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Abstract: Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It
is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics
are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while
also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic
changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and
control each of these two linked cellular processes in order to maintain their tumorigenic potential
and capacity. This review aims to explore the interplay between these two processes and discuss how
each affects the other, driving and enhancing tumorigenic states in certain contexts.
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1. Introduction

All cancer cells, irrespective of originating tissue, have altered cellular metabolism.
Despite being first observed in 1927 by Otto Warburg and colleagues [1], it was not until
2011 that altered cellular metabolism was recognized as a cancer hallmark [2,3]. It is now
well established that both liquid and solid tumors upregulate metabolic pathways other
than oxidative phosphorylation (OXPHOS) even in the presence of oxygen, a phenomenon
termed the “Warburg effect” [4,5]. Cancers have been shown to exhibit increased gluco-
neogenesis [6], increased glutaminolytic activity [7,8], modified amino acid metabolism [9],
increased de novo fatty acid synthesis with reduced fatty acid oxidation (FAO) [10–12], and
increased pentose phosphate pathway activity [13]. Although Warburg’s original observa-
tion identified increased glycolytic rates in cancers, decades of research have shown that
cancers near universally show decreased dependence on OXPHOS for ATP production and
a greater reliance on other metabolic pathways such as glycolysis, amino acid metabolism,
and fatty acid oxidation (to various degrees) to drive ATP production and numerous cellular
processes. These observations therefore refine Warburg’s original observations, rather than
contradict. Evidence has also accumulated establishing metabolic dysfunction as a strong
contributor and predisposing factor to tumorigenesis. It has been shown that prolonged
metabolic dysfunction can initiate tumorigenesis via retrograde (RTG) responses, reactive
oxygen species (ROS) mediation, and apoptotic or hypoxia inducible factor (HIF)-mediated
pathways [14–20].

The zeal to investigate altered metabolism waned with the advent of gene sequencing
in the 1970s and 1980s (the beginning of the “genomics era”) and did not receive significant
attention until large-scale next-generation sequencing (NGS) studies began to identify
mutations in metabolic genes and pathways [21–32]. Decades of research have established
causal links between metabolic dysfunction and metabolic disease, neurodegenerative
disease, and cancer. These findings have since then reinvigorated research efforts studying
metabolic dysfunction in cancers.

While cancers are complex multi-factorial diseases, previous research makes a com-
pelling case implicating metabolic dysfunction as a contributing and/or predisposing factor
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in many cancers. These observations, however, gloss over the intimate coupling between a
cell’s metabolic and epigenetic states. Cellular metabolic states regulate and drive epige-
netic changes, while also playing key roles in epigenetic rewiring in response to cell states.
Conversely, epigenetic changes can drastically alter cellular metabolics and dependencies.
We are therefore only now beginning to piece together the puzzle of how cancer cells
meticulously modify and control these two linked and coupled cellular processes in order
to maintain their tumorigenic potential and capacity.

In this review, we will be discussing the cellular “powerhouse”, the mitochondria,
with a specific focus on the mitochondrial respiratory chain (MRC). The MRC is composed
of the five mitochondrial complexes I to V (C-I to C-V). Closely tied to MRC function is the
tricarboxylic acid (TCA) cycle. Discussions will then outline how cells respond to metabolic
dysfunction and what conditions can arise as a consequence, focusing on MRC and TCA
dysfunction and cancer. We will then discuss the epigenome, how it is regulated, and how
it is maintained. Discussions will then progress to outline how epigenetic regulators are
critically dependent on metabolic cofactors. We will discuss how perturbation of cofactor
concentrations adversely affects and alters the function and efficiency of said regulators,
with consequent adverse effects on the epigenome. We will then close with a discussion on
how closely intertwined metabolism and epigenetic processes truly are, and what targeted
therapies are currently in development for cancer.

2. The Mitochondrion—Discovery and Structure

First observed in the late 1800s, mitochondria are abundant organelles in all mam-
malian eukaryotic cell types except erythrocytes [33]. Mitochondrial function was linked
to cellular respiration in the early 1900s to 1950s, when the advent of electron microscopy
enabled observation of their morphological structure for the first time [34]. Mitochondria
are oval or rod-shaped double-membraned organelles with outer and inner mitochondrial
membranes (OMM and IMM, respectively) separated by an inter-mitochondrial space
(Figure 1) [35–38]. EM studies have led to the development of two models describing
the internal structure of mitochondria, the baffle model and the crista junction model
(Figure 1a,b, respectively) [34,39]. The baffle model sees the cristae as random in-folds of
the IMM while the crista junction model sees cristae as stacks of independent membranous
lamellae. High-resolution EM has shown the internal structure of a mitochondrion to be a
hybrid of both models in that cristae are stacks of independent membranous lamellae with
random in-folds [39,40].

The mitochondrial OMM separates the organelle from the cytoplasm. Compositionally,
it resembles the cellular membrane albeit with a higher lipid concentration, thus facilitating
diffusion of lipophilic molecules into the intramembranous space [41,42]. Hydrophilic
and small proteins are transported across the OMM through the voltage-dependent anion
channels (VDACs), which are ubiquitously expressed in the OMM [43–45]. In contrast, the
IMM is structurally and compositionally different from the OMM. It is composed of almost
50% more protein and nearly 50% less lipid [41,42,46]. Almost exclusively found in the
IMM is the lipid cardiolipin, which has been shown to be essential for normal mitochondrial
function [41,42,46–48]. The IMM is impermeable to uncharged proteins > 150 daltons in size
and contains numerous translocator proteins that facilitate import of charged molecules
required for physiological functions (such as adenosine triphosphate (ATP), glutamate, and
α-ketoglutarate (α-KG)) [49,50]. Structurally, the IMM forms folds/invaginations named
cristae which drastically increase the IMM’s surface area, maximizing ATP production
through the MRC [34,36,40].
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Figure 1. Internal structure of a mitochondrion. The mitochondrion is a double-membrane organelle
with an outer membrane (OMM), an inner membrane (IMM), and numerous stacked independent
membranous lamellae named cristae. Two models have been proposed describing the internal
structure of a mitochondrion, (a) The baffle model sees cristae as random in-folds of the IMM with
in-folds extending inwards towards the center of the mitochondrion. (b) The crista junction model
sees cristae as independent membranous lamellae. These can be considered as “bubbles” within the
inner mitochondria. EM micrographs have shown that the internal structure of a mitochondrion is
a hybrid of both proposed models as has been shown in the literature [39,40]. Those interested are
urged to view the EM micrographs in the respective publications to appreciate the internal structure
of the mitochondria.

Under conditions of high energy usage, such as during replication or stress, mito-
chondria fuse to form extended reticular networks which are disassembled when energy
requirements stabilize through a process called mitochondrial fission (Figure 2) [34,51–56].
Numerous proteins have been implicated in facilitating fusion and fission events and
include myeloid cell leukemia (Mcl1, encoded by MCL1), B-cell lymphoma-extra-large (Bcl-
xL, encoded by BCL2L1), mitochondrial dynamin-like 120 kDa protein (encoded by OPA1),
mitofusion 1 or 2 (encoded by MFN1/2), dynamin-1-like protein (Drp1, encoded by DNM1L),
phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (encoded by PINK1),
and parkin RBR E3 ubiquitin protein ligase (PARKIN, encoded by PARK2) [55,57–60].

Mitochondria are unique in that they are the only eukaryotic organelle to contain
their own genetic material, mitochondrial DNA (mtDNA) [61–63]. Mammalian mtDNA
encodes two ribosomal and twenty-two transfer RNAs along with thirteen MRC subunit
proteins (seven proteins for C-I, one protein for C-III, three proteins for C-IV, and two
proteins for C-V [53]). Mitochondria are thus heavily dependent on nuclear-encoded
proteins for their biological functions. Transcription of mtDNA has been reported to
depend on over 100 nuclear-encoded proteins [53,64], and over 1000 nuclear-encoded
proteins must be imported into the mitochondria via translocator of outer membrane
(TOM) and translocator of inner membrane (TIM) proteins [50,53,64,65]. Such a high
interdependence between mitochondrial and nuclear compartments requires regulation
and thus necessitates extensive mitochondrial–nuclear crosstalk [66–68]. Research has
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shown that disruption to this bi-directional communication and/or damage to either
compartment triggers compensatory mechanisms in an attempt to restore normal cellular
functions [20,67,69–71].
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Figure 2. Mitochondrial fusion and fission. Mitochondria readily fuse to form large extended net-
works to produce greater amounts of ATP under conditions of stress or replication. The extended
network is then able to break apart through the process of fission, giving rise to individual mitochon-
dria once more. If a mitochondrion is identified to be extensively damaged or experiences sustained
depolarization, it undergoes lysosomal degradation; a process known as mitophagy.

3. Mitochondrial Cellular Roles

Mitochondria are typically referred to as cellular “powerhouses”, a term first coined
in the 1950s [72]. However, mitochondria are also responsible for other cellular functions
such as iron–sulfur (Fe-S) cluster formation [73], calcium homeostasis [74], apoptosis regu-
lation [75–77], cell signaling, generation of ROS [15,18,50,78–80], and generating essential
metabolite cofactors required for epigenetic cellular processes (as will be discussed later).
Evidence has also implicated mitochondrial involvement in lipid metabolism [81] and
autophagosome formation [82].

3.1. Oxidative Phosphorylation and Energy Production

Energy production in the mitochondria is performed by the five MRC complexes via
OXPHOS. C-I to C-IV form the electron transport chain (ETC), and together with C-V, they
make up the five MRC complexes. In a three-step process, energy is released from the ETC
and stored as an electrochemical gradient or transmembrane potential across the IMM. This
electrochemical gradient drives the conversion of adenosine diphosphate (ADP) to ATP
by ATP synthase (C-V) [83]. Generating ATP via OXPHOS has been shown to be up to
15 times more efficient than glycolysis under anaerobic conditions. It has been established
that a critically important contributing factor for this increased efficiency is the spatial
arrangement of the MRC complexes in the IMM [53].
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To date, two models have been proposed for the arrangement of MRC complexes
on the IMM, the random collision model and the solid-state model [84,85]. The random
collision model proposed that the MRC complexes randomly distribute across the IMM
and electron transfer is a random encounter between individual complexes and electron
carriers. Contrary to this, the solid-state model proposed that electron transfer is directed
from one enzyme to the next within supercomplexes/respirasomes. EM evidence has
accumulated supporting the solid-state model and the organization of the MRC complexes
in respirasome/supercomplex structures [86–91]. These respirasomes are constructed
from the ETC complexes (NADH dehydrogenase (C-I), succinate dehydrogenase (C-II),
ubiquinol-cytochrome c oxidase (C-III), cytochrome c oxidase (C-IV)) and are arranged in
numerous configurations such as complexes I/III2 (1*C-I, 2*C-III), III2/IV1–2 (2*C-III, 1 or
2*C-IV), I/III2/IV (1*C-I, 2*C-III, 1*C-IV), and II/III/IV (1*C-II, 1*C-III, 1*C-IV) [89,92–97].
Interestingly, a large number of individual C-II units are not found incorporated into
respirasomes, possibly owing to the involvement of C-II in the TCA cycle as well as the
ETC. The most commonly observed respirasome structure is the I/III2/IV configuration,
although tissue and species differences have been observed [88,89].

In addition to the ETC supercomplexes, ATP synthase has been shown to form dimer
pairs (C-V2) which arrange linearly throughout the IMM in a manner separate to respira-
somes [89,95].

3.2. Iron–Sulfur (Fe-S) Cluster Formation

Iron–sulfur clusters are inorganic cofactors found in many proteins. These cofactors
are essential for numerous biological processes such as, but not limited to, enzyme catalysis,
electron transfer, and gene expression [98–100]. Iron–sulfur cluster assembly has been
shown to take place within the mitochondrial matrix, cytosol, and nucleus [98,101].

Within the mitochondria, C-I, C-II, and C-III utilize Fe-S clusters as part of their
“catalytic cores” owing to their ability to readily donate and accept electrons. MRC C-I
contains eight Fe-S clusters, all of which can be found in the “matrix arm” of C-I. C-II
contains three Fe-S clusters while C-III contains only one Fe-S cluster. These cofactors are
essential components of these MRC complexes.

3.3. Calcium Homeostatic Control

Controlling intracellular calcium concentrations is a critically important task, one in
which the mitochondria play a central role [102,103]. Free calcium ions (Ca2+) are involved
in numerous cellular processes, including being primary and/or secondary messenger
molecules or apoptosis-initiating factors [102,104–106].

Intracellular Ca2+ is drawn into the mitochondria through the VDAC in the OMM and
through the Ca2+ uniporter in the IMM, as a result of transmembrane potential [107–109]. Ca2+

efflux is controlled by the mitochondrial sodium/calcium (Na+/Ca2+) exchanger [110,111]. In
doing so, mitochondria control intracellular Ca2+ concentrations in parallel to controlling
the efficiency of the TCA cycle. This is because three TCA cycle dehydrogenases (pyruvate
dehydrogenase, oxoglutarate dehydrogenase, and nicotinamide adenine dinucleotide
(NAD+)-dependent isocitrate dehydrogenase (NAD+-IDH)) are regulated directly and/or
indirectly by mitochondrial Ca2+ concentration [104,111–114].

3.4. Mitochondria and Cell Death

Four forms of cell death have been documented—apoptosis, necrosis, autophagy, and
parthanatos—all four of which require mitochondrial involvement.

4. Apoptosis

Apoptosis is triggered once a genetically predetermined set of conditions is reached,
hence the term “programmed cell death”. In mammalian cells, two apoptotic pathways
exist, the intrinsic and extrinsic pathways. A third apoptotic pathway has also been
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described involving T-cell-mediated cytotoxicity and perforin–granzyme-dependent killing
of cells [115–119] (Figure 3).
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Figure 3. The cellular apoptotic pathways. Three apoptotic pathways are defined in the
literature—intrinsic, extrinsic and perforin/granzyme-mediated apoptosis, which is unique to T-cell
lymphocytes and natural killer cells. Each pathway has unique triggering conditions with all three
converging on caspase-3 activation, after which the execution apoptotic pathway is common.

The intrinsic pathway has two initiating conditions. The first is the absence of growth
factors, hormones, and cytokines, leading to a failure of suppression of pro-apoptotic
proteins (bcl-2-like protein 4 (Bax) and Bcl-2 homologous antagonist/killer (Bak)).

The second is by external stimuli such as radiation, toxins, infection, and free radicals.
Intrinsic pathway stimulation results in Bax and Bak localizing to the OMM and forming
the mitochondrial permeability transition (MPT) pore, releasing cytochrome c (C-IV),
second mitochondria-derived activator of caspases (SMAC, also known as DIABLO), and
the mitochondrial high-temperature requirement serine protease HTRA2 (also known as
Omi) [120–126]. This results in activation of the caspase-dependent mitochondrial pathway
and culminates in cell death [117].

The extrinsic apoptotic pathway, also known as the death receptor pathway, requires
a ligand–receptor interaction wherein a ligand, such as tumor necrosis factor-α (TNF-A)
or TNF-related apoptosis-inducing ligand (TRAIL, also known as APO2L), binds to a
member of the tumor necrosis factor (TNF) receptor superfamily [127]. On ligand binding,
cytoplasmic proteins are recruited to bind to the receptor and a death-inducing signaling
complex (DISC) is formed (also known as the Fas-associated death domain protein (FADD))
which activates caspase-8 [128,129]. Activated caspase-8 then cleaves BH3-interacting
domain death agonist (Bid), which interacts with Bax–Bak, triggering their localization to
the OMM and facilitating the formation of an MPT pore [130]. Opening of this pore causes
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transmembrane depolarization and cytochrome c (C-IV) release and triggers the remainder
of the apoptotic cascade [131].

The third form of apoptosis identified is unique to cytotoxic T lymphocytes (CTLs)
and natural killer (NK) cells which are capable of killing target cells via the extrinsic
apoptotic pathway or via a separate and unique cascade of events. On target cell binding,
CTLs release the pore-forming molecule perforin which facilitates transfer of cytoplasmic
granules [115,116,132]. Granzyme B, a serine protease which cleaves Bid, is the most
important component of these granules [115,116,132,133]. Cleaved Bid then interacts with
Bax and Bak, triggering their localization to the OMM where an MPT pore is formed,
causing transmembrane depolarization and cytochrome c (C-IV) release and triggering
target cell apoptosis [132,133]. Thus, irrespective of which apoptotic cascade is utilized,
mitochondria play a central role in the activation of apoptosis.

5. Necrosis

Traditionally, four types of necrosis are observed microscopically—coagulative, colli-
quative, fibrinoid, and caseating necrosis [134]. Necrosis has been viewed as an unregulated
form of cell death that occurs due to physical injury of the cell [135]. However, studies have
shown that necroptosis, a fifth form of necrosis, is a highly controlled form of cell death
that is controlled by “death machinery” (receptor-interacting serine/threonine protein
kinases (RIPK)) and is triggered by stimuli such as cell death ligands, infection, DNA dam-
age, and oxidative stress [119,134,135]. Signs of necrosis include cellular content leakage,
cytoplasmic granulation, and organelle and/or cellular swelling [136].

An initiating factor of necrosis is ATP depletion [137]. This leads to increased intracel-
lular Ca2+ concentrations resulting in mitochondrial calcium overload. Calcium overload
then triggers the opening of the mitochondrial permeability transition pore (mPTP), of
which the VDAC is a component [65,138,139]. The opening of the mPTP significantly
affects the transmembrane gradient, disrupts OXPHOS, leads to mitochondrial morpho-
logical changes, and triggers the necrosis cascade [65,139]. Additionally, ROS are also able
to trigger necrosis by disrupting lipids, proteins, and DNA, resulting in mitochondrial
dysfunction and loss of OMM integrity [139].

6. Parthanatos

Parthanatos is a regulated cell death process dependent on the activity of poly ADP-
ribose-polymerase-1 (PARP-1) [140,141]. DNA damage due to nicks, breaks, ROS, or
ionizing radiation results in overactivation of PARP-1 which consumes NAD+ and depletes
ATP stores which potentially inhibits both OXPHOS and glycolysis [140–142]. Overac-
tivation of PARP-1 leads to poly ADP-ribose (PAR) synthesis and accumulation, which
binds to apoptosis-inducing factor (AIP) on the OMM, facilitating its release from the
mitochondria and its translocation to the nucleus [140,142]. Once in the nucleus, PAR
induces DNA fragmentation and chromatin condensation which is believed to trigger the
caspase-independent cell death cascade [140–142].

7. Autophagy

Autophagy is the process by which non-essential or damaged cellular constituents are
broken down and recycled [143–146]. Three types of autophagy have been described—macro-
autophagy (commonly referred to as simply “autophagy”), microautophagy, and chaperone-
mediated autophagy [147,148].

Macroautophagy involves vesicle (autophagosome) formation around the target cel-
lular component which then fuses with lysosomes to degrade the contents by acidic hy-
drolases [148]. Microautophagy occurs when lysosomes directly wrap around cellular
contents to be degraded and chaperone-mediated autophagy occurs when chaperone
proteins translocate target proteins into lysosomes directly [148]. A specialized role of
autophagy, known as mitophagy, has also been described which targets mitochondria
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requiring degradation and recycling [82,149]. Of note, mitophagy is the only known means
by which mitochondria are recycled by the cell [150].

In order for cells to carry out autophagic processes, cells require functional mito-
chondria. This is because mitochondrially produced ROS are essential inducers of au-
tophagy [147,149,151].

7.1. Cell Signaling and ROS

Mitochondria are the main producers of ROS intracellularly as a by-product of OX-
PHOS generated by C-I, C-II, and C-IV [152,153]. Increased levels of ROS can be generated
by the ETC due to subunit damage due to mutation or by ETC inhibition by environmental
factors or chemical compounds [154–156]. Unsequestered ROS can damage numerous
intracellular components such as lipids, proteins, RNA, and DNA [152,157–161]. Increased
ROS levels are regularly observed in tumor cells and have been linked to enhancing tumor
phenotypes [152,162,163]. It is now accepted also that ROS are intracellular signaling
molecules and can modulate cellular functions such as protein function, signaling cascade
efficiency, autophagy, or stem cell differentiation, especially in hematopoietic stem cells
(HSCs) [147,152,164–166].

Modulation of cellular differentiation by ROS is believed to occur via modulation of gene
expression of p38 mitogen-associated protein kinases (MAPKs) [167], p53 [168], forkhead
box (FOXO) proteins [169], nuclear factor-κB (NF-κB) [170], histone deacetylases (HDACs),
and polycomb proteins [171] and through the phosphatidylinositol-4,5-bisphosphate 3-
kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) signaling
pathway [172]. HSCs have been shown to contain low levels of ROS while committed
myeloid lineage progenitors contain significantly greater levels [169]. Therefore, controlling
ROS production (by controlling OXPHOS) and ROS scavenging mechanisms are criti-
cally important for stem and progenitor cells, dysregulation or damage of which could
enable intracellular damage or drive unintended premature, or possibly block, differentia-
tion [155,173,174].

7.2. Lipid Metabolism

Lipid metabolism occurs intracellularly on the endoplasmic reticulum (ER) [175,176].
Evidence has also shown that mitochondria contribute to this process by synthesizing phos-
phatidylethanolamine (PE) and cardiolipin [176–178]. In yeast, membrane PE is synthesized
primarily in the IMM and then transported out to the cytosol. This process involves the
protein ubiquitin-specific peptidase 1 (Usp1) [175,176,179]. Cardiolipin, which is found
almost exclusively in the IMM, is essential for mitochondrial function and mitochondrial
morphology maintenance [176–178].

8. Mitochondria and Disease

Thus far, we have discussed how mitochondria play significant roles in numerous
cellular processes. It is therefore unsurprising that mitochondrial dysfunction due to
deficiency, damage, or inhibition has been linked to numerous diseases. We will next
discuss the cellular consequences of mitochondrial dysfunction and how mitochondrial
dysfunction has been implicated in tumorigenesis and progression.

Cellular Consequences of Mitochondrial Dysfunction

Mitochondrial function can be affected by numerous conditions such as age [180–182],
IMM morphological alterations [183,184], lipid concentration perturbations [48], inflam-
mation [185], viruses [186], carcinogens [187,188], hypoxia [189], radiation [188], nuclear
and mitochondrial DNA mutation [190,191], and altered expression of the MRC com-
plexes [192,193]. All of these can lead to mitochondrial dysfunction which, phenotypically,
can be mimicked by inhibiting MRC complexes using chemical compounds [156].

Mitochondrial dysfunction results in impaired respiration/ATP production which
triggers a mitochondrial-to-nuclear signaling cascade of events known as an RTG response
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(Figure 4) [18,67,70,71,194,195]. An RTG response is triggered when changes to respiration
and mitochondrial function are detected, resulting in a metabolic switch from OXPHOS
to substrate-level phosphorylation (SLP) by modulating gene expression to maintain the
intracellular ATP concentrations required for viability [20,28,69–71,194]. So, cells effectively
trigger SLP whenever OXPHOS becomes compromised. Although RTG responses have
been intensively studied in Saccharomyces cerevisiae [195], in mammalian systems, NF-
κB/Rel factor responses have been found (through computational homology studies) to
most closely resemble an RTG response in yeast [194].
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Figure 4. Nucleus-to-mitochondria communication pathways. Mitochondria communicate with the
nucleus via retrograde (RTG) signaling pathways which are triggered on detection of mitochondrial
dysfunction. The nucleus responds by anterograde signaling pathways. Environmental effects can
trigger either RTG or anterograde signaling cascades.

In yeast, activation of an RTG response results in the formation of a heterodimer
between the two helix–loop–helix/leucine zipper proteins retrograde regulation proteins 1
and 3 (Rtg1 and Rtg3, respectively) in the cytoplasm which, with the aid of Rtg2, translocate
to the nucleus and bind to the GTCAC (R box) sequence in the promoter region of RTG
response target genes (Figure 5) [196–198]. In mammals, the V-Myc avian myelocytomatosis
viral oncogene homolog–MYC-associated factor X (Myc-Max) transcription factors are
homologous to the Rtg1–Rtg3 transcription factors [194]. In order to translocate to the
nucleus, Rtg3 must be partially dephosphorylated and this is believed to be controlled by
Rtg2 [197,199,200].

Negative regulators of RTG signaling include negative regulator of RAS-cAMP path-
way (Mks1) and the Bmh1 and Bmh2 proteins [195,200]. Mks1 forms a complex with Bmh1
and Bmh2 (yeast homologs of the 14-3-3 proteins in mammals) and maintain Rtg3 in a
phosphorylated state, thus inhibiting translocation [197,201–203]. Additionally, Lst8, a
subunit of the target of rapamycin (TOR) complex, negatively regulates RTG signaling in a
manner distinct to RTG activation by mitochondrial dysfunction [201,202,204].
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Figure 5. RTG response in Saccharomyces cerevisiae. In Saccharomyces cerevisiae, an RTG response
results in the formation of a heterodimer between Rtg1 and Rtg3 in the cytoplasm. Rtg2 then partially
dephosphorylates Rtg3, facilitating translocation of Rtg1 and Rtg3 into the nucleus. The transcription
factors then bind to the “R box” sequence in the promoter region of RTG target proteins. In mammals,
the Myc-Max transcription factors are homologous to Rtg1–Rtg3 and parallels have been drawn
between an RTG response in Saccharomyces cerevisiae and an NF-κB response in mammals.

In mammalian systems, impaired respiration triggers an NF-κB/Rel factor response
which causes upregulation of target genes such as Myc and Ras [17,19,20,205]. In a hypoxic
setting, however, mammalian systems will also, in conjunction, upregulate the HIFα
cascade [206–208]. Irrespective of whichever of these signaling pathways is triggered
(NF-κB/Rel or HIF1α), the consequent result for the cell is increased Myc expression
which enhances ROS production, modulates p53 function, and modulates the expression of
genes required for SLP along with other cellular responses [209,210]. (Increased ROS has
numerous cellular consequences and will be discussed later [67,211,212]).

P53, a well-established tumor suppressor, modulates numerous metabolic
pathways [213,214]. P53 has been shown to modulate the expression of hexokinase and
phosphoglycerate mutase, two key enzymes in the metabolism of glucose [215,216]. P53
mediates expression of tumor protein 53 (TP53)-induced glycolysis and apoptosis regulator
(TIGAR) to inhibit glycolysis [217]. Loss-of-function p53 mutations, therefore, potentially
lead to a loss of glycolysis control. Furthermore, overexpression of transmembrane glu-
cose transporters GLUT1 and GLUT4, a common finding in many cancers [218,219], is
implicated to be due, in part, to loss-of-function p53 mutation. P53 also activates the
PI3K/Akt/MAPK/Ras signaling pathway [220], directly interacts with Bax, Bak, Bcl-2,
and Bcl-xl, facilitating apoptotic signaling [221–225], and is regulated by liver kinase B1
(LKB1) [226]. LKB1 knockout mice are hyperglycemic and LKB1+/− mice crossed with p53
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null mice show increased tumor incidences and significantly shorter lifespans compared to
either mutation/deletion alone [227,228].

Apart from the direct modulation of RTG target gene expression, impaired mitochon-
drial respiration also triggers numerous compensatory mechanisms through mTORC1
and mTORC2, including, but not limited to, altering expression of genes required for
SLP [229–231]. Together, these findings describe scenarios wherein mitochondrial dysfunc-
tion can lead to increased levels of DNA damage, upregulation of compensatory metabolic
and regulatory pathways, and pathology [212,232,233]. Indeed, it is well established that
metabolic dysfunction and oxidative stress are linked to metabolic and neurodegenerative
diseases and, in certain cases, tumorigenesis and tumor persistence [212,234–239].

While metabolic deficiency can arise from direct damage/inhibition of MRC or TCA
cycle proteins, it is not limited to these two systems only. As the mitochondria are the
central metabolic regulators of the cell, damage, disruption, or inhibition of other metabolic
pathways, such as glycolysis, FAO, or transamination, will have cascading effects on the
mitochondria and their function by disrupting the availability of metabolites needed for
respiration, particularly acetyl coenzyme A (ACoA) (Figure 6). This therefore implies that
even dietary intakes, such as high-fat Western diets, can potentially induce chronic changes
to cellular metabolic states and function which, over time, can trigger pathological states.
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Figure 6. Schematic outlining the relationships between cellular metabolic pathways and the mi-
tochondria. Although separate, each metabolic pathway within the cell feeds back into the mito-
chondria by producing metabolites required for ATP production. Deficiency/damage/inhibition to
any of metabolic pathway can result in metabolic deficiency, potentially triggering an RTG response.
Legend: G6P—glucose-6-phosphate; F6P—fructose-6-phosphate; 3PG—glycerate-3-phosphate;
PEP—phosphoenolpyruvate; ACoA—acetyl coenzyme A; α-KG—α-ketoglutarate; PPP—pentose
phosphate pathway; P5C—1-pyrroline-5-carboxylate; TCA—tricarboxylic acid; ROS—reactive oxygen
species and conditions [240]. Mitochondrial dysfunction can therefore be a major contributing factor to a
varied range of pathologies with potentially serious debilitating and/or life-threatening consequences.
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9. Mitochondrial Dysfunction and Cancer Initiation/Progression

Cancer cells, irrespective of originating tissue, have altered cellular metabolics and mi-
tochondria. Over the years, comparative studies between healthy and tumor cell mitochon-
dria have shown molecular, microscopic, metabolic, biochemical, and genetic differences in
cancer contexts, while electron microscopy comparisons have shown tumors typically have
fewer, structurally altered, and larger mitochondria [241–246]. Differential expression of
MRC components, which is indicative of mitochondrial dysfunction, has also been linked
to numerous cancers [23,247–250].

With the increasing prevalence of NGS studies, mitochondrial (mt) and nuclear (n)
DNA mutations have been identified in numerous cancers including leukemia, breast,
lung, liver, kidney, thyroid, ovarian, colon, and brain cancers [21,23–26,28,31,32]. Unlike
nDNA, mtDNA mutations are identified in most cancers with varying prevalence rates
(Table 1) [251,252]. Unfortunately, the functional and clinical consequences of the vast ma-
jority of these mutations have yet to be elucidated, although many are predicted to impact
protein function [252,253]. Of the mtDNA variants that have been studied, consequences
are varied with reports of both increased [254] and decreased survival in AML, decreased
survival in renal cell carcinoma [255], and enhanced tumorigenicity [256]. Additionally,
a survey of mtDNA copy number variation across 22 tumor types identified significant
variation in mtDNA copy numbers across the surveyed tumors [257], with additional
evidence reporting suppression of MRC gene expression across many cancers as well [23].
Research has therefore been presented highlighting the prevalence of mtDNA mutations,
gene expression changes, and copy number variations in cancers, all of which likely lead to
metabolic dysfunction and the altered metabolic phenotypes observed in cancers.

Table 1. Selected somatic mtDNA mutation frequencies in cancers.

Cancer Somatic Mutation Frequency (%)

Skin 16–75

Head and neck 49–78

Thyroid 23–100

Breast 30–93

Lung 43–79

Esophageal 5–55

Gastric 18–81

Colorectal 16–70

Pancreatic 16–92

Liver 40–68

Renal 27–79

Urinary Bladder 64–100

Prostate 19–88

Ovarian 20–80

Endometrial 9–63

Cervical 38–90

Nervous system <35

Hematological 30–50

Connective tissue <70
Summary of selected somatic mtDNA mutation frequencies across numerous cancers.

As discussed, mitochondrial insufficiency and/or dysfunction, possibly due to mtDNA
mutation or copy number alterations, are sufficient triggers to initiate a cellular RTG re-
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sponse. This results in upregulation of genes required for SLP, genes that are commonly
reported to be upregulated in both solid and liquid cancers [4,5]. Furthermore, persistent
RTG response due to respiratory insufficiency has been shown to cause genomic instabil-
ity and aberrant growth, two hallmarks of cancers [2,18,70,71,156,205,212,233]. Beyond
metabolism, an RTG response also has implications for the cell epigenome, as it radi-
cally alters produced metabolite concentrations, which results in modulated or inhibited
epigenetic modifier function and efficiency.

Due to the prevalence of the altered metabolic phenotype across nearly all cancers,
an important question to raise is whether altered metabolism is causative or a result of
transformation. This is discussed below.

10. Metabolic Dysfunction and Genomic Instability

In Saccharomyces cerevisiae, MRC dysfunction was modeled using small-molecule
inhibitors. Sublethal doses of oligomycin (an inhibitor of C-V), antimycin A (an inhibitor
of C-III), and potassium cyanide (an inhibitor of C-IV) were applied to yeast so as to
ascertain what effects mitochondrial dysfunction has on genomic stability [212]. In doing
so, Rasmussen et al. [212] noted an increased prevalence of nDNA mutations in all test
groups compared to control cells. Oligomycin-, potassium cyanine-, and antimycin A-
treated cells showed a 1.5-, 2-, and 3-fold increase in nDNA mutation frequency, respectively.
Furthermore, antimycin A inhibition was found to increase both superoxide (O2

−) and
hydrogen peroxide (H2O2) levels in treated cells. These results showed that MRC inhibition
has a nuclear mutator phenotype that is potentially a consequence of increased oxidative
stress [212]. Other studies, though, investigated the matter further.

To further characterize the effects mitochondrial dysfunction had on genomic stability,
yeast strains lacking their mitochondrial genome (rho0 strains) or with fragments of their
mitochondrial genome deleted (rho− strains) were created [212]. Both yeast strains (rho0

and rho−) showed mitochondrial dysfunction and a 2–3-fold increase in nDNA mutation
rates over wild-type strains (rho+ strains). Decreased levels of ROS were also measured in
both strains, potentially due to decreased mitochondrial function. Therefore, the nuclear
mutator phenotype observed was independent of oxidative stress-related mechanisms [212].
Rasmussen et al. therefore showed that mitochondrial dysfunction can result in increased
nDNA mutation rates and is tumorigenic in nature, involving multiple pathways.

11. Metabolic Dysfunction and Aberrant Growth

Apart from gene mutation, mtDNA depletion is a commonly observed feature of
many cancers [257–260]. To investigate the effects of mtDNA depletion on breast cancer
tumorigenesis, Kulaweic et al. [233] developed a breast epithelial cell line devoid of mtDNA
(ρ0 cells). Their results showed that, in vitro, ρ0 cells showed a tumorigenic phenotype with
enhanced proliferative rates and invasive growth, increased rates of double-stranded DNA
breaks, and unique chromosomal rearrangements [233]. Furthermore, ρ0 cells in a xenograft
SCID mouse model showed a gain of tumorigenicity in normally non-tumorigenic cells
and an enhanced tumorigenic phenotype in already transformed cells [233].

To better understand the effects of mtDNA depletion in their ρ0 cells, gene expres-
sion and pathway analysis was performed. Kulaweic et al. [233] identified 19 regulatory
networks with genes showing > 10-fold change in expression in ρ0 compared to parental
cell lines. One of the highest ranked networks identified had the genomic gatekeeper
TP53 as a focus gene. Kulaweic et al. [233] found TP53 significantly downregulated in ρ0

cell lines and this was recapitulated in primary breast tumors as well [233]. To conclude,
Kulaweic et al. [233] suggested that mtDNA depletion plays a role in breast epithelial cell
transformation and involves multiple pathways.

Similar observations of increased tumorigenicity have also been documented in mouse
C2C12 monocytes and human pulmonary carcinoma A549 cells [17,18,205]. Partial deple-
tion of mtDNA or treatment with metabolic inhibitors resulted in invasiveness of normally
non-invasive cells, phenotypes that were reversible on restoration of normal mitochondrial
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function [17,18,205]. Additionally, mtDNA-depleted cells showed evidence of cellular RTG
responses when gene expression was assessed [17,18,205].

The evidence presented therefore suggests that mitochondrial dysfunction can po-
tentially initiate genomic instability, trigger invasive growth, and initiate metabolic and
neuronal diseases (Figure 7). However, the question arises, once genomic instability occurs,
which phenotype, the mitochondrial dysfunction or the genomic instability, perpetuates
the tumorigenic phenotype? To address this question, nuclear-to-cytoplasmic transfer
experiments can be interrogated to shed light on this.
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Figure 7. The interactions between mitochondrial mutation, dysfunction, neurodegenerative disease,
and tumorigenesis. Mutations in mtDNA and nDNA result in mitochondrial dysfunction. While
metabolic dysfunction typically leads to metabolic disease and/or neurodegeneration, evidence
suggests that metabolic dysfunction can trigger genomic instability and trigger tumorigenesis.

12. Mitochondrial Dysfunction and the Tumorigenic Phenotype

Healthy parent cells replicate, giving rise to healthy daughter cells (Figure 8a). Like-
wise, tumor parent cells give rise to tumor daughter cells (Figure 8b). Transfer of tumor-
derived nuclei into healthy enucleated cells (cybrids) results in a suppression of tumori-
genicity in vitro and in vivo (Figure 8c) [261–272]. Cytoplasmic elements can therefore
drive the tumorigenic phenotype. To support this, healthy embryonic murine tissue de-
rived from tumor nuclei showed normal phenotypic characteristics despite the persistence
of melanoma and brain-associated nDNA mutations, while embryos derived from tumor
nuclei did not develop tumors despite persistence of tumor-associated aneuploidy and
nDNA mutations [269,273]. Genetic mutation or genomic rearrangements are therefore
not necessarily sufficient to induce tumorigenesis alone [274]. Investigations transferring
normal mitochondria into tumor cell cytoplasm showed a suppression of tumorigenicity
in vitro, suggesting the cytoplasmic elements controlling the tumorigenic phenotypes are
indeed the mitochondria [275,276]. Finally, introduction of mtDNA mutations in non-
tumorigenic cybrids reverses the anti-tumorigenic effects, giving tumorigenic growth [277].
In 2014, Wahlestedt et al. determined that induced pluripotent stem cells with heavy
mtDNA mutation burdens displayed extensive differentiation defects, thus highlighting
that mtDNA mutation can lead to aberrant differentiation phenotypes of stem cells [278]. In
2011, Sharma and colleagues observed tumorigenic growth in the presence of C-I mtDNA
mutation and a reversal of the tumorigenic phenotype on C-I function rescue. The pre-
sented findings showed that healthy mitochondria are able to suppress tumorigenesis
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despite the continued persistence of tumor-associated DNA mutations and rearrangements.
In contrast, tumor-derived mitochondria induced an enhanced tumorigenic phenotype
on transfer into healthy cell cytoplasm, suggesting mitochondrial function could be the
stronger perpetuating force in continuing a tumorigenic phenotype (Figure 8d) [263,277].
Evidence has therefore been presented from both in vitro and in vivo data implicating
mitochondria and mitochondrial dysfunction as key drivers of tumorigenesis and persis-
tence. While DNA mutations undoubtedly can result in dysregulated and non-functional
proteins with aberrant function, published evidence shows that mitochondrial dysfunction
can have a strong influence on the presentation and continued persistence of tumorigenic
phenotypes as shown in numerous in vitro and in vivo models. Future investigations to
thoroughly characterize the mitochondrial and metabolic state of cancers would therefore
likely lead to significant findings for better and longer-lasting patient treatment as they
would be targeting a significant driving force of the tumorigenic phenotype. It is important
to clarify, however, that once somatic mutations accumulate within the genome, the com-
bined deleterious effects of both metabolic dysfunction and abnormal/aberrant protein
function would unquestionably be significantly deleterious to the state of the cell.
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transfer experiments highlight the significant role mitochondria play in initiation and persistence of a
tumorigenic phenotype. Details of models utilized can be found in text.
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13. Mitochondrial Horizontal Transfer Experiments

Over the years, evidence has been presented describing horizontal transfer of mtDNA
and/or mitochondria from non-cancerous to cancerous cells which results in restoration
of cellular respiration and, in certain scenarios, enhances the tumorigenic potential of
recipient cells [279–283]. While such findings initially seem to refute evidence presented
that healthy mitochondria can suppress a tumorigenic phenotype, careful examination of
these findings only further supports previous evidence and, arguably, partially validates
Warburg’s original observations and hypothesis.

Healthy phenotypes are colored green while cancerous phenotypes are colored red.
a—Healthy cells give rise to healthy cells.
b—Tumor cells give rise to tumor cells.
c—Transfer of tumor nucleus into a healthy cytoplasm leads to healthy cells despite

persistence of tumor-associated genomic mutations and instability.
d—Transfer of a healthy nucleus into a tumor cytoplasm gives rise to tumor cells

or death.
For the following discussions, one should take note that the state of a mitochondrion

is dependent on four characteristics, (i) mtDNA integrity (i.e., lack of a significant number
of mutations and/or insertions/deletions), (ii) sufficient mtDNA copy numbers (which are
tissue specific), (iii) the morphological shape of the mitochondrion (both internally and
externally), and (iv) the function of internal metabolic pathways such as the MRC and
TCA. Cancers show abnormalities in multiple aspects of the mitochondrial state. MtDNA
mutations have been linked to, and are causative of, many diseases, including some cancers.
MtDNA copy number alterations (both increased and decreased copy numbers) have been
associated with numerous diseases, including Parkinson’s disease [284], heart disease [285],
and autism [286], and copy number alterations are observed in most cancers [257]. Finally,
cancers universally show abnormal mitochondrial morphology and distinct metabolic
phenotypes [25,212,287–293].

In 2006, Spees and colleagues described mitochondrial transfer from human MSCs
to A549 lung adenocarcinoma cells. In their studies, Spees et al. reported that the A549
cells with donor mitochondria and mtDNA showed restoration of mitochondrial respi-
ration [279]. While these claims are valid, on examination of the published results, the
restoration of the cancer cells’ respiratory capacity was not complete and the recipient clones
showed gene expression and gross mitochondrial number differences compared to donor
MSCs. Consequently, the mitochondria did not recover to the state of their healthy donor
counterparts and could not be classified as “healthy” in all aspects of their mitochondrial
state despite partial restoration of respiration. Tan et al. [281] made similar observations that
mtDNA was found to transfer to donor cell lines, restoring cellular respiration. Tan et al.
also observed an enhancement of tumorigenic potential of their cell lines on acquisition
of mtDNA [281]. Similar to the findings of Spees et al., examination of the published
findings identifies that recipient clones differ in numerous mitochondrial characteristics
from their donor cells, ranging from gross mitochondrial number deficits, morphological
abnormalities, mtDNA copy number alterations, and gene expression differences [281].
The enhanced tumorigenic phenotype observed can therefore be expected and parallels
previously published results that abnormal mitochondria can perpetuate a tumorigenic
phenotype [263,277]. These experiments therefore do not contradict the evidence presented
previously but, rather, support it.

An additional caveat in interpreting the aforementioned studies relates to the cir-
cumstances and direction in which such mitochondrial transfers occurred [280,283,294].
Cho et al. [294] were able to deduce that gross mitochondrial transfer (not mtDNA transfer)
only occurred between human MSCs and 143B human osteosarcoma cells that were de-
pleted of mtDNA and did not occur between MSCs and 143B human osteosarcoma clones
with mutated mtDNA. These results suggest that mtDNA damage (such as is commonly
seen in cancers) may not be a sufficient trigger to instigate horizontal mitochondrial transfer
and only extreme levels of mitochondrial damage and depletion will trigger such cell–cell
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transfers. These results also suggest that neighboring cells can “assist” a cell suffering
from extreme mitochondrial dysfunction in order to maintain its respiratory capacity and
avoid cell death. Wang and Gerdes [283] observed uni-directional transfer of mitochondria
from untreated PC12 rat pheochromocytomas to UV-treated PC12 rat pheochromocytoma
cells, which prevented the UV-treated cells from undergoing apoptosis. As discussed,
ATP insufficiency is sufficient to trigger cellular death and restoration of mitochondrial
respiration by mitochondrial transfer would prevent activation of the apoptotic cascade.
Finally, Lou et al. [295] reported mitochondrial transfer between mesothelioma cell lines
or between primary human mesothelioma cells but not between cancerous and normal
cells [295]. These results therefore suggest that mitochondrial horizontal transfer is context
dependent and may not necessarily be a universal phenomenon.

In conclusion, results obtained by mitochondrial transfer experiments, while insight-
ful, do not contradict the nuclear transfer experiments previously described as, despite
the transfer of mtDNA and/or mitochondria, numerous aspects of the mitochondria’s
state remain altered and the resultant hybrids are not identical to “healthy” donor mito-
chondria. Furthermore, the assistance of “healthy” cells to donate mitochondria to their
metabolically compromised neighboring cancer cells is indicative of cancer cells having
defective mitochondria and/or mitochondrial respiration. As this process is predominantly
uni-directional (i.e., “healthy” to “cancer”), this potentially supports Warburg’s original
hypothesis that cancer cells have compromised mitochondria, a phenomenon that neigh-
boring cells can become aware of (potentially through paracrine signaling) and they can
assist in restoring partial mitochondrial function of compromised cells.

14. Investigations of Altered Metabolism in Cancers

Many researchers have investigated altered metabolism in cancers [296,297]. Cancers
universally show altered metabolic phenotypes and abnormal mitochondria [25,212,288–293].
Genomic studies have reported catalogs of mtDNA mutations in numerous
cancers [1,21,25,31,252,254,256,257,278,287,296,298–310]. Despite retaining partial function-
ality, mitochondria in tumors consistently show mtDNA mutation, structural abnormalities,
and diminished functional capacities and tumor cells universally have distinct, repro-
grammed metabolic phenotypes which are not observed in non-transformed tissues and
cells. To date, no study has yet described a tumor with mitochondria that are functionally,
structurally, and genetically indistinguishable from non-transformed cells, to the best of
our knowledge. While upregulation of metabolic pathways other than OXPHOS can com-
pensate for any potential defects in OXPHOS function, evidence has yet to be presented
establishing MRC dysfunction as resultant to stresses within tumor cells and environments.

To establish that MRC dysfunction is consequent to tumor cell genomic and environ-
mental stresses, doxycycline-inducible models have been investigated. While mutation-
inducible models have been described [311–314], the investigations by Ying and col-
leagues [311] assessed the metabolic state of their model post doxycycline induction. In
their study, Ying et al. [311] described a doxycycline–KRAS-inducible model wherein activa-
tion of a KRAS G12D mutant resulted in development of pancreatic ductal adenocarcinoma
in nude mice. On activation of the oncogenic KRAS mutant, altered metabolic pathway
dependencies were observed, including an increased dependence on glycolysis [311]. How-
ever, a caveat in interpreting these studies is that doxycycline has known effects on cellular
metabolism and considerably shifts cellular metabolism towards a more glycolytic pheno-
type at commonly used concentrations of 100 ng/mL–5 µg/mL [315]. Therefore, without
appropriate experimental controls, use of doxycycline confounds the effects of the mutation
under investigation and the true consequent metabolic effects become ambiguous at best.
Furthermore, the work of Chang and colleagues [316] showed that doxycycline directly
activates the PI3K-Akt signaling pathway, which has been shown to enhance survival and
self-renewal in vitro [156,172,316]. Investigations performed using doxycycline-induced
models must therefore be carefully analyzed in light of these findings to accurately ascertain
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the oncogenic effect of the induced mutation and any consequent metabolic changes that
are potentially resultant.

15. MRC Dysfunction and Cancer
15.1. C-I Dysfunction and Cancer

NADH dehydrogenase (C-I) (Figure 9) is the largest complex of the ETC and is a
main site of mitochondrial ROS production [317,318]. Of the five MRC complexes, C-I
dysfunction is the most common mitochondrial defect observed, leading to disease and
cell death [319,320]. Somatic mutations in mitochondrial and nuclear C-I genes have been
found in numerous cancers, including leukemia, breast, thyroid, bladder, prostate, colon,
pancreatic, and head and neck cancers, and renal carcinomas (select variants listed in
Table 2) [31,300,302,303,305,321–328]. Reported C-I variants are predominantly mitochon-
drially encoded, with fewer data available on somatic nDNA C-I variants. Germline data
are more difficult to acquire still, with few publications highlighting their functional sig-
nificance [329]. Mutations in C-I have also been linked to increased ROS production and
increased metastatic potential in mouse tumor cell lines, colorectal cancer cell lines, and
HeLa cells [156,304,330]. The degree to which C-I dysfunction plays a role in tumorigenesis
and progression therefore varies and depends on both the degree of complex function
disruption and tissue type [331–333].

15.2. C-II Dysfunction and Cancer

Succinate dehydrogenase (C-II) (Figure 9) is part of both the ETC and the TCA cy-
cle. Of the MRC complexes, C-II has the strongest and most well-established link to
cancers with succinate dehydrogenase proteins classified as bona fide tumor suppressor
genes [236,334,335]. Germline heterozygous C-II mutations have been shown to predispose
individuals to cancer, while homozygous mutations in the same genes lead to neuronal
diseases [336]. Mutations affecting C-II function and assembly have been linked to heredi-
tary paragangliomas and pheochromocytomas [191], renal carcinoma [337], gastrointestinal
stromal tumor [338], and breast cancer [339]. The tumorigenic effects of C-II mutations
appear to be due to the accumulation of succinate, which, in excess, inhibits prolyl hydrox-
ylases (PHDs), HIFs, DNA and histone demethylases, and JmjC domain-containing histone
demethylation (JHDM) proteins [340,341] (Figure 10), giving rise to a hypermethylation
phenotype which resembles that observed in tumors with (for example) somatic IDH
mutations [235,236,335,342–344].

15.3. C-III Dysfunction and Cancer

In addition to C-I and C-IV, ubiquinol-cytochrome c oxidase (C-III) (Figure 9) is a major
producer of mitochondrial ROS. Mutations affecting C-III function have been identified
in numerous cancers including gastric [345], colorectal [346], ovarian [347], thyroid [348],
breast [349] bladder, lung, and head and neck tumors [350]. In bladder cancer, expression
of a truncated form of mitochondrial cytochrome b (MT-CYTB), the sole mitochondrial
encoded subunit of C-III, has been shown to increase cellular growth rates and promote
invasion in vitro and in vivo in MB49 bladder cancer cells [351]. This growth phenotype
also correlated with increased ROS production and activation of NF-κB2, two characteristics
of an RTG response [351]. Additionally, in SV-40-transformed human uroepithelial HUC-1
cells, overexpression of a truncated MT-CYTB protein, a truncation previously reported in
bladder cancer, resulted in aberrant and sustained cell growth [352]. C-III dysfunction due
to mutation can therefore contribute to sustained aberrant growth of tumor cells.
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Figure 9. The MRC and TCA cycles. The MRC and TCA are tightly coupled. Metabolites from both pathways feed into each other to maintain function. Mutations
in both the MRC and TCA have been identified in numerous cancers with established links of said mutations being tumor inducing.
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Figure 10. Hypothesized tumorigenic pathway consequent to succinate accumulation. C-II dysfunction leads to accumulation of the succinate. Excess succinate
is transported into the cytoplasm where it inhibits prolyl hydroxylases (PHDs), thereby inhibiting HIF degradation. This leads to constitutive activation of HIF,
facilitating increased expression of genes commonly associated with tumorigenesis.
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Table 2. Select somatic C-I variants identified in cancers.

Cancer (Reference) C-I Gene Mutations Identified

Acute Myeloid Leukemia [31]

NDUFA12—3′ UTR—somatic
NDUFA13—p.S57P—somatic
NDUFAF2—intronic e2-16687—somatic
NDUFS4—intronic e3-5101—somatic

—5′ UTR—somatic
NDUFS7—intronic e2+243—somatic
NDUFV2—intronic e2-1653—somatic
MT-ND1—p.Y43H—somatic

—p.E204—somatic
—p.E204—somatic

MT-ND2—p.V43A—somatic
MT-ND4—p.I8T—somatic

—p.T350—somatic
—p.V234—somatic

MT-ND5—p.P242fs—somatic
—p.L260P—somatic
—p.S345P—somatic
—p.S476P—somatic
—p.N452S—somatic

Acute Lymphoid Leukemia [324] MT-ND4—p.L-P variant—somatic

Chronic Lymphoid Leukemia [324] MT-ND1—p.F-S variant—somatic

Thyroid Cancer [321]

MT-ND2—p.S-F variant—somatic
—p.I-V variant—somatic
—frameshift—somatic

MT-ND4—p.S-F variant—somatic
—p.E-K variant—somatic

MT-ND5—p.L-K variant—somatic
—p.S-F variant—somatic
—p.I-V variant—somatic
—p.D-G variant—somatic
—p.A-G variant—somatic
—p.S-M variant—somatic
—p.I-V variant—somatic

MT-ND6—p.V-A variant—somatic
—p.W-R variant—somatic

Oncocytomas [303]

MT-ND1—p.G120X—somatic
—p.G244X—somatic

MT-ND4—p.374X—somatic
MT-ND5—p.540X—somatic
MT-ND6—p.87X—somatic

15.4. C-IV Dysfunction and Cancer

Cytochrome c oxidase (C-IV) (Figure 9) is the final complex in the ETC. C-IV is unique
amongst the MRC complexes in that it is the key regulator and the rate-limiting step of
OXPHOS [353]. It also has strong links with apoptosis control [354]. C-IV is also the only
complex of the MRC that has known tissue-specific isoforms of nDNA-encoded subunits
and has been shown to be modulated by p53 at the mRNA level [353,355]. It has been
discovered that p53 regulates expression of cytochrome c oxidase 2 (SCO2) [213]. SCO1 and
SCO2 are involved in transporting copper to the catalytic core of C-IV during assembly and
TP53−/− mice and p53-deficient colon cancer cell lines show decreased oxygen consumption
(a key indicator of C-IV function) and ATP generation capacities [213,356].

Of the five MRC complexes, C-IV shows the weakest link between dysfunction and
cancer, possibly suggesting a limited tolerance to genetic variation of this complex. Func-
tion affecting mutations in C-IV have only been identified in prostate and ovarian can-
cers [277,357]. In contrast, however, nDNA-encoded C-IV subunits have been found
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upregulated in leukemia [358] and A549 lung adenocarcinoma cells [359]. In leukemia,
increased expression of COX5A and COX5B correlated with increased ROS [358]. The
contribution of ROS to tumorigenesis will be discussed in a coming section.

15.5. C-V Dysfunction and Cancer

C-V (Figure 9) is the final complex in the MRC and is the site of ATP generation in
the mitochondria. Investigations have observed that C-V forms part of the mitochondrial
permeability transition pore (mPTP) [360] and can also be found on the surface of vac-
uoles [361]. It has therefore been hypothesized that the link between C-V and tumorigenesis
could potentially relate to its function as part of the mPTP, with potential links to defective
autophagic processes.

C-V subunits have been reported mutated in pancreatic [362], thyroid [348], and
prostate cancers [277]. Cybrids containing mutated mitochondrial ATP synthase 6 (MT-
ATP6) were found to show faster growth rates in vitro and in vivo in xenografted nude
mice; a trait which was reversed on reintroduction of wild-type MT-ATP6 [363]. MT-ATP6
mutations were also associated with increased levels of ROS, a potential consequence of an
RTG response due to mitochondrial dysfunction [360].

16. TCA Cycle Dysfunction and Cancer
16.1. Isocitrate Dehydrogenase Dysfunction and Cancer

Five isocitrate dehydrogenase (IDH) enzymes are found in human cells. Three NAD+-
dependent IDH enzymes (IDH3A, IDH3B, IDH3G) are localized in the mitochondria along
with the NADP+-dependent IDH2 (Figure 9). IDH1 is also NADP+ dependent but is local-
ized in the cytoplasm. The IDH enzymes catalyze the reversible conversion of isocitrate
to α-KG. Both IDH1 and IDH2 are somatically mutated in AML predominantly showing
hotspot mutations [31,364,365], colon cancer [366], glioma [30], enchondromas [367,368],
spindle cell hemangiomas [367], osteosarcoma [369], glioblastoma [27], chondrosarco-
mas [368], intrahepatic cholangiocarcinoma [370], prostate cancer, and B-acute lymphoblas-
tic leukemia [371].

Somatic mutations in IDH1 and IDH2 result in neomorphic enzymatic activity whereby
the oncometabolite R-2-hydroxyglutarate (2-HG) is produced [372]. TF-1 human ery-
throleukemia cell lines incubated with 2-HG became cytokine independent and showed dif-
ferentiation blockage [373]. 2-HG has also been shown to inhibit α-KG-dependent enzymes
such as the PHDs [374], the ten–eleven translocation (TET) family demethylases [375], and
the JHDMs [376], which results in DNA and/or histone hypermethylation phenotypes in
leukemia and breast cancers [377–379]. While 2-HG accumulation in leukemia patients is a
direct result of neomorphic IDH mutation, in breast cancer, the accumulation of 2-HG is a
result of metabolic dysfunction driven by Myc overexpression [378]. Accumulation of the
oncometabolite 2-HG can therefore accumulate in cells independent of IDH mutation due
to metabolic dysfunction or hypoxia which has consequent effects on the epigenome [380].

Apart from epigenetic effects, somatic IDH1 mutations have significantly hindered
enzymatic function and catalytic abilities [372,381,382]. In glioma, mutant IDH1 is deficient
in performing its oxidative reaction by >80% [383] with an approximate 38% reduction in
NADPH generation [384], thus highlighting the metabolic consequences of mutation on its
enzymatic and metabolic function.

16.2. Fumarate Hydratase and Cancer

Fumarate hydratase (FH) (also known as fumarase) (Figure 9) catalyzes the conversion
of fumarate to malate in the TCA cycle. FH has been shown to be an essential regulator
of HSC functions, deletion of which results in defective hematopoiesis [385]. Germline
mutations in FH have been identified in leiomyomatosis and renal cell cancers [386] as well
as paragangliomas and pheochromocytomas [335,387]. Aberrant expression [388,389] and
deletion [390] of FH have also been reported in various cancers. Similar to succinate and 2-
HG, high concentrations of fumarate have been shown to inhibit α-KG-dependent enzymes
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such as PHDs and DNA/histone demethylases [235,391,392], leading to hypermethylated
DNA phenotypes and aberrant expression profiles.

16.3. Citrate Synthase and Cancer

Citrate synthase (CS) (Figure 9) catalyzes the irreversible conversion of ACoA and
oxaloacetate into citrate, which can then be exported to the cytoplasm for FAO or pro-
cessed further by the TCA cycle in the mitochondria. Aberrant expression of CS has been
documented in renal oncocytomas, pancreatic ductal carcinoma, and numerous cervical
cancer cell lines [192,393,394]. While it is unclear how CS promotes tumorigenesis, the
link between CS and cancer could potentially be indirect, wherein CS dysfunction results
in mitochondrial dysfunction, resulting in a compensatory and persistent RTG response,
giving rise to aberrant growth. Another possibility could be the depletion of citrate metabo-
lite stores, which would result in insufficient ACoA concentrations required to maintain
metabolic and epigenetic homeostasis while simultaneously removing a noted glycolysis
inhibitor from the cell [395]. However, further investigations are still required.

16.4. Aconitate Hydratase and Cancer

Aconitate hydratase (AH) (Figure 9) is an Fe-S cluster enzyme that catalyzes the re-
versible conversion of citrate to isocitrate. In FH-deficient cell lines, the accumulation of
fumarate inactivates the Fe-S of AH and abolishes its enzymatic function, likely trigger-
ing an RTG response due to metabolic deficiency [396]. Decreased AH expression has
been previously reported in gastric cancers and is also a prognostic marker of disease
progression [397].

16.5. Malic Enzyme and Cancer

Malic enzyme (ME) (also known as malic dehydrogenase) (Figure 9) catalyzes the
conversion of malate into pyruvate and CO2. It has been observed that mitochondria
isolated from L-1210 mouse leukemia cells showed increased conversion of malate to
pyruvate [398]. More recently it was established that knockdown of ME2 diminished prolif-
eration and increased apoptotic rates of K562 erythroleukemia cells in vitro and completely
inhibited growth of K562 xenografts in nude mice in vivo [399]. It has also been determined
that p53 represses expression of ME1 and ME2, decreasing lipogenesis and glutamine
metabolism [305]. These findings therefore link p53 and active metabolic pathways within
leukemic cells through modulation of MEs. As deactivating TP53 mutations can be found
in ~10% of AML cases [31], these mutations would enable TP53 mutant clones to decrease
their dependence on OXPHOS, upregulation of which is essential for HSC differentiation,
allowing cells to remain in an undifferentiated state, enabling disease establishment and
progression, while also making them reliant on pyruvate stores [230].

17. ROS and Cancer

ROS produced by the MRC has generally been considered to be deleterious to cells.
Recent findings show that ROS are actually important signaling molecules and can mod-
ulate numerous cellular functions [147,152,165,166]. Under normal circumstances, ROS
production is kept within tight boundaries [400] but tumor cells are often reported as
having increased levels of ROS as compared to healthy counterparts [162].

Elevated levels ROS have been shown to affect cell cycle progression and growth factor
signaling [401] and promote differentiation in myeloid cells [402] and have been linked to
tumorigenesis [403,404]. Excess production of ROS within a cell leads to a state of oxidative
stress [405] which is commonly seen in hematopoietic malignancies, including ALL [406],
AML [407], and CML [407,408]. While the relationship between ROS, tumorigenesis, and
tumor persistence is complex, increased ROS in tumors may support cell survival [409,410],
migration [411], metastasis [304], proliferation [412], and genomic instability [413] or even
facilitate drug resistance [163] depending on the cancer type by modulating metabolic
pathways [408].
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18. Cellular Consequences of Metabolic Reprogramming

Independent of discussions on the origins of cancer, the universal prevalence of
metabolic reprogramming in tumors is indisputable [2,7,414–419]. As mitochondria play
critical roles in macromolecular biosynthesis, cellular metabolism, and epigenomic control,
metabolic reprogramming has consequent effects on these and other cellular pathways
affecting cell state. Literature evidence has also been presented implicating the tumor
microenvironment (TME) and local inflammation as key factors in supporting and main-
taining metabolic phenotypes [420–424], although these too (TME and inflammation) can
be controlled by internal cellular metabolic states modulating their surrounding environ-
ments [425–427].

It has been elucidated that, once glucose is imported into a cell from the TME, cancers
utilize large amounts of glucose in a step-wise manner, converting it to pyruvate even in
the presence of oxygen [1,188,418,428,429]. Evidence has emerged that a portion of glucose-
derived pyruvate is transported into the mitochondria where it is processed for use by the
TCA cycle and utilized in subsequent anabolic reactions [428,430–432]. Additionally, in
tumors which show evidence of defective mitochondrial respiration and/or TCA function,
glutamine dependence is observed [430,433–435]. Glutamine is becoming recognized as
a critical substrate required by many cancers as it is a carbon source for macromolecular
synthesis and can also be utilized in producing ATP in a respiration-independent man-
ner [7,430–433,436–438]. Glutamine metabolism is also utilized by tumors for both amino
acid and de novo lipid synthesis where required [428,437]. Ultimately, though, tumor cells
have metabolic preferences, whether for glucose, glutamine, amino acids, or lipids, that
support their growth and proliferative requirements but unfortunately can become potent
dysregulators of the epigenome [439–441].

In order for a cell to regulate its genome, numerous post-translational modification
(PTM) systems are utilized including, but not limited to, phosphorylation, methylation,
and acetylation. However, these same epigenetic mechanisms require metabolites such
as citrate, pyruvate, NAD+, ACoA, ATP, NADH, and flavin adenine dinucleotide (FAD),
which originate from metabolic pathways, some of which can be inhibitory for epigenomic
regulator function at specific concentrations (such as succinate or fumarate [439]). Metabolic
reprogramming resulting in altered metabolite concentrations can therefore have significant
effects on the epigenome which could potentially further drive tumorigenic phenotypes, as
will be discussed.

As mitochondria are key central functional hubs within the cell, reprogramming of
metabolic circuits and pathways in tumor cells has far-reaching consequences, including
disrupted energetic pathway or dependencies and alterations to the epigenomic landscape.
Such varied and far-reaching consequences of cellular metabolism only add complexity
when studying altered metabolics of tumor cells.

19. Epigenetics and Epigenome

Apart from DNA nucleotides (A, C, T, G), there exists an additional layer of informa-
tion encoded in the nucleotide bases [442]: the epigenome. The epigenetic layer enables
genomic regulation without necessitating coding sequence changes [443,444]. Epigenetic
PTMs can include chemical alterations to DNA, such as the addition of methyl or acetyl
groups, or alternations to the histone tails, such as (but not limited to) deposition of methyl,
acetyl, or phosphoryl groups [445]. For each of these reactions, a series of protein families
are employed capable of “writing”, “reading”, and “erasing” said PTM marks (Table 3).
Depending on the chemical nature, PTMs possess different lifetimes. While phosphatases
readily reverse phosphorylation [446–448], tri-methylated lysine modifications can persist
for extended periods of time [448–450]. These modifications are utilized by the cell to
regulate gene expression and chromatin architecture, which can have significant impacts
on the development and function of the cell in response to internal/external stimuli or in
diseased states such as cancer. Investigations have shown that many of these PTM deposi-
tion and/or excision reactions require metabolites as cofactors [451,452]. This, therefore,
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intimately couples cellular metabolic and epigenomic states owing to the shared generation
and use of cofactors and metabolites. As such, a cell’s metabolic state can drastically shape
and alter its epigenetic state and epigenetic alterations can propagate and alter a cell’s
metabolic state [451–454].

Table 3. Epigenetic Regulator Families.

Modification Writers Readers Erasers Genes Mutated
in Cancer

DNA Methylation
DNA

Methyltransferases
(DNMTs)

Methyl-CpG-Binding
Domain Proteins

(MBDs)

Ten–Eleven
Translocation Proteins

(TETs)

DNMT3A
DNMT3B

TET1
TET2
MBD4

IDH1/2

Histone Acetylation

Histone
Acetyltransferases
(HATs) including
GNAT, p300/CBP,

MYST Protein Families

Bromodomain and
Extra-Terminal Proteins

(BETs)

Histone Deacetylases
(HDACs)

CBP
EP300

KAT6A
KAT6B
BRD1
BRD2
BRD3
BRD4

TRIM33

Histone Methylation

Histone
Methyltransferase

(HMTs)/
Histone Lysine

Methyltransferase
(KMTs)

PHD Finger (PHF);
Chromodomain-

Containing (CHD);
Malignant Brain Tumor

(MBT);
Tudor Domain;
PWWP Domain

Histone Demethylases
(HDMs)/

Histone Lysine
Demethylases

(KDMs) including
LSD1 and Jumonji-C

Proteins
(JHDM/JmjC)

EZH2
MLL2

KDM3A
KDM4C
KDM5A
KDM5C
KDM6A

MSD1/KMT3B
SETD2/KMT3A

EHMT1

Histone
Phosphorylation

Protein Tyrosine
Kinases
(PTKs)

14-3-3 Proteins
Protein Tyrosine

Phosphatases
(PTPs)

PTPN1
PTPN11
PTPN13
PTPRB
PTPRC
PTPRD

20. DNA Packaging and Histones

Within the nucleus, DNA can take on states of euchromatin or heterochromatin [455].
Euchromatin, or an open state of chromatin, enables transcription and gene expression.
Conversely, heterochromatin is tightly packed and condensed DNA around histone pro-
teins. For this condensation to occur, a 147 bp stretch of DNA is wrapped around a
core of eight histone proteins (2*(H3/H4) dimers linked to 2*(H2A/H2B) dimers), with
a stretch of 20–90 bp of DNA linking adjacent histones (linker DNA) [443,456–460]. Hi-
stone H3/H4 dimers occupy the core of the nucleosome, while H2A/H2B dimers are
more loosely associated. Histone proteins have a globular domain with a characteristic
alpha-helical “histone-fold” arrangement [461,462]. The histone octamer has a positively
charged surface interacting with the negatively charged DNA backbone [463]. Physically,
DNA has a double-helix structure and is wound in a right-handed orientation which is
then wound in a left-handed orientation around histone octamers. Owing to the size of
the DNA molecule and histone proteins, the DNA molecule only winds approximately
1.65 times around a histone octamer which results in a spatial arrangement where sites
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70 bp along the DNA molecule are in proximity to each other on the apical surface of the
wound nucleosome [460,464,465].

Nucleosome structure varies due to differences in histone composition, which itself can
show tissue-specific differences [466]. Through deposition of chemical modifications onto
the N-terminus of histone tails, which are readily accessible for modifications, the function
of nucleosomes can be changed, thus affecting the function of the associated DNA. Histone
chemical modifications described in the literature include methylation, phosphorylation,
and acetylation, with other modifications such as SUMOylation, ubiquitinylation, ribosyla-
tion, glycosylation, crotonylation, and serotonylation also being described [459,467–469].
More specifically, histone methylation is reported to be deposited at lysine (K) and arginine
(R) residues, with deposition of multiple methyl groups possible (mono-, di-, tri-methyl
group deposition). Phosphorylation can occur at serine (S) residues, with acetylation
and ubiquitination also potentially occurring at lysine (K) residues. The nomenclature
describing these changes follows the convention of

< histone protein—H2A/H2A.z/H2B/H3/H3.1/H3.3/H4 >
< single character amino acid code—K (lysine)/R (arginine)/S (serine) >
< position of the amino acid carrying the modification >
< abbreviation of the chemical modification—me1 (mono-methylation) /
me2 (di-methylation)/me3 (tri-methylation)/p (phosphorylation)/ac (acetylation) >
In the following sections, we will introduce DNA methylation, followed by a discus-

sion on histone methylation, acetylation, and phosphorylation. Although other histone
modifications have been described in the literature, their exploration is beyond this review.

21. DNA Methylation

In animal and plant genomes, DNA cytosine bases can be modified with the chemical
addition of a methyl group, resulting in 5-methyl-cytosine (5mC) [470,471]. In humans, the
5mC reaction is catalyzed by the activity of a DNA methyltransferases (DNMTs) and utilizes
the metabolite cofactor S-adenosyl-methionine (SAM) as a methyl group donor [472,473].
Chemically, this reaction involves a modification of the 5th position of the cytosine ring by
the thiol group of a cysteine, leading to the formation of a covalent bond between the cyto-
sine and the DNMT protein. Once the 5mC methyl group is attached, it can be physically
located in the major groove of a DNA helix where it can be accessed by DNA methylation
readers, the methyl-CpG-binding domain (MBD) protein family (Table 3) [474]. De novo
methylation is described to occur by the DNMT3 family of proteins, namely DNMT3A/B,
with DNA methylation maintenance being performed by DNMT1 [442,475–479] (a detailed
review of the DNMT family can be found in reference [480]). Despite these canonical roles,
evidence has emerged that each protein is capable of having a compensatory function for
the other DNMTs should the cell require it; i.e., DNMT1 can show de novo methylation
function, while DNMT3A/B can show DNA maintenance function [481,482]. Such com-
pensatory behavior is predicted to occur in disease states, such as cancer, where mutations
can result in loss of enzymatic function of particular family members [483,484].

In mammalian genomes, 5mC is preferentially found in the context of CG dinu-
cleotides. This CG dinucleotide sequence is palindromic across both sense and anti-sense
strands, representing a symmetrical arrangement of nucleotides. During replication, when
methylated DNA is copied, the synthesized (daughter) strand does not contain the methy-
lation of the parental strand, resulting in hemi-methylated DNA [478,485,486]. Following
synthesis, DNMT1 is recruited to the daughter strand to restore the methylation pattern
read on the parental strand [485]. If for any reason DNA methylation maintenance is inhib-
ited at this stage, owing to mutation, molecular inhibition, or metabolite insufficiency, the
integrity of the methylation signature can be diluted or lost if this persists for subsequent
cellular divisions [473,480,487].

Although DNA methylation is now a ubiquitously described epigenetic control mech-
anism, the significance and relevance of DNA methylation were questioned when initially
observed [488,489]. Over the decades the regulatory role DNA methylation plays for a cell
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has become indisputable as well as its ubiquity in many organisms [490,491]. Evidence
has accumulated describing the essential role DNA CpG methylation plays in regulat-
ing the epigenome, providing a stable gene-silencing mechanism in most contexts (in
concert with chromatin architectural changes) without necessitating genomic sequence
changes [471,481,492,493]. Methylation of CpG-rich “islands” (Figure 11) in the promoter
regions of genes has been found to correlate with transcriptional repression, while un-
methylated CpG islands correlate with active transcription [494–496]. However, there exists
ambiguity as to whether CpG islands are the master methylation-sensitive regulatory loci
controlling gene expression since studies have documented stronger correlations between
CpG “shore” methylation and active transcription (CpG shores are described as the 2 kb
regions flanking a CpG island) [493] (Figure 11). Additionally, only 30–70% of gene pro-
moters contain CpG “island” regions (depending on the identification criteria and genome
build), prompting the question, what about other genes without CpG islands? They too
can show methylation-dependent transcription regulation [497]. These findings blur the
lines as to which methylation-sensitive loci are truly and definitively capable of controlling
gene expression [493,498–503]. Moving beyond gene promoter regions, evidence has been
presented correlating unmethylated CpGs with active enhancers similar to gene promoters,
however, in opposition to this trend, methylation within gene bodies correlates with active
expression, rather than repression [494–496].
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Figure 11. Commonly Accepted CpG Island-Centric Annotations. The commonly accepted definition
of the CpG island-centric landscape situates a CpG -ich “island” in the center. Flanking the island are
CpG shores, which extend for 2 kb on each flank. Thereafter, CpG shelves extend 2 kb beyond that,
with any regions beyond that falling in the open sea window. The definition of what constitutes as a
CpG island is dependent on the investigators’ question, what thresholds they set, and what genome
build is being utilized for the definitions.

Depending on the site of modification, DNA methylation can facilitate or inhibit
protein or transcription factor binding [504–512]. Examples of how different proteins
interact with methylated or unmethylated DNA include the transcription factors CCCTC-
binding factor (CTCF) and CCAAT enhancer-binding protein beta (CEBPB). CTCF can
recognize methylated DNA, while CEBPB will recognize methylated or unmethylated DNA
depending on its binding partners ATF4 and CEBPD, respectively [504,512,513]. Integrative
studies such as these showcase the breadth of transcription factor (TF) binding in different
contexts and how transcription can be facilitated or inhibited simply depending on the
underlying methylation state of the genome even if the canonical binding motif is present.

In contrast to the methylation “writing” DNMT family, the ten–eleven translocation
(TET) family is capable of oxidizing 5mC into its other chemical forms, leading to eventual
demethylation or “erasing” of DNA methylation [514–517]. The TET family of proteins
consists of TET1–3 which are ferrous ion (Fe2+)- and α-KG-dependent dioxygenases that
use oxygen to oxidize the methyl group of 5mC [514–518]. In this reaction, 5mC is oxidized
to 5-hydroxy-methyl-cytosine (5hmC), then 5-formyl-cytosine (5fC), and finally 5-carboxyl-
cytosine (5caC) [514–517] (Figure 12). Through these TET-mediated oxidation reactions,
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a cell is able to actively and/or passively demethylate DNA [485,519]. It is pertinent to
note that the intermediates and cofactors of these successive reactions are derived from
other cellular processes, primarily metabolism [451–454]. Intermediates such as α-KG,
O2, CO2, succinate, fumarate, and 2-HG are all metabolic factors [451–454]. As such,
perturbations to the availability and concentration of these intermediates either through
metabolic regulation, metabolic inhibition, diet, or environmental factors will affect a cell’s
ability to regulate methylation adequately.
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Figure 12. Oxidation of 5-Methylcytosine by TET Proteins. The TET enzymes sequentially oxidize
5mC to 5cmC. For these reactions, ferrous iron (Fe2+), molecular oxygen (O2), and α-KG are utilized.
In cancer contexts, the production of 2-HG, hypersuccinate, and hyperfumarate contributes to
inhibition of TET enzymatic function, resulting in a progression towards a hypermethylated genome.

The last family of proteins associated with DNA methylation is the methylation
“readers”; proteins capable of reading the deposited methylated residues and interpreting
the signature for the cell. All of these proteins contain a methyl-CpG-binding domain.
These proteins are described to mechanistically function by binding to methylated DNA
and directly reducing accessibility for transcription factors, resulting in transcriptional
repression [520,521].

22. Histone Methylation

Histones (namely H3 and H4) have lysine (K) and arginine (R) residues in their
tails which can be methylated [444,522]. In contrast to acetylation and phosphorylation,
methylation does not alter the charge of the histone protein [523]. Additionally, while DNA
methylation is used as a repressive mark, histone methylation is able to both facilitate
or repress transcription depending on the residue and the type of methylation applied.
Histone lysine methyltransferase (KMT) enzymes utilize SAM as an intermediate donor
to transfer a methyl group onto the lysine residues of histones and contain a conserved
SET domain (with the exception of DOT1) [523–526]. Lysine residues show mono-, di-,
or tri-methyl group deposition which is capable of facilitating or repressing transcription
depending on position of deposition [463,522,527]. Arginine residues, on the other hand,
show mono- or symmetrical or asymmetrical di-methylation [528].

Through numerous studies, general consensus profiles for histone lysine methylation
have been observed (Table 4) such as active transcription being marked by tri-methylated
H3K4 (H3K4me3), the 5′ end of transcribed genes being marked by di-methylated H3K4
(H3K4me2), active enhancers marked by mono-methylated H3K4 (H3K4me1), actively
transcribed gene bodies marked by tri-methylated H3K36 (H3K36me3), and gene repres-
sion marked by di- or tri-methylated H3K9 (H3K9me2/3) and tri-methylated H3K27
(H3K27me3) [505,508,529–535]. While such individual observations are insightful regard-
ing genome dynamics, integrating such observations can be more insightful by identifying
potentially novel elements, as was carried out to identify low-abundance transcripts by
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overlapping H3K4me3 and H3K36me3 marks [536]. Other histone marks such as H3K79
and H4K20 show methylation-specific behavior depending on whether they are mono-,
di-, or tri-methylated, which dictates whether they are associated with active or repressed
expression [505,529,533,534]. One should keep in mind that not all genomic elements
possess a single histone mark in isolation. There are many genomic loci that show bi-
and tri-valency where they show deposition of activation and repressive histone marks
simultaneously [444,505,527,529,533,534,537].

Table 4. Epigenetic Modifications and Function.

Modification Function Reference(s)

DNA Methylation

CpG Islands, CpG Shores Inversely associated with
transcription [490,492,521,538,539]

Gene Bodies Positively associated with
transcription [495,529,540]

Intergenic Positively associated with
transcription [541]

Enhancers Inversely associated with
transcription [495,529,540]

Histone Modifications

H3K4me1

Active enhancers and
promoters;

Poised enhancers and
promoters when in

conjunction with H3K4me3 +
H3K27me3

[529,532,540]

H3K4me2
Active promoters when in

conjunction with H3K4me3;
Poised marker when alone

[535,542–544]

[545–547]

H3K4me3 Active promoters and
transcription [535,548–550]

H3K9ac Active promoters [529,532,548]

H3K9me1 Active promoters [529]

H3K9me2 Silenced promoters and
transcription [551,552]

H3K9me3 Silenced promoters and
transcription [553,554]

H3K27ac Active enhancers and
promoters [506,555]

H3K27me1 Active transcription [556–558]

H3K27me2 Active transcription [558]

H3K27me3 Silenced promoters and
transcription [559,560]

H3K36me3 Active gene bodies [529,532]

H3K79me2 Active transcriptional
elongation [561]
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Table 4. Cont.

Modification Function Reference(s)

H3R2me2
Counter-correlates with
H3K4me3 at promoters;
Enriched in gene bodies

[562]

H3R8me2 Silenced promoters [563]

H3R17me2 Active transcription [564]

H3R42me2 Active transcription [565]

H4K20me1 Active enhancers and
promoters [566]

Variant Histones

H2A.X DNA repair site [567]

H2A.Z Active promoters and DNA
repair sites [568,569]

H3.3 Active transcription [570]

Non-coding RNA

miRNA Repression of gene expression [571–574]

lncRNA Gene expression regulation [575–577]

In contrast to histone methylation deposition, in order to remove histone methylation,
cells utilize the histone demethylases (HDMs), also known as the histone lysine demethy-
lases (KDMs), which consist of the LSD1 and Jumonji proteins [530,578–580] (Table 3).
LSD1 proteins are dependent on the metabolite FAD, while the Jumonji family of proteins
require Fe2+ and α-KG to perform their catalytic activity [578–581]. All demethylases have
been shown to have high substrate specificity for their lysine target with some enzymes
capable of only demethylating mono- and di-methyl targets, while others can demethylate
all methylated lysine states [523].

In contrast to writing and erasing histone methylation, reading histone methylation
is performed by a number of protein classes, including Tudor domain proteins, chro-
modomain proteins, and malignant brain tumor (MBT) proteins to name a few [582–588]
(Table 3).

23. Histone Acetylation

Histone acetylation is regulated through histone acetyl transferases (HATs; acetylation
writers), histone deacetyl transferases (HDACs; acetylation erasers) with bromodomain
and extra-terminal proteins (BETs) acting as acetylation readers (Table 3). HATs include
three protein families, the GNAT, p300/CBP, and MYST proteins [589–591]. Most described
HATs can be categorized as type A HATs which are (mainly) nuclear enzymes and are
responsible for acetylation of histones and non-histone proteins in the nucleus with implied
functions in the epigenetic regulation of gene expression [592]. Type B HATs are instead
cytoplasmic enzymes, specifically KAT1 and HAT4, and modify free histones in the cy-
toplasm after synthesis [592]. Histone acetylation utilizes a zinc- and ACoA-dependent
process to transfer an acetyl group to histone lysine side chains. This, in turn, reduces lysine
residue charge, which weakens the electrochemical connection between the positively
charged histone tails and the negatively charged DNA backbone [523,589]. This causes
dissociation of the DNA and histones, leaving the DNA exposed and readily accessible
for transcription [523,589,593,594]. As such, histone acetylation is typically considered to
facilitate gene expression and is critically dependent on ACoA stores and availability for its
deposition reaction to occur [595–597].

In order to remove deposited histone acetylation, cells utilize the HDAC family of
proteins. Four classes of HDACs have been described to date [598–602]. Class I HDACs
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are Rpd3-like proteins with members HDAC1–3 and HDAC8. Class II HDACs are Hda1-
like proteins and are split into two subgroups. Class IIa shuttles between the cytoplasm
and nucleus and regulates TF activity. Class IIa consists of members HDAC4, HDAC5,
HDAC7, and HDAC9. Class IIb proteins, on the other hand, appear to predominantly have
cytoplasmic roles and include the proteins HDAC6 and HDAC10. Class III HDACs are
Sir2-like proteins and include members SIRT1–7. SIRT1, 6, and 7 localize to the nucleus
where they affect gene expression. SIRT2 localizes to both the nucleus and cytosol and
modulates cell cycle control. SIRT3, 4, and 5 localize to the mitochondria and respond to
caloric restriction by switching cells to favor mitochondrial OXPHOS [603]. In contrast to
other HDAC proteins, class III proteins utilize the metabolic cofactor NAD+ to catalyze
their reactions, rather than ACoA and zinc [589,598–600]. Finally, class IV consists of only
HDAC11. As a side note, in plants, a fifth group of HDACs exist, the HD2 family, which is
not found in animals [604].

A number histone lysine residues have been reported to be sites of acetylation deposi-
tion, including, but not limited to, H3K4, H3K9, H3K14, H3K18, H3K23, H3K27, H3K36,
H3K79, H4K5, H4K12, H4K15, H4K20, and H3K24 [605]. Of these reported marks, the
most well studied is H3K27ac which, when observed in conjunction with H3 methylation,
marks a spectrum of active/poised transcriptional states [506,509,540,606,607]. As noted,
primed enhancers are marked by sole deposition of H3K4me1. When H3K4me1 marks are
found in conjunction with H3K27ac, this marks active enhancers. In contrast, deposition of
H3K27me3, H3K4me1, and H3K27ac marks poised enhancers. Additionally, co-occurrence
of H3K27ac and H3K4me3 is typically associated with promoters and enhancers of actively
transcribed genes [506,509]. H3K27ac deposition in intergenic regions is regarded by some
to also mark superenhancers [606,608]. While such characterizations are indeed extremely
insightful, the broad nature of histone peaks in sequencing studies means that their pres-
ence alone is not sufficient to accurately define which exact genomic bases perform the
“enhancer” function. For this, more detailed characterizations are required to truly identify
where, within the broad region identified by histone peaks, the true regulatory locus is
actually located [609].

24. Histone Phosphorylation

Histone phosphorylation has been shown to play roles in regulating numerous cellular
processes such as gene expression, DNA damage repair, apoptosis, cell cycle regulation, and
cell division [468,610]. Owing to the chemical nature of this PTM, histone phosphorylation
alters the overall charge of the histone protein which affects the structure of local chro-
matin [468,523]. Histone phosphorylation is reported to be “written” by protein kinases
and is reported to occur at either serine (S), threonine (T), or tyrosine (Y) residues of histone
tails [456,468,523]. Furthermore, the phosphorylation state of S, T, and Y residues has been
shown to drastically alter the rate of nucleosome sliding and rearrangement [468,611–614].

All identified histone kinases transfer a phosphate group from metabolically derived
ATP to the target amino acid side chain [523]. It has been shown that histone methylation
sites H3K9 and H3K27 have subsequent S (phosphorylation) residues. It is hypothesized
that phosphorylation at these “KS” domains may, in part, alter the affinity and/or accessibil-
ity of methylation readers and writers at the K residues [615,616]. In order to “erase” histone
phosphorylation, cells utilize protein phosphatases [468]. Histone phosphatases have been
shown to be essential for regulating DNA repair, mitosis, and apoptosis [468,617–619].

25. Deposition of Epigenetic Marks Is Dependent on Mitochondrial Metabolites

Cellular metabolism involves biochemical reactions to maintain the state of a cell.
Metabolism impacts every cellular process and can be influenced by a cell’s epigenetic state,
genetic state, environment, and dietary intake [472]. Cells use their metabolic networks
to sense nutrient availability and then propagate this information to direct cellular com-
pensatory behavior through signaling networks such as RTG responses. Downstream of
this, chromatin-modifying enzymes rely on metabolites in order to carry out their PTMs.
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ACoA, SAM, and ATP are used for the acetylation, methylation, and phosphorylation of
histones (and DNA where applicable), respectively. Therefore, concentrations of these
metabolites affect gene expression by modulating epigenetic pathways, processes, and
associated chromatin-modifying enzymes.

25.1. ACoA and Epigenetics

Acetyl coenzyme A (ACoA) is utilized by many metabolic and cellular reactions. As
such, concentrations of ACoA reflect the cell’s energetic state [620]. ACoA is derived
from enzymatic reactions involving glucose, fatty acids, and amino acid catabolism [620]
(Figure 13). ACoA has two cellular pools, the mitochondrial and nuclear/cytoplasmic [595].
The inner mitochondrial membrane is impermeable to ACoA which is in contrast to the
nuclear membrane which is freely permeable to it, thus linking the nuclear and cytoplasmic
pools [595].
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Figure 13. Generation of ACoA for HATs. ACoA is processed in either the mitochondria or in the
nuclear/cytosolic pool. ACoA is generated primarily from glucose/pyruvate, free fatty acids, and
BCAAs. Once produced, ACoA is shuttled to the nucleus where it is used by HATs as a cofactor
enabling deposition of acetyl groups onto histone tails, thus enabling gene transcription.

The majority of ACoA within the cell is produced and consumed in the mitochon-
dria [621]. Within the mitochondria, ACoA is produced through the carboxylation of
pyruvate to form ACoA, CO2, and NADH by pyruvate dehydrogenase [620]. When the
cell experiences high/adequate levels of glucose, ACoA is produced by the oxidation of
glucose with any excess glucose being shuttled to the cytoplasm to be stored as fat [597,620].
Conversely, in states of low-glucose concentrations, ACoA is produced as an end-product
of β-oxidation of fatty acids that were previously stored in the cytoplasm [620,622–624].
Within the cytoplasm, ACoA levels are maintained by ATP-citrate lyase (ACL) and acetyl
CoA synthetase (ACS) [625] (Figure 13). ACL converts citrate into ACoA and oxaloac-
etate [625]. This cytoplasmic pool of ACoA can also originate from reductive carboxylation
of glutamine [623,624]. Functionally, cytosolic glutamine is converted into glutamate, which
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is then transported into the mitochondria and converted into α-KG while also generating
citrate in the TCA cycle [623,624]. Citrate can then be exported back to the cytoplasm where
it is converted into oxaloacetate and ACoA [623,624].

Once generated, ACoA is a key cofactor that is essential for HAT function and de
novo fatty acid synthesis [597]. Cells must carefully balance the availability and usage
of ACoA across these two critical cellular processes with dire phenotypic consequences
should this balance be chronically perturbed [596,597,626,627]. It has been reported that
hypoxic conditions, such as those found in/surrounding tumors, repress cell differen-
tiation through reducing cellular ACoA levels which in turn leads to reduced global
histone acetylation and chromatin accessibility [628]. This means that histone acetylation
is highly dependent on cellular ACoA stores and availability [596,597,629,630]. When
cellular ACoA concentrations are perturbed, rapid histone deacetylation occurs which
can result in significant changes in chromatin structure and accessibility that can result in
disease [595,597,626,627,630]. The opposing cellular mechanism to histone acetylation is
the process of histone deacetylation. Regarding this, high intracellular concentrations of ac-
etate, the precursor of ACoA, block HDAC function, which can lead to aberrant expression
profiles and diseased phenotypes [631,632].

25.2. NNMT and Epigenetics

Nicotinamide N-methyl transferase (NNMT) is a cytosolic enzyme that catalyzes
the transfer of a methyl group from SAM to nicotinamide, generating SAH and1-methy-
lnicotinamide (1-MNA) [633–635]. NNMT effectively links NAD+ and methionine metabolic
pathways (Figure 14). As such, NNMT is capable of regulating the enzymatic reactions
controlling both intracellular NAD+ and SAM/SAH. By being situated between these
two critical cellular pathways, NNMT is able to exert effects on both metabolism (directly)
and the epigenome (indirectly), which has consequent effects in diseased states such as
cancer [633,636–638].
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Figure 14. NNMT Links NAD Metabolism and the Methionine Cycle. NNMT catalyzes the transfer
of a methyl group from SAM to NAM, generating SAH and 1-MNA. NAM is generated by the
metabolizing of NAD+ by NAD+-consuming enzymes such as SIRTs and PARPs. Conversely, SAM
is generated through the methionine cycle. NNMT therefore links NAD+ metabolism and the
methionine cycles, with consequent effects on cellular metabolism and the epigenome.

In cancers, NNMT has been observed to be overexpressed in breast [441,639],
colon [639,640], bladder [641], neuroblastoma [642,643], lung [644], liver [639], and re-
nal cancers [645]. The overexpression of NNMT in tumors has also been associated with
the aggressiveness of certain tumors [633]. This is believed to be in part due to NNMT
decreasing cellular SAM/SAH ratios which has consequent effects on reducing H3K4,
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H3K9, H3K27, and H4K20 methylation with downstream consequences on cell cycle- and
cancer-related pathways [633,637,646,647]. As previous authors have noted, overexpres-
sion of NNMT serves as a “sink” for cellular SAM [633] thereby drastically reducing the
cellular SAM pool and depriving HMTs of this essential cofactor, the deprivation of which
is capable of stalling or inhibiting enzymatic function [648–650]. Additionally, in other cellu-
lar contexts, overexpression of NNMT has been shown to result in decreased cellular NAD+

concentrations while also decreasing expression of fatty acid oxidation pathway genes by
inhibiting NAD+-dependent sirtuin function [634]. Therefore, although indirect, NNMT is
capable of exerting enough influence to perturb and alter metabolite concentrations and
epigenomic states of a cell.

25.3. NAD+ and Epigenetics

NAD+ is an essential metabolite utilized in numerous cellular processes. NAD+ levels
have been shown to decrease under high-fat diets and increase with exercise and caloric
restriction [651–654]. There has also been a link established between NAD+ levels and
aging which has driven investigation into manipulating NAD+ concentrations in therapies
aimed at disease prevention and lifespan extension therapies [651,652,654–657].

Within the cell, NAD+ can be synthesized from a number of dietary sources, including
nicotinic acid (vitamin B3) and nicotinamide and tryptophan [653,654,658]. The NAD+

salvage pathway is also a key pathway for maintaining cellular NAD+ levels since it
recycles nicotinamide generated as a by-product of the enzymatic activities of NAD+-
consuming enzymes, the sirtuins (SIRTs), adenosine diphosphate (ADP)-ribose transferases
(ARTs) and poly (ADP-ribose) polymerases (PARPs), and the cyclic ADP-ribose (cADPR)
synthases [603,653,654,658]. Nicotinamide, a potential precursor of NAD+, also serves as
an inhibitory factor of SIRTs, ARTs, and PARPs [653,654,658].

NAD+ serves both as a cofactor for enzymes that catalyze redox reactions and as a
cosubstrate for the SIRTs, ARTs, PARPs, and cADPR synthases [651,652,657,659] (Figure 15).
SIRTs, as discussed, are HDACs that remove acyl groups from lysine residues (e.g., H3K9ac,
H3K14ac, and H4K16ac) on proteins in a NAD+-dependent manner [589,598–600]. Sirtuin’s
function is therefore linked to cellular metabolism and is also sensitive to caloric restriction
that alters NAD+ concentrations. PARP proteins, on the other hand, have established
links with methylation rather than acetylation [660–664]. PARP proteins are enzymes that
mechanistically catalyze the addition of ADP-ribose units from NAD+ donor molecules to
target substrates [661]. Investigations have detailed how NAD+ regulates PARP function,
as it is a required cofactor for the catalytic reaction to occur, with PARPs thereafter able to
regulate DNA methylation and gene expression [653,658,660–669].

There are 17 PARP-related enzymes described in the literature [670]. PARP1 and
PARP2 catalyze the polymerization of ADP-ribose units from NAD+, resulting in the
attachment of either linear or branched poly-(ADP-ribose) (PAR) polymers to itself or other
target proteins.

PARP1, in particular, has been linked to epigenetic and chromatin
regulation [660–664,666–669]. PARP1 can modulate chromatin structure and can act as
a transcriptional coregulator. There therefore exists an indirect link between NAD+ and
cellular methylation control. It has been recently shown that hyper-NAD+ treatment of
the leukemic cell line HL-60 resulted in impairment of DNMT1 methylation maintenance
function for set gene loci, which resulted in hypomethylation and subsequent activation of
the CCAAT enhancer-binding protein alpha (CEBPA) locus [665]. Although these findings
have only been reported for a single genomic locus, when taken in conjunction with the
additional literature evidence, these results strongly implicate a potentially undescribed,
indirect epigenetic regulatory mechanism in which NAD+ is able to control DNA methy-
lation through modulation of PARP proteins. Owing to the ubiquity of NAD+ within the
cell, it therefore is plausible that cells utilize NAD+ for both HDAC and DNMT regulation
through differing control mechanisms.
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Figure 15. NAD’s Regulation of Histone Acetylation and Methylation. NAD+ is primarily generated
by NADH dehydrogenase (C-I) in the mitochondria and is used as a cofactor for a number of cellular
processes such as the processing of glucose into ACoA. In the nucleus, NAD+ is a cosubstate for
histone deacetylases (SIRT family). ARTs and PARPs have established roles in regulating DNA
methylation by blocking DNMT function. As such, NAD+ is therefore indirectly capable of regulating
not only histone acetylation but DNA methylation as well. Through both of these mechanisms, NAD+

concentrations are capable of regulating gene expression.

25.4. SAM and Epigenetics

SAM is a cofactor of DNA and histone methyltransferases and is the second most
common enzymatic cofactor after ATP [648]. The methyl group of SAM serves as a donor
for methyltransferase reactions as it is converted into SAH. SAH is a potent inhibitor of all
methyltransferases [648–650]. The SAM/SAH intracellular ratio, and its control over DNA
methylation and histones, is an example of how a metabolite, which can be controlled by
diet and nutrition, is capable of affecting the epigenome by controlling epigenetic modifier
function. SAM is produced by one-carbon metabolism through a combination of the folate
cycle and the methionine cycles [648–650].

Enzymes that use SAM as a cofactor are DNMTs, KMTs, and PRMTs [472,473,523–526]
(Figure 16). Crosstalk between metabolism and chromatin is therefore regulated by each
enzyme and the physiological concentrations of its required metabolites. This is of particu-



Biomolecules 2023, 13, 944 36 of 70

lar importance for methyltransferases which respond to low physiological concentrations
of metabolic substrates with limited and/or reduced enzymatic activity [648–650]. Com-
petition for available SAM may regulate the contrasting methylation events of histone
H3K4, that is associated with transcription activity, and methylation of DNA and histone
H3K9, that is associated with transcriptional silencing [671,672]. Thus, changes in one-
carbon metabolism, and hence alterations in the levels of SAM, can have an impact on gene
expression [672,673].
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Figure 16. SAM as a Methyltransferase Regulator. SAM is a regulator of DNA and lysine histone
methyltransferases. Cytosine is converted to 5mC by the DNMT family of proteins on DNA and
utilizes the cofactor SAM as a methyl group donor. Methylated DNA results in transcriptional
repression through blocking access to transcription actors. SAM is also used as a methyl group donor
for the KMT family of proteins. Deposition of methylation on histone tails can have activation or
repressive functions depending on the lysine residue and its position.

25.5. FAD and Epigenetics

FAD is a cofactor required in many cellular oxidative reactions such as mitochondrial
fatty acid β-oxidation and respiratory metabolism and is most notably required as a
cofactor for lysine demethylase 1 (KDM1 or LSD1) enzymatic function [674–678] (Figure 17).
Intracellularly, riboflavin (vitamin B2) is converted into flavin mononucleotide (FMN)
followed by FAD in the cytosol [679,680]. Cytoplasmic FAD is them transported into the
mitochondria where it is reduced to FADH2 in the TCA cycle by SDH as it requires FAD to
catalyze the oxidation of succinate to fumarate [681,682]. In this reaction, FAD is used as a
proton accepter instead of NAD+. The converse oxidizing reaction of FADH2 is also carried
out can by reoxidized oxygen, resulting in production of FAD and peroxide to replenish
cellular FAD concentrations [681].



Biomolecules 2023, 13, 944 37 of 70

Biomolecules 2023, 13, x FOR PEER REVIEW 

 39 of 75 
 

25.5. FAD and Epigenetics 

FAD is a cofactor required in many cellular oxidative reactions such as mitochondrial 

fatty acid β-oxidation and respiratory metabolism and is most notably required as a co-

factor for lysine demethylase 1 (KDM1 or LSD1) enzymatic function [674–678] (Figure 17). 

Intracellularly, riboflavin (vitamin B2) is converted into flavin mononucleotide (FMN) fol-

lowed by FAD in the cytosol [679,680]. Cytoplasmic FAD is them transported into the mi-

tochondria where it is reduced to FADH2 in the TCA cycle by SDH as it requires FAD to 

catalyze the oxidation of succinate to fumarate [681,682]. In this reaction, FAD is used as 

a proton accepter instead of NAD+. The converse oxidizing reaction of FADH2 is also car-

ried out can by reoxidized oxygen, resulting in production of FAD and peroxide to replen-

ish cellular FAD concentrations [681]. 

Lysine-specific demethylate 1 (LSD1), in complex with CoREST, utilizes FAD to de-

methylate mono- and di-methylated histone H3K4 residues [578,678,683–685]. LSD1 has 

also been shown to be involved in the demethylation of H3K9 [685] as well as other non-

histone proteins such as p53 [686]. 

 

Figure 17. FAD and Histone Demethylation. Flavin adenine dinucleotide (FAD) is a cofactor re-

quired for lysine demethylase 1 (KDM1 or LSD1) enzymatic function. Lysine-specific demethylate 

1 (LSD1), in complex with CoREST, utilizes FAD to demethylate mono- and di-methylated histone 

H3K4 residues, with evidence presented also supporting its role in demethylating H3K9 residues. 

25.6. α-KG, 2-HG, and Epigenetics 

α-KG-dependent dioxygenases catalyze hydroxylation reactions on diverse sub-

strates, including proteins and nucleic acids [687]. TETs and Jumonji C family (JmjC) his-

tone demethylases are dependent on ferrous ion (Fe2+) and α-KG for their enzymatic ac-

tivity to facilitate the removal of methyl groups from cytosine bases and histone residues, 

respectively [530,578–580]. TET proteins have been described as DNA demethylation en-

zymes (Table 3), although there still exists some ambiguity regarding the exact mechanism 

of DNA demethylation and the degree to which active versus passive demethylation is 

employed within a cell. Conversely, JmJC demethylases are a group within the KDMs 

[688]. There are several subfamilies of JmjC KDMs that have been identified [530,578–580]. 

TETs and JmjC KDMs both require ferrous ion (Fe2+) as a cofactor in addition to α-

KG as cosubstrate to catalyze reactions in which a singular oxygen from molecular oxygen 

(O2) is attached to form a hydroxyl group in the substrate, while the second oxygen is 

taken up by α-KG, leading to the decarboxylation of α-KG and subsequent release of car-

bon dioxide (CO2) and succinate [578–581,687]. While KDM and TET proteins require 

α-KG for their required enzymatic activity, they are also sensitive to other TCA cycle in-

termediates, such as succinate and fumarate, which have been shown to block and inhibit 

their function [235,236,689]. Cells must therefore balance metabolite concentrations in or-

der to drive/inhibit particular enzymatic activities and maintain particular cellular states 

and enzymatic functions. Naive embryonic stem cells (ESCs), for example, utilize both 

glucose and glutamine catabolism to maintain a high level of α-KG [690]. The elevated α-

  
  

  

  
  

  

    
  

  

                                   

    
 

      

      

        

Figure 17. FAD and Histone Demethylation. Flavin adenine dinucleotide (FAD) is a cofactor required
for lysine demethylase 1 (KDM1 or LSD1) enzymatic function. Lysine-specific demethylate 1 (LSD1),
in complex with CoREST, utilizes FAD to demethylate mono- and di-methylated histone H3K4
residues, with evidence presented also supporting its role in demethylating H3K9 residues.

Lysine-specific demethylate 1 (LSD1), in complex with CoREST, utilizes FAD to
demethylate mono- and di-methylated histone H3K4 residues [578,678,683–685]. LSD1
has also been shown to be involved in the demethylation of H3K9 [685] as well as other
non-histone proteins such as p53 [686].

25.6. α-KG, 2-HG, and Epigenetics

α-KG-dependent dioxygenases catalyze hydroxylation reactions on diverse substrates,
including proteins and nucleic acids [687]. TETs and Jumonji C family (JmjC) histone
demethylases are dependent on ferrous ion (Fe2+) and α-KG for their enzymatic activity to
facilitate the removal of methyl groups from cytosine bases and histone residues, respec-
tively [530,578–580]. TET proteins have been described as DNA demethylation enzymes
(Table 3), although there still exists some ambiguity regarding the exact mechanism of DNA
demethylation and the degree to which active versus passive demethylation is employed
within a cell. Conversely, JmJC demethylases are a group within the KDMs [688]. There are
several subfamilies of JmjC KDMs that have been identified [530,578–580].

TETs and JmjC KDMs both require ferrous ion (Fe2+) as a cofactor in addition to α-KG
as cosubstrate to catalyze reactions in which a singular oxygen from molecular oxygen (O2)
is attached to form a hydroxyl group in the substrate, while the second oxygen is taken
up by α-KG, leading to the decarboxylation of α-KG and subsequent release of carbon
dioxide (CO2) and succinate [578–581,687]. While KDM and TET proteins require α-KG
for their required enzymatic activity, they are also sensitive to other TCA cycle interme-
diates, such as succinate and fumarate, which have been shown to block and inhibit their
function [235,236,689]. Cells must therefore balance metabolite concentrations in order to
drive/inhibit particular enzymatic activities and maintain particular cellular states and en-
zymatic functions. Naive embryonic stem cells (ESCs), for example, utilize both glucose and
glutamine catabolism to maintain a high level of α-KG [690]. The elevated α-KG/succinate
ratio in naive ESCs promotes histone and DNA demethylation and maintains pluripo-
tency [690]. Direct manipulation of the intracellular α-KG/succinate ratio is sufficient
to regulate multiple chromatin modifications, including H3K27me3 and TET-dependent
DNA demethylation, which contribute to the regulation of pluripotency-associated gene
expression [690].

Enzymatic reactions that utilize 2-HG have an additional inhibitory mechanism to
contend with and potentially overcome: the presence of α-KG. α-KG is an oncometabo-
lite that is formed as a consequence of somatic mutation in IDH enzymes. Although
numerous somatic mutations have been identified in IDH1/2 in tumors [691,692], there
appears to be a predilection for specific binding site “hotspot” mutations (Arg 132 for
IDH1, Arg 172 for IDH2) in certain diseases such as leukemia and glioma. Instead of
producing α-KG, these mutations instead result in the production of 2-HG, an oncometabo-
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lite that competitively inhibits αKG-dependent enzymes such as JmjC KDMs and TETs
(Figure 18) [372,379,381,691–695]. Structurally, 2-HG and α-KG are similar with the excep-
tion of the 2-ketone group in α-KG being replaced by a hydroxyl group in 2-HG. Structural
analysis showed that 2-HG occupies the same space and binding orientation as α-KG in the
active site of histone demethylases, thereby preventing the binding of α-KG to the active
site of the enzymes, thus it is a competitive inhibitor of 2-HG [696,697]. 2-HG also strongly
inhibits histone demethylases [379]. The strongest inhibition was observed with KDM4A,
which demethylates H3K9 and H3K36 [698], followed by the H3K9/H3K36 demethylase
KDM4C [379] and the H3K36 demethylase KDM2A [699]. Human tumors expressing
IDH1 and IDH2 mutations had increased histone methylation at H3K4, H3K9, H3K27,
and H3K79 [379]. 2-HG inhibits TET activity and this inhibition could be overcome by
the addition of α-KG [375]. Mutations affecting TET2 and IDH1 are mutually exclusive in
AML, suggesting that their biological effect is similar and that they have overlapping roles
in AML pathogenesis [377,700].

The evidence presented thus far has discussed the mitochondria and the plethora of
cellular processes which they can control and direct independent of nucleus input. Evidence
has also been presented discussing how perturbation to mitochondrial function, be it due
to environmental factors, nutrition deprivation, molecular inhibition, or mutation (somatic
or germline), can trigger numerous cellular cascades and compensatory mechanisms in
order to preserve cellular survival, the most important of which is an RTG response. An
RTG response triggers a cascade of changes that upregulate numerous cellular pathways
and changes (such as substrate-level phosphorylation and HIF) which, if left uncorrected,
drive the cell to a persistent tumor phenotype that displays aberrant growth profiles and
has a resistance to apoptotic signals in conjunction with aberrant execution of other cellular
processes from which it may not be able to recover should these triggering signals dissipate
or subside.

An (un)intended consequence of disrupted mitochondrial function, however, is the ef-
fects it has on the cell’s epigenome. Perturbations to metabolite production, concentrations,
or even the production of oncometabolites owing to somatic mutation all have inhibitory
effects on the function of epigenome maintainers (Figure 19). This affects the cell’s ability
to regulate its epigenome to maintain normal states and results in dysregulation of DNA
methylation as well as histone methylation, acetylation, and phosphorylation profiles
(Figure 19). If the epigenome is held captive in an aberrant state for an extended period
of time, the cell may lose its ability to recover to a pre-perturbed state even if triggering
signals are removed. How deleterious the consequent dysregulation is depends on the epi-
genetic mark in question and the duration of aberrance as each mark has its own duration
of persistence. It therefore becomes evident that repeat incidences of mitochondrial and
epigenetic dysregulatory episodes are required before cells are pushed into a chronic and
persistent tumorigenic state, which can require numerous perturbation episodes over a
number of years. This therefore might be why the presentation of many cancers is in older
members of the population.

Taken together, the evidence clearly describes how intimately linked cellular metabolism
and the epigenome truly are. The triggers that perturb and alter one will undoubtedly
alter and perturb the other. Tumors are therefore critically dependent on these two cellular
systems and their coupling in order to maintain tumorigenic phenotypes to support and
drive essential metabolite generation, reprogrammed transcriptional circuits, reconfigured
epigenetic profiles, apoptotic resistance, and essential cellular growth circuits that are
typically tightly controlled and regulated by said cellular systems.
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Figure 18. α-KG, 2-HG, and Epigenetic Control. Under healthy conditions (upper panel), the cytosol and the mitochondria IDH enzymes produce the metabolite
α-KG which is utilized as a cofactor in DNA demethylation and histone deacetylation reactions. In cancer conditions (lower panel), the IDH enzymes instead
produce the oncometabolite 2-HG, an α-KG analog which competitively inhibits DNA demethylases and histone deacetylases. Relationship between altered
metabolism and an altered epigenome.
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Figure 19. Summary of the Metabolic Regulators of Epigenetics.

26. Therapies Targeting Dysregulated Metabolics and Epigenetics in Cancers

Through decades of research, evidence has been accumulated as to how essential dys-
regulated metabolic and epigenomic profiles contribute to continued tumor cell persistence
and survival. This naturally has led to development of small-molecule inhibitors aiming to
target these tumor cell dependencies for various therapies. What follows is a brief summary
of compounds in development along with their intended cellular targets (Table 5).

Table 5. Select Metabolic and Epigenetic Inhibitors Being Tested or Used in Cancer Therapies.

Drug Target Mode of Action Epigenetic
Consequence Treats References

5-Aza-2′-
deoxycytidine

(Dacogen/Inqovi)
DNMTs Integration into DNA

to block DNMTs
Induces

hypomethylation AML and MDS [701–704]

5-azacytidine
(Onureg/Vidaza) DNMTs Integration into DNA

to block DNMTs
Induces

hypomethylation
AML, MDS,

CMML [703–705]

3-Bromopyruvate
(BrPA)

Glyceraldehyde
3-phosphate

dehydrogenase

Suppress production
of ACoA resulting in

depletion

Reduced histone
acetylation

Prostate, breast,
hepatic cancers [706]
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Table 5. Cont.

Drug Target Mode of Action Epigenetic
Consequence Treats References

Bis-2-(5-
phenylacetamido-
1,2,4-thiadiazol-2-

yl)
ethyl sulfide

(BPTES)

Glutaminase

Suppress production
of ACoA resulting in

depletion
Suppress 2-HG levels

Reduced histone
acetylation Breast cancer [707]

CB-839
(Telaglenastat) Glutaminase

Suppress production
of ACoA resulting in

depletion
Suppress 2-HG levels

Reduced histone
acetylation Multiple cancers [708–710]

Compound 968
(Glutaminase

C-IN-1)
Glutaminase

Suppress production
of ACoA resulting in

depletion
Suppress 2-HG levels

Reduced histone
acetylation

Reduced H3K4me3
methylation

Breast cancer [711,712]

Zaprinast Glutaminase

Suppress production
of ACoA resulting in

depletion
Suppress 2-HG levels

Reduces
H3K27me2/me3

IDH1 mutant
cancers AML, glioblastoma [709,713]

Butyrate HDACs Reduces glucose
update

Restores histone
acetylation balance

T-cell lymphoma,
colorectal cancer [714–718]

Vorinostat
(Zolinza) HDACs Reduces glucose

update
Restores histone

acetylation balance T-cell lymphoma [719,720]

Romidepsin HDACs Reduces glucose
update

Restores histone
acetylation balance T-cell lymphoma [721,722]

2-Deoxyglucose
(2-DG) Hexokinases Depletes ACoA stores Reduced histone

acetylation Multiple cancers [723,724]

FT-2102
(Olutasidenib) Mutant IDH1 Suppress 2-HG

production
Enables proper
TET function

AML, glioma,
MDS [725]

LY3410738 Mutant IDH1 Suppress 2-HG
production

Enables proper
TET function AML and MDS [726]

DS-1001b Mutant IDH1 Suppress 2-HG
production

Enables proper
TET function Glioma [727]

AG-881
(Vorasidenib)

Mutant IDH1 and
IDH2

Suppress 2-HG
production

Enables proper
TET function

AML, glioma,
MDS,

chondrosarcoma
[728]

AG-120
(Ivosidenib) Mutant IDH1 Suppress 2-HG

production
Enables proper
TET function

AML, glioma,
MDS,

chondrosarcoma
[729]

BAY1436032 Mutant IDH1 Suppress 2-HG
production

Enables proper
TET function AML [730]

IDH305 Mutant IDH1

Suppress 2-HG
production

Reduces H3K9me3
and H3K27me3

methylation

Enables proper
TET function

Glioma, AML,
MDS [731]
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Table 5. Cont.

Drug Target Mode of Action Epigenetic
Consequence Treats References

AGI-5198 Mutant IDH1

Suppress 2-HG
production

Reduces H3K9me3
and H3K27me3

methylation

Enables proper
TET function

AML, glioma,
MDS,

chondrosarcoma
[732]

GSK321 Mutant IDH1 Suppress 2-HG
production

Enables proper
TET function AML [372,733]

GSK864
(Derivative of

CSK321)
Mutant IDH1 Suppress 2-HG

production
Enables proper
TET function AML [733]

ML309 Mutant IDH1 Suppress 2-HG
production

Enables proper
TET function AML, glioblastoma [734]

2-(3-
Trifluoromethylphenyl)

isothiazol-3(2H)-
one

Mutant IDH1 Suppress 2-HG
production

Enables proper
TET function Glioma [735]

AG-221
(Enasidenib) Mutant IDH2 Suppress 2-HG

production
Enables proper
TET function

AML, glioma,
T-cell lymphomas,
chondrosarcoma,
cholangiocarci-

noma

[736,737]

AGI-6780 Mutant IDH2 Suppress 2-HG
production

Enables proper
TET function AML [738]

CPI-613
(Devimistat)

TCA Cycle
Intermediates

Pyruvate
dehydrogenase

alpha-ketoglutarate
dehydrogenase

Blocks enzymatic
activity

Burkitt’s
lymphoma, MDS,
T-cell lymphoma

Company
press releases

IACS-010759
NADH

dehydrogenase
(C-I)

Quinone-site inhibitor
Blocks C-I function

and electron
transfer

Multiple cancers [739,740]

DZNep
(3-

deazaneeplanocin
A)

SAH hydrolase
Increases SAH:SAM

ratio
Degrades EZH2

Inhibits H3K27me3
and H4K20me3 Multiple cancers [741]

Adenosine
dialdehyde SAH hydrolase Increases SAH:SAM

ratio

Inhibits DNA and
histone

methylation
Downregulates

MMP-9 and
inhibits Ras/Raf-

1/ERK/AP-1

Multiple cancers [742]

N-
methylnicotinamide NNMTT Increases SAM levels Impairs

methylation
AML, multiple

cancers
NCT02746081,
NCT03127735

TVB-2640 Fatty acid synthase Blocks fatty acid
processing

Solid tumors, lung,
ovarian, breast [743,744]

DNA methylation regulators, as well as histone methylation and acetylation regulators,
can be controlled by mitochondrially derived metabolites. By carefully orchestrating and
controlling metabolism, tumor cells can drive whichever genetic program they require to
drive their growth and survival, promoting hyper- or hypophenotypes depending on the
required state and/or phenotype.
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The data presented show numerous critical pathways and enzymes can be targeted,
especially those upregulated or mutated in various cancers. Many of the compounds listed
still require years of development and possibly refinement before they make their way
to the clinic, but preliminary data, at least for some compounds, show clear efficacy for
targeting the metabolic and epigenetic abnormalities frequently observed in tumors.

27. Concluding Remarks

This review aimed to summarize the body of knowledge gained investigating cellular
metabolism and the epigenome. We firstly discussed the mitochondria’s essential roles and
how they regulate cellular function. Next, we discussed how mitochondrial dysfunction
relates to and drives key tumor hallmarks and included a detailed discussion of the altered
metabolic profiles seen in cancers. These discussions outlined how numerous tumor cell
characteristics are driven by dysregulation of metabolic circuits.

Next, we discussed the cellular epigenome. Owing to the breadth of PTMs possible,
we focused only on methylation (DNA and histone), acetylation (histone), and phosphoryla-
tion (histone). In this review, we aimed to outline how cellular metabolism and epigenetics
intersect by connecting which pathways and metabolites are linked, how they are linked,
and the consequence of how metabolic dysregulation affects epigenomic regulation. We
aimed to discuss how coupled and intertwined these two cellular circuits are. This cou-
pling is fortunate for researchers since one need only identify a targetable pathway step
for therapy development. As research continues and better therapies are developed, it is
foreseeable that effective combinatorial and personalized treatment regimens will be devel-
oped for cancer patients which include a component targeting tumor metabolic–epigenetic
dependencies and dysregulation.
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