Z transition under
more complicated cases such as under the physiological conditions where Z-DNA may be
induced with proteins such as ADAR1.

5. Conclusions

This work has established a convenient analytical assessment method based on FTIR
spectroscopy for the evaluation of the B-Z transformation of DNA under different induction
circumstances. In the experiment, dsDNA (d(GC)8) was treated with different concentra-
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tions of NaCl, MgCl2, and ethanol, with different volume ratios, and the Z-DNA transition
processes under different conditions were observed and compared using FTIR spectroscopy.
It was found that with the increase of NaCl, MgCl2, or ethanol concentration in the in-
duction solution, the characteristic Z-DNA peaks of 1320 cm−1, 1125 cm−1, and 925 cm−1

in the infrared spectra changed during the B-Z DNA transition, and the FTIR intensity
ratios of A1320/A970, A1125/A970, and A925/A970 could be used to assess the transition
quantitatively. Due to the comparative analysis, we found that MgCl2 had the strongest
effect, while NaCl had the weakest effect on the B-Z DNA transition. Compared with other
detection approaches such as CD spectroscopy, FTIR spectroscopy showed the advantages
of providing not only more information on multiple structural changes of DNA, but also
a more sensitive detection of Z-DNA variation. As such, this study has systematically
explored the changes of FTIR spectra in the process of Z-DNA transformation, which may
provide a more reliable reference for the study of Z-DNA in biological systems in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13060964/s1, Figure S1. Fitting results of representative infrared
spectra of dsDNA induced by different concentrations of NaCl in the range of 1150 cm−1−900 cm−1;
Figure S2. Changes of the ratio of Z-DNA characteristic peaks (925 cm−1 and 1125 cm−1) intensity
to 970 cm−1 peak intensity with NaCl treatment; Figure S3. CD spectra for identification of d(GC)8
chiral structures; Figure S4. UV analysis of d(GC)8 dsDNA treated with different concentrations of
NaCl; Figure S5. Fitting results of representative infrared spectra of dsDNA induced by different
concentrations of MgCl2 in the range of 1150 cm−1−900 cm−1; Figure S6. Changes of the ratio of the
Z-DNA characteristic peaks (925 cm−1 and 1125 cm−1) intensity to 970 cm−1 peak intensity after
MgCl2 treatment; Figure S7. UV analysis of d(GC)8 dsDNA treated with different concentrations of
MgCl2; Figure S8. Fitting results of representative infrared spectra of dsDNA induced by ethanol
of different volume ratios in the range of 1150 cm−1−900 cm−1; Figure S9. Changes of the ratio of
the Z-DNA characteristic peaks (925 cm−1 and 1125 cm−1) intensity to 970 cm−1 peak intensity after
ethanol treatment; Figure S10. UV analysis of d(GC)8 dsDNA after ethanol treatment at different
volume ratios; Figure S11. The ratio changes of 1016 cm−1 peak area to 970 cm−1 peak area with the
concentration of inducers (data were supplied in the spectral fitting); Figure S12. The ratio changes
of 1016 cm−1 peak intensity to 970 cm−1 peak intensity with the concentration of inducers (data
were supplied in the spectral fitting); Figure S13. d(AT)8 infrared spectra under different induction
conditions; Table S1. Fitting parameters of infrared spectra of dsDNA treated by NaCl; Table S2.
Fitting parameters of infrared spectra of dsDNA treated by MgCl2; Table S3. Fitting parameters of
infrared spectra of dsDNA treated by ethanol.
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