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Abstract: Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in
fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules,
a line of fluorescence and even non-linear structures results. While much progress has been made
in techniques for imaging and microscopy, image analysis is less well-developed. Current analysis
of fluorescent microtubules uses either manual tools, such as kymographs, or automated software.
As a result, our ability to quantify microtubule dynamics and organization from light microscopy
remains limited. Despite the development of automated microtubule analysis tools for in vitro studies,
analysis of images from cells often depends heavily on manual analysis. One of the main reasons
for this disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically
higher than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule
Tracking (TAMiT), which automatically detects, optimizes, and tracks fluorescent microtubules in
living yeast cells with sub-pixel accuracy. Using basic information about microtubule organization,
TAMiT detects linear and curved polymers using a geometrical scanning technique. Images are fit
via an optimization problem for the microtubule image parameters that are solved using non-linear
least squares in Matlab. We benchmark our software using simulated images and show that it reliably
detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar
spindle microtubule bundle number, length, and lifetime in a large dataset that includes several
S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated
analysis are consistent with previous work and suggest a direct role for CLASP/Cls1 in bundling
spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in
S. cerevisiae, with measurement of dynamic instability parameters. The results obtained with our
fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT
can facilitate automated analysis of spindle and microtubule dynamics in yeast cells.

Keywords: microtubule tracking; fluorescent microscopy; curve optimization; image analysis

1. Introduction

Automated image analysis for fluorescently labeled proteins that appear as Gaussian
spots have been developed and widely used for detection and tracking [1–4]. Extended protein
assemblies, however, are more challenging to analyze. Given the importance of higher-order
protein assemblies, improved tools would lead to a better quantification of their structure
and properties. For example, microtubules, which are linear polymers made of tubulin dimer
subunits play essential roles in eukaryotic cells during mitosis [5,6], intracellular transport [7],
cell motility [8,9], morphogenesis [10], and axonal transport [11]. They are also a key drug
target for cancer and malaria treatment [12,13]. Microtubules with fluorescent labels on
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tubulin dimers appear in images as Gaussian lines rather than spots, meaning that tools for
their automated analysis must work differently. There has been considerable development in
tools for microtubule tracking both for systems in vitro [14–17], and in cells [18–21]. However,
fully automated tools for microtubule tracking in 3-dimensional (3D) live cell data are lacking.
In fact, many cell biologists continue to track microtubules and proteins that bind to them
manually and with kymographs. Automating microtubule tracking in living cells has proven
challenging because the image signal-to-noise ratio (SNR) of these polymers can be low.
Despite this technical difficulty, tracking microtubules in cells is important to understand their
biological function.

One class of methods to quantify cellular microtubule dynamics is based on fluo-
rescently tagged tip-tracking proteins. Tip tracking MAPs associate with microtubule
plus-ends [22–24] and appear as Gaussian spots. Therefore, they can be quantified with
automated particle tracking approaches [2,25], allowing quantification of microtubule dy-
namics [26–28]. However, tip-tracking proteins analyzed to date bind only to growing
plus-ends, not to paused or shrinking plus-ends. Therefore, this approach suffers the
disadvantage that fluorescent tracks show only microtubule growth events; catastrophe,
rescue, and depolymerization dynamics must be inferred. Alternatively, when tubulin is
fluorescently labeled, the fluorescence is associated directly with the microtubule lattice and
does not depend on the binding of MAPs. In this case, entire microtubules can be visualized
throughout their polymerization cycle, making it easy to extract structural properties, like
curvature, and the kinetic parameters that describe microtubule dynamics.

Here we present a Toolkit for Automated Microtubule Tracking (TAMiT). This package
automatically detects and tracks entire microtubules or microtubule bundles in yeast cells
from 3D confocal fluorescence microscopy. The strength of our software lies in its detection
routine coupled with a robust optimization process, leading to sub-pixel accuracy in the
measurement of microtubule length. TAMiT’s object-oriented framework, focusing on
inheritance-based specialization, allows users to adapt the software for their individual
needs easily. As a result, TAMiT has machine-learning capabilities since it can be used to
analyze other composite microtubule structures beyond those presented here. Here, we
present illustrative models that we created for use with a variety of cellular phenotypes
in yeasts, and we show how TAMiT uses them to detect microtubules. We benchmark
our software using simulated data and show that the software performs robustly even at
low SNR. Specifically, TAMiT is used to detect monopolar, bipolar, and anaphase spindles
in S. pombe, along with the mitotic spindle in S. cerevisiae. In addition, TAMiT can track
single astral microtubules in cells, which has proven difficult in the past. TAMiT can
accurately detect both straight and curved microtubules, as shown here. Finally, we extract
microtubule dynamic instability measurements in S. cerevisiae and compare them with
hand-tracked data.

2. Materials and Methods

The design of TAMiT is based on key features of microtubule assemblies in yeast cells.
First, microtubules in cells are often present in dynamic higher-order structures [29]. For
example, in S. pombe and S. cerevisiae mitotic spindles, microtubule minus ends are anchored
near spindle-pole bodies (SPBs) via γ-tubulin complexes [30]. In a bipolar spindle, two SPBs
are linked by a bundle of microtubules that appears as a diffraction-limited line, while a
monopolar spindle has unseparated SPBs with lines emanating outward (Figure 1). A single
SPB in yeasts can anchor dozens of microtubules. Because many of these microtubules are
short, they appear as point sources of tubulin fluorescence (spots). Our software learns
an underlying mathematical model for fluorescence distribution. This model is optimized
by non-linear fitting such that the fitted intensity matches the original image. Below, we
describe the mathematical models for all the features, followed by a discussion of detection,
optimization, and tracking. Finally, we present the results of the validation.
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Figure 1. Feature detection and 3D fitting to various microtubule structures: a bipolar and a monopo-
lar spindle from S. pombe and a spindle and astral microtubule from S. cerevisiae. (A) Schematics of
three microtubule assemblies (bipolar spindle and monopolar spindle in fission yeast, and spindle
with astral microtubule in budding yeast) and their representation as composite objects. Straight
(green) and curved (red) microtubules are organized by spindle pole bodies (purple) (B) Maximum-
intensity projection (MIP) images are created from image stacks of microtubule fluorescence. These
images were filtered and contrast-enhanced to make dim microtubule bundles or single microtubules
more visible. (C) Fitted intensity images created by TAMiT, displayed as a MIP. Each image is an
output of TAMiT’s optimized 3D microtubule model. (D) Features determined by TAMiT, displayed
as 2D projections from the optimized 3D model. Features (lines, curves, spots) are colored according
to their position in Z and are overlayed on the original experimental images from (B) for comparison.
(E) 3D visualization of features determined from the TAMiT model. Color represents the position in
Z, as shown in the color bar on the left. (Scale bars: 1 µm).

2.1. Mathematical Model

To achieve subpixel accuracy in microtubule detection, each feature that comprises an
image must be represented by an appropriate mathematical model. The image can then
be represented by a combination of these features. TAMiT currently supports three basic
features (Figures 2A and S1). A spot of chosen intensity and width represents a Gaussian
distribution (a point source object), which may be smaller than the resolving power of the
microscope, such as an assembly of short microtubules emanating from an SPB. We use
a spot to represent the SPB (the position which coincides with the position of the spindle
microtubule minus-ends). A line represents a single microtubule or a bundle that is straight
and longer than a few image pixels (typically, a microtubule must be at least a few hundred
nanometers long to be visible as a line). These appear as a line with intensity represented by
an integrated Gaussian distribution. We use the line to model microtubules in cells where
the polymers are not bent. A curve represents a single or a bundle of microtubules that is
curved. The fluorescence distribution of a curved microtubule has a curved centerline with
diffraction-limited fluorescence along that line. These basic features can be combined to
construct structures such as either a monopolar or a bipolar spindle (Figure 2B).
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Figure 2. Schematic of image features, composite objects, and TAMiT workflow. (A) Schematic
and MIP of the simulated intensity distribution, shown for the basic 3D elements, include a spot
(representing an assembly of short microtubules, such as occur near a spindle pole), a line (represent-
ing a straight microtubule or bundle), and a curve (representing a curved microtubule or bundle).
(B) Schematic and simulated MIP of composite images that can be constructed from spots, lines, and
curves. A monopolar spindle contains a spot with one or more straight lines that end at the spot. A
bipolar spindle contains two spots connected by a straight line. Lines or curves may extend from the
spots. (C) A tree representation of the organization of microtubule structures and their connections
in TAMiT. The monopolar or bipolar spindle resides inside the highest-level composite structure,
a biological cell. (D) Flow diagram of TAMiT. A movie is analyzed frame by frame. Each frame
undergoes a detection and an optimization step to yield features for that frame individually. Once all
the frames are processed, the single-frame features are tracked to yield multi-time features. Tracking
throws out any single-time features that may be spurious.

2.1.1. Spot

For a collection of short microtubules at some position ~x0 = (x0, y0, z0), the intensity
appears as a point Gaussian with variable width. We model this as a spot with amplitude
A, centered at position ~x0 = (x0, y0, z0), and having Gaussian width ~σ = (σx, σy, σz).
Therefore, seven parameters must be fit for every spot. These are θ = {A,~x0,~σ}. The
Gaussian intensity of a spot at probe position ~x = (x, y, z) is calculated as

fθ(x, y, z) = Ae−(
x−x0

σx )2
e
−( y−y0

σy )2
e−(

z−z0
σz )2

(1)



Biomolecules 2023, 13, 939 5 of 18

2.1.2. Line

We model a straight microtubule or bundle as a Gaussian line of amplitude A, start posi-
tion ~x0 = (x0, y0, z0), end position ~x1 = (x1, y1, z1) and Gaussian width~σ = (σx, σy, σz). We
adopt a parametric representation for coordinates along the line, ~xi(t) = (xi(t), yi(t), zi(t))
where

xi(t) = x0 + (x1 − x0)t

yi(t) = y0 + (y1 − y0)t

zi(t) = z0 + (z1 − z0)t

for t ∈ [0, 1] such that ~xi(t = 0) = (x0, y0, z0) and ~xi(t = 1) = (x1, y1, z1). We fit ten
parameters for every line: θ = {A,~x0,~x1,~σ}. The contribution of the Gaussian intensity
fθ(x, y, z) at position ~x = (x, y, z) is then given by an integral of point Gaussians along the
normalized arc length t:

fθ(x, y, z) =
∫ t=1

t=0
dtAe−(

x−xi(t)
σx )2

e
−( y−yi(t)

σy )2
e−(

z−zi(t)
σz )2

(2)

We can expand the exponentials in the integrand to obtain

fθ(x, y, z) =
∫ t=1

t=0
dtA exp

(
−B− 2tC(t)− t2D(t)

)
B =

x2

σ2
x
+

y2

σ2
y
+

z2

σ2
z

C(t) =
xxi(t)

σ2
x

+
yyi(t)

σ2
y

+
zzi(t)

σ2
z

D(t) =
x2

i (t)
σ2

x
+

y2
i (t)
σ2

y
+

z2
i (t)
σ2

z

While an integral in this form can be calculated numerically, we can also evaluate it using
error functions.

2.1.3. Curve

In certain situations, curved or bending microtubules may be present. To develop
a curve model, we assume that the microtubule/bundle centerline follows a parametric
polynomial in all three dimensions.

x(t) = a0 + a1t + ... + antn

y(t) = b0 + b1t + ... + bntn

z(t) = c0 + c1t + ... + cntn

While the choice of polynomial order is arbitrary for this model, here, we assume that n = 4
in the X and Y dimensions (where the pixel size is smallest) and n = 1 in the Z dimension
(where the number of pixels is limited, so selecting a higher order can be impossible). With
this assumption, curves seen in the XY plane are linear in the Z dimension. We calculate a
local curvature for the microtubule using:

~K(t) =
x′(t)y′′(t)− y′(t)x′′(t)√

(x′(t)2 + y′(t)2)3
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where x′(t) and y′(t) are first-order time derivatives and x′′(t) and y′′(t) second-order. We
generate a model for this curvature using a Fourier function

K̃(t) = k0 +
N

∑
i>0

pi cos(iwt) + qi sin(iwt) (3)

where we fit θk = {k0, w, p1, ...pn, q1, ..., qN}. This forms the initial estimate for the micro-
tubule curvature. Given a start point ~x0 = (x0, y0, z0), an initial tangent vector ~T(t = 0),
the curvature coefficients θk, and a microtubule length, we can then find all points along
the microtubule. We do this by iteratively computing the tangent (Equation (4)) and the
coordinates (Equation (5)) along the curve. Here R̄ is a 3 × 3 matrix that produces a π/2
rotation in the XY direction, such that R̄T̂(t) gives the direction of the normal vector for
any t.

~T(t + dt) = ~T(t) + (R̄T̂(t))K̃(t)dt (4)

~x(t + dt) = ~x(t) + dt~T(t) (5)

For the data in this paper, we found that using a Fourier series approximation with N = 2
was adequate. Using N = 1 gave a visibly poor fit, while for N > 1, the fit residual
had a similar value, and the fit visibly looked similar. For application to other curved
microtubules, checking the fit residual as N is varied can be used to select the best value of
N. With that selection, there are 15 parameters for every curve, namely θ = {A,~x0,~T(t =
0), θk,~σ}. The Gaussian intensity fθ(x, y, z) at ~x = (x, y, z) is calculated by numerical
integration via Gauss quadrature [31].

2.2. Detection

The first step in analyzing an image is the detection process, which generates an initial
guess of features and their location to be used in fitting the full model. TAMiT starts by
applying a 3D Gaussian filter to enhance the tubulin intensity and smooth out variation
from noise. The next steps in detection are then specific to the particular tubulin structure
being modeled. For example, a S. pombe monopolar spindle (center row Figure 1A,B)
contains a bright central point at the location of the single SPB or two adjacent SPBs.
TAMiT models this as a single 3D Gaussian spot. To find this spot, we use Otsu’s method
for thresholding [32] followed by an Extended-maxima H-tranform [33] on the MIP along
the z-axis of the image. The brightest pixel then corresponds to the position of the SPB/SPBs
(Figure S2). There are also microtubules emanating from the SPB. To find these, TAMiT
transforms the MIP image to a polar representation I(r, φ) with the SPB at the origin and
radially integrates the intensity to get an angular intensity function I(φ) (Figure S3) The
locations of peaks φi in I(φ) correspond to the angular coordinates of possible lines. The
length coordinate Li is determined by fixing the angle and increasing the radius until
the polar intensity function I(r, φ = φi) becomes comparable to the background intensity.
TAMiT also implements a minimum and maximum length cutoff for lines.

A bipolar spindle (top row Figure 1A,B) contains a collection of microtubules between
two spindle pole bodies (SPBs). This collection of microtubules appears as a single bright
Gaussian line, and we model it as a single line. This line connects two SPBs, which are
modeled as spots. To find the spindle, TAMiT uses Otsu’s thresholding followed by an
Extended-maxima H-tranform on the MIP image to find a bright spindle region (Figure S4).
Connected component analysis can then be used to find an orientation vector for the bright
region. We find two maximally distant end-points with high intensity along the orientation
vector (Supplemental Material). These two endpoints correspond to the two SPBs. To
find lines emanating from each SPB, we use the same technique as that described for
monopolar spindles. To find curves emanating from an SPB, we start by finding the initial
direction of the curve. Next, steerable filtering is used to enhance pixels through which the
curve passes [34]. TAMiT iteratively steps along the brightest pixels, finding a new local
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orientation at each step. The iteration stops once the intensity drops below a threshold set
by the background (Figure S5).

Once all features and their models have been found, the full model is given by the
sum of the background fluorescence intensity B0 and all the individual feature models:

Fθ(x, y, z) = B0 + ∑ fθ(x, y, z) (6)

2.3. Optimization

To better represent the image and measure microtubule length with sub-pixel accuracy,
we fit the model parameters. The optimization in TAMiT is performed using non-linear
least squares fitting, in which we minimize the residual, the sum of squared differences
between the model and experimental images. For voxel coordinates x, y, z, and image
intensity I0(x, y, z), the optimized parameters are

θ̂ = argmin
θ

∑
x,y,z

(Fθ(x, y, z)− I0(x, y, z))2

where Fθ is the model function that simulates Gaussian intensity given feature parameters
θ. TAMiT first optimizes the features locally, i.e., only varying parameters specific to a
single feature while keeping the parameters of other features fixed. This is followed by
global optimization, where all parameters (including a background intensity level) are
varied within reasonable bounds in search of a global minimum.

Lastly, TAMiT optimizes feature number, a hyperparameter. This is done by first
increasing the number of lines/curves in the model until the decrease in residual is in-
significant compared to the increase in the number of parameters. Next, the number of
lines/curves is decreased until the increase in residual becomes significant compared to the
decrease in the number of parameters. An f-test is employed for the significance criterion.

2.4. Tracking

After detection is performed for all time-frames in a movie, TAMiT tracks the features
using a modified version of U-track [2]. This ensures that spuriously detected microtubules
are ignored, and only features that existed for some minimum number of frames are kept.

2.5. Validation

To test the accuracy of TAMiT, we simulated and fitted monopolar spindles similar to
those found experimentally in S. pombe. We generated 1000 3D images, based on random
points in the parameter space, at varying SNR (Figure 3A,B). The SNR was defined as the
mean intensity of a single microtubule divided by the background intensity (defined as the
median intensity of the image). For this test, the amplitude of the SPB and each microtubule
was held fixed while noise was varied. Next, we ran TAMiT on each simulated image to
extract the optimized parameters and compared them to the parameters originally used
for image creation. For each detected microtubule, we used a cost criterion to determine
if the microtubule found was present in the simulated image. Microtubules satisfying
the criterion were deemed correctly detected, while those failing were deemed spuriously
detected. For example, if the end position of a detected microtubule was more than 0.5 µm
away from the end position of all simulated microtubules, the detected microtubule was
deemed spurious. Microtubules in the simulated data that were not found by TAMiT
were labeled as missed detections. For correctly detected microtubules, we computed the
error in the X and Y dimension (pixel size 0.1 µm) and in the Z dimension (pixel size
0.5 µm.) (Figure 3C,D). Our multiple trials show that the mean 3D error (Figure 3E) became
sub-pixel for all cases where SNR > 1.5. The percentage of correct detections was also
above 90% for SNR > 1.25 (Figure 3F). For very low SNR, the percentage of spuriously
detected microtubules was high, but it became negligible for SNR > 1.25 (Figure 3G).
Finally, we quantified the effect of microtubule length on detection status (Figure 3H).
We found that with increasing SNR, missed microtubules were more likely to be short.
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There was a transition at SNR = 1.25. Based on these data, we conclude that TAMiT is
accurate at detecting straight microtubules at SNR > 1.25 and achieves sub-pixel accuracy
at SNR > 1.5.

Figure 3. Accuracy of microtubule detection in TAMiT as a function of signal-to-noise ratio (SNR).
We simulated 3D images of a monopolar mitotic spindle with varying SNR. (A) Simulated MIP image
of the same monopolar spindle at SNR = 0.75, 1.0, 1.5, 3.0, and 5.0. Scale bar, 1 µm). (B) Features
detected by TAMiT from the images shown in (A), displayed as 2D projections. (C–E) Error in
the spatial position of correctly detected microtubules as a function of SNR. As expected, the error
decreases with increasing SNR. (C) In-plane (xy) position error. (D) Out-of-plane (z) position error.
(E) Mean 3D error is sub-pixel for SNR > 1.5. (F) Percentage of microtubules that were correctly
detected and those that were missed by TAMiT. Correct detection percentage was low (15% and
70%) at low SNR (0.75 and 1.0). However, more than 90% of microtubules were correctly detected at
SNR ≥ 1.25. (G) Percentage of spuriously detected microtubules versus SNR. These microtubules
either did not exist, or their fitting error was too large. (H) Fitted length of microtubules for correct
and missed detection versus SNR. The length of missed microtubules was smaller for higher SNR,
suggesting that longer microtubules were less likely to be missed. The length of correct microtubules
was higher at higher SNRs, suggesting that longer microtubules had a larger probability of detection.

2.6. Experimental Methods
2.6.1. S. pombe

S. pombe strains (Figure S6) were cultured using standard techniques [35]. Strains
were constructed using genetic crosses and random spore analysis to isolate genotypes
of interest. All microscopy images and datasets were obtained using live cell preparation.
Cells were grown on YES plates and imaged in EMM liquid media to reduce background
fluorescence. Bipolar spindles were imaged at 25 ◦C, and monopoles were imaged at
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37 ◦C. To obtain sufficient monopolar spindles, cut7-24 cells were placed at 37 ◦C for
2–4 h and then imaged at this restrictive temperature. Cells were transferred from a 37 ◦C
incubator to the microscope in less than 30 seconds to prevent the temperature-driven
transition from monopolar to bipolar spindles. The temperature was maintained with
±0.1 ◦C using a CherryTemp temperature controller (Cherry Biotech, Rennes, France).
Spinning-disk confocal microscopy was performed on a Nikon Eclipse Ti microscope
described previously [36–38]. The fluorescent label for microtubules was obtained by
expressing a mCherry-α-tubulin-chimera at a low level (∼10% wild type α-tubulin), as
described previously [37–39]. The low-level tubulin labeling helps reduce tag-related
perturbations to microtubule dynamics. 3D time-lapse images were obtained using the EM
Gain laser settings on the Nikon illumination system and the number of Z-planes indicated
previously [38]. Detailed strain information is provided in the supplemental material.

2.6.2. S. cerevisiae

Budding yeast was grown in standard media and then manipulated and transformed
by standard methods [40]. GFP-Tub1 fusions were integrated into the genome and ex-
pressed ectopically, in addition to the native α-tubulin genes TUB1 and TUB3 [41]. We
estimate that GFP-Tub1 comprises approximately 25% of the total α-tubulin expressed in
these cells [42]. Cells were grown asynchronously to the early log phase in a nonfluorescent
medium and adhered to slide chambers coated with concanavalin A [43]. Images were
collected on a Nikon Ti-E microscope equipped with a 1.45 NA 100× CFI Plan Apo objec-
tive, piezoelectric stage (Physik Instrumente; Auburn, MA, USA), spinning disk confocal
scanner unit (CSU10; Yokogawa, Musashino, Tokyo), 488 nm laser (Agilent Technologies;
Santa Clara, CA, USA), and an EMCCD camera (iXon Ultra 897; Andor Technology; Belfast,
UK) using NIS Elements software (Nikon, Minato City, Tokyo). During imaging, sample
temperature was maintained at 37 ◦C as indicated using the CherryTemp system (Cher-
ryBiotech; Rennes, France). Z-stacks consisting of 12 images separated by 0.45 µm were
collected at 5 second intervals for 10 minutes. All analyses were conducted in pre-anaphase
cells, which typically exhibit one or two individual astral microtubules extending from
each SPB [44].

2.7. Manual Analysis of Microtubule Dynamics in S. cerevisiae

Astral microtubule lengths were measured in each maximum intensity projection (2D
data), beginning at the cytoplasmic edge of the SPB to the tip of the astral microtubule;
therefore, any displacement of the SPB does not impact microtubule length measurement.
Assembly and disassembly events were defined as at least three contiguous data points that
produced a length change ≥0.5 µm with a coefficient of determination ≥0.8. The length of
polymerization before a catastrophe event was calculated by determining the total length
of polymerization before a switch to depolymerization.

3. Results

Microtubule structures from different stages of the cell cycle pose different challenges
for the task of feature detection. TAMiT uses specialized models for the individual cases
shown in Figure 4. The bipolar mitotic spindle in S. pombe is visible as a bright line of
microtubule fluorescence that may be accompanied by some much fainter polar micro-
tubules that project from the end(s) of the spindle. Figure 4A shows the tracking of a bipolar
spindle over time. At the third frame shown, a single polar microtubule first appears and
is detected and tracked by TAMiT as it changes length. Mutations of kinesin-5/Cut7 in
S. pombe can lead to monopolar spindles when the SPBs do not separate (Figure 4B). Here
in the temperature-sensitive cut7-24, dynamic microtubule bundles can rotate about their
attachment points at the SPB. Anaphase spindle elongation in S. pombe leads to changes in
spindle length over time (Figure 4C), which the software accurately captures. TAMiT can
also find and track microtubules in S. cerevisiae. Here, long curved astral microtubules can
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grow and curve (Figure 4D). These are primarily single microtubules but can sometimes be
a bundle of two microtubules [43].

Figure 4. Robust detection of mitotic microtubule assemblies in yeasts. (A) Bipolar spindle in
S. pombe. TAMiT detects both the spindle and a growing polar microtubule (last four frames) that
grows away from the spindle at an angle. (B) Monopolar spindle in S. pombe. TAMiT detects rotating
microtubule bundles (the central microtubule rotates clockwise between frames 1 and 5). (C) Elongat-
ing spindle in S. pombe anaphase B. TAMiT accurately detects the growing spindle. (D) Cruved astral
microtubule in S. cerevisiae during anaphase spindle positioning. The long microtubule grows and
bends upon interacting with the cell cortex. TAMiT detects these long dynamic microtubules with
varying curvature. Scale bars, 1 µm. In each panel, the top row is a maximum-intensity projection
(MIP) of the experimental microtubule fluorescence image stack. The second row is a MIP of the
best-fit intensity image from TAMiT’s optimized model. The third row shows a 2D projection of the
3D features identified by TAMiT. The color along each feature shows the position in Z.

3.1. Quantification of Monopolar Spindle Microtubule Number, Length, and Lifetime

Mutations in the S. pombe genome can perturb microtubule behavior and lead to abnor-
mal spindle structures that provide insights into the mechanisms of mitosis. For example,
mutations in the kinesin-5/Cut7 motor can prevent assembly of the bipolar spindle [45].
In these cells, SPBs do not separate, and a monopolar spindle forms with microtubules
whose plus-ends point radially away from the central spindle pole. Because monopolar
spindles arrest cells in mitosis, they can be used to assess how other perturbations alter
mitotic microtubule number, length, and bundling [36]. Therefore, we used TAMiT to
study monopolar spindle microtubules in S. pombe cells carrying the temperature-sensitive
mutant cut7-24 [46].

In addition to the cut7-24 reference, we additionally considered 3 perturbations that
affect microtubule dynamics and bundling in mitosis. First, we added the deletion of klp6,
a kinesin-8 motor. Because Klp6p destabilizes microtubules, in its absence, microtubules
become more stable and longer [37,47–50]. We used this strain to assess whether TAMiT
could identify monopolar spindle microtubule bundles in klp6∆ that are longer and more
stable. Next, we additionally deleted alp14. Alp14p is a TOG/XMAP215 homolog, a mi-
crotubule plus-end tip tracking protein that promotes microtubule polymerization [51,52].
Therefore, alp14∆ cells contain shorter microtubules and shorter bundle lengths. Third, we
additionally added the temperature-sensitive mutant cls1-36. Cls1p is a CLASP homolog
that helps stabilize microtubules by promoting rescue [53–55]. The precise mechanism and
interactions of Cls1p in fission yeast have remained unclear, with some work suggesting
that it is recruited by the crosslinking protein Ase1p [53], while other work has found that
Cls1p promotes microtubule bundling even in the absence of ase1 [55].
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We have used TAMiT to fit 3D images and detect microtubules from these strains
(Figure 5A,B). Because of the automation enabled by TAMiT, we analyzed a large number
of images. For example, we use 140 time points from approximately 100 cells for the
cut7-24 reference cells, a total of 104 images. To characterize differences between the strains,
we measured monopolar spindle microtubule/bundle number, length, and lifetime. We
explore the amount of bundling by measuring the number of microtubules/bundles in
each frame (Figure 5C). We note that in TAMiT a detected microtubule means a line of
fluorescence intensity, as shown by the colored lines in Figure 5B. This often represents a
bundle with multiple microtubules.

In the cut7-24 reference, there were, on average three microtubules/bundles per frame,
with a broad distribution from 0 to 7 (Figure 5C). The mean lifetime was around 20 s, and
the mean length was about 1.2 µm (Figure 5D–F). In klp6∆ cells, we find no significant
differences in the average number of microtubule bundles compared to the cut7-24 reference.
As expected, the bundles were significantly longer, with a mean length of around 2 µm.
Their lifetime was comparable to the reference (Figure 5C–F). This confirms that TAMiT
can detect the previously measured phenotype of longer microtubules in klp6∆ cells.

In alp14∆ cells, based on previous work, we expect shorter microtubules due to
defects in MT growth. Consistent with this, we found noticeably fewer detectable micro-
tubules/bundles, with a mean below 2 and a maximum below 4 (Figure 5C). The smaller
number of detected microtubule bundles is consistent with the idea that many microtubules
are too short to be directly detected by TAMiT and instead are captured by the central
Gaussian at the SPB. Microtubules in these cells are also shorter, with a mean length around
1 µm, and with a slightly decreased lifetime compared to the reference (Figure 5D–F). As
for the klp6∆ cells, TAMiT analysis confirms the phenotype of alp14∆.

In cls1-36 cells, Cls1p is inactive at the restrictive temperature. We find that this
perturbation affects not only microtubule bundle number but also length and lifetime
(Figure 5C–F). The mean microtubule bundle number is below 2: smaller than in the
reference, and indeed is similar to alp14∆ cells. The upper range of the distribution is
a bit larger than for alp14∆, extending up to 5 bundles per frame. Of all the strains we
analyzed, cls1-36 monopolar spindles showed the lowest lifetime with a mean of around
12 sec (Figure 5D). Despite this short lifetime, the mean length of microtubules/bundles
was higher than in the reference and remarkably approached that measured in klp6∆. We
were surprised to find microtubules that were relatively long in cls1-36 cells since CLASP
is thought to help stabilize bundled microtubules. A possible explanation comes from
our observation that microtubules detected by TAMiT in cls1-36 cells were much lower
in intensity, suggesting that these might be single microtubules. This suggests that in the
absence of functional Cls1p, monopolar spindle microtubule bundling is greatly reduced,
consistent with previous work [55]. The length distribution plots show the significant
difference between microtubule/bundle length between cls1-36 and alp14∆ cells. About
50% of all microtubules in cls1-36 cells have length≤1.75 µm compared to 1.0 µm for alp14∆
cells (Figure 5E). The distribution of microtubule lifetimes contains differences that are
subtle (Figure 5F). For example, we observe that the curve increases steeply at a short
lifetime for cls1-36 cells. This shows that in addition to a shorter mean lifetime, cls1-36 cells
have a larger number of short-lived microtubules than in the other strains.
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Figure 5. Quantification of monopolar spindle microtubules for S. pombe mutants that alter mi-
crotubule dynamics and bundling. (A) Maximum-intensity projection (MIP) of the experimental
microtubule fluorescence image stack for cut7-24 cells, with the additional perturbations klp6∆, alp14∆,
and cls1-36 as labeled. Scale bars, 1 µm. (B) Optimized features detected by TAMiT, displayed as a
2D projection overlaid on the experimental MIP image. (C) Box plot of the TAMiT detected number
of microtubules/bundles in each image frame. (D) The plot of the mean microtubule lifetime as a
function of the mean microtubule length, as measured by TAMiT in each genetic background. Error
bars represent the standard error. (E) Cumulative probability density of microtubule/bundle length.
(F) Cumulative probability density of microtubule/bundle lifetime.

3.2. Dynamic Instability of Astral Microtubules in S. cerevisiae

In S. cerevisiae mitosis, long, curved astral microtubules can grow from the cytoplasmic
face of the SPB (Figure 6A). Previous work suggested that astral microtubules are mainly
single microtubules [43]. This makes them a good probe of microtubule dynamic instability
and how it is affected by genetic background. However, quantifying astral microtubule
dynamics is challenging because of their curvature, so they are typically laboriously hand-
tracked [43]. We tested the ability of TAMiT to fit and track astral microtubules in 5 cells
(Figure 6B). Fourier modeling of the microtubule path enables us to fit and measure the
curvature (Figure 6C). We measured microtubule length by hand in ImageJ (Figure 6D, red)
and also used TAMiT for automated measurement (Figure 6D, green). TAMiT captures
the polymerization and depolymerization characterisitc of dynamic instability. As TAMiT
fits the entire shape of the microtubule, it can also capture local and mean curvature
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(Figure 6E). Microtubule length measurements can then be used to extract polymerization
and depolymerization speed (Figure 6F). When we compared the hand measurements
against the automated results from TAMiT, we found no significant difference in measured
speed. This suggests that TAMiT can automate the measurement of the dynamics of curved
astral microtubules in S. cerevisiae.

Figure 6. Measurement of astral microtubule length, dynamics, and curvature of in S. cerevisiae.
(A) Maximum-intensity projection (MIP) of the experimental microtubule fluorescence image stack of
a S. cerevisiae mitotic spindle with long, curved astral microtubules. Scale bar, 1 µm. (B) Optimized
features detected by TAMiT, displayed as a 2D projection overlaid on the experimental MIP image.
The spindle is colored blue, and the astral microtubules are pink and green. (C) Tracked microtubules
are colored according to their local curvature (as shown in the color bar). Red indicates higher
curvature and blue lower curvature. (D) Microtubule length as a function of time measured for an
astral microtubule. The automated fit by TAMiT (green) is similar to the hand-measured values (red).
The dashed lines indicate the time points shown in (A–C). (E) Mean curvature of the microtubule
with length measurements shown in (D). (F) Dynamic instability parameters quantified for 5 astral
microtubules. Data points represent polymerization and depolymerization events. Using hand
measurement, we observed 28 polymerization and 27 depolymerization events. In comparison,
TAMiT recorded 23 polymerization and 22 depolymerization events. Using a t-test, we failed to reject
the null hypothesis of equal means (p = 0.27 for polymerization and p = 0.43 for depolymerization
events).



Biomolecules 2023, 13, 939 14 of 18

4. Discussion

Advances in fluorescence microscopy have led to an explosion in the volume of image
data [56,57]. Because manual analysis is and time-intensive, there is an increasing need
for automated image analysis tools. Therefore, we developed TAMiT, to detect and track
microtubules in S. pombe and S. cerevisiae. Related work has used similar techniques to ours,
surface spline methods or spot tracking of tip-associated proteins [2,4,14,17,58] However,
previous methods were limited in that they were semi-automated, lacking optimization,
inapplicable to live-cell data, or restricted to two dimensions. Further, tracking micro-
tubule tip-associating proteins typically cannot give full microtubule dynamics without
inferences about non-imaged shrinking events. Building on previous work, TAMiT can
overcome some of these restrictions. It is designed to work with fluorescently tagged
microtubules, so can detect shrinking events. It runs unsupervised, optimizes parameters,
tracks microtubules in 3D, and is designed for live-cell data from yeasts.

Biological structures are three-dimensional. Despite the ease with which fluorescence
microscopy produces 3D image stacks, analysis difficulties mean that the Z dimension is
commonly thrown out in favor of studying maximum-intensity projections. While this is
justified in vitro where microtubules are often surface-bound, microtubule structures in
cells are three-dimensional. As a result, ignoring the third dimension may introduce errors
in the inferred microtubule dynamics. TAMiT overcomes this by treating microtubules
as fully three-dimensional. TAMiT combines microtubule detection with optimization
to yield fit parameters with uncertainties. This can improve the measurement accuracy
compared to using only the estimated position.

A significant challenge in automated microtubule detection in cells is the typically
low signal-to-noise ratio (SNR) used to avoid photodamage to the cell. By simulating
images of microtubules at varying SNR, we find that TAMiT detects > 95% of simulated
microtubules at SNR ≥ 1.25, and achieves sub-pixel accuracy at SNR ≥ 1.5. This is possible
because detecting a linear polymer allows information from multiple pixels to be used.
When we tested TAMiT on experimental images, we quantified and confirmed previous
results from perturbation to S. pombe microtubule dynamics, length, and number. In
S. cerevisiae, TAMiT tracked single curved microtubules accurately and measured dynamics
parameters similar to those found by hand tracking.

For future work, the structure of TAMiT is designed to facilitate other types of analysis.
An inheritance-based format for the code allows one to easily add new Gaussian features
to TAMiT without needing to overhaul the entire framework. Similarly, the modular
representation of features as combinations of spots, lines, and curves allows the creation of
different composite. However, TAMiT currently does not have an implemented graphical
user interface, which means that the use of TAMiT requires basic MATLAB expertise to
run the code. As we have shown, TAMiT can track microtubules in multiple phases of the
cell cycle, and in both S. pombe and S. cerevisiae. Flexibility in the framework means that
TAMiT is not specific to a single cell phenotype, and can be used to analyze other types
of cells not considered here. However, the presence of multiple rounds of optimization
and a large number of parameters per microtubule means that convergence to a solution
in the non-linear optimization space can be slow. For example, for 3–5 features, analysis
of a single frame in S. pombe takes 1–2 min, while a frame in S. cerevisiae takes 4–6 min.
Therefore, tracking 100–1000 microtubules in a mammalian spindle is unrealistic for TAMiT
in its current form. However, since TAMiT can handle curvature in microtubules, this
leaves open the possibility of a future, accelerated implementation for mammalian cells.

Here, we have shown that TAMiT can accurately and automatically track micro-
tubules in 3D in both S. pombe and S. cerevisiae. In future work, several extensions could
further improve the utility of TAMiT. Calibrating the Gaussian intensity to the number of
microtubules in a bundle as in previous work [59] would enable a better understanding of
microtubule dynamics that vary due to bundling. Creating a GUI would improve access to
TAMiT for researchers without a programming background. Finally, the larger goal is to
eventually track all the microtubules in a mammalian spindle. To this end, speeding up the
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computation time for feature optimization would allow the tracking of more microtubules
and pave the way for tracking a mammalian spindle.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13060939/s1, Figure S1: Inheritance in TAMiT. A feature is
the most general object. There are two kinds of features, an Organizer and a Basic Element. Basic
Elements are physical and geometric objects that have an intensity profile. Organizers are composed
of other features and organize them in various ways. For example, the aster organizer contains a
spot and multiple lines; Figure S2: Spindle pole body (SPB) detection. All images are maximum
intensity projections in Z of the full 3D image. (A) Original image showing a monopolar spindle.
The SPB is the brightest region. (B) Gaussian-filtering with a filter of size equal to the point spread
function enhances the fluorescent signal of tubulin. (C) Otsu thresholding followed by an extended
maxima transform yields a region of interest. (D) SPB estimate is the maximum intensity pixel in the
region of interest; Figure S3: Detection of straight microtubules. All images are maximum intensity
projections in Z of the full 3D image. (A) The start position where the microtubule search algorithm
is initiated. This is normally the SPB location. (B) Azimuthal sweep gives the summed intensity at
different angles. A peak finder gives two clear peaks corresponding to the two microtubules visible
in the original image. (C) Radial intensity along the direction of one of the microtubules. A threshold
determines the end-point of the microtubule along this direction. (D) The final estimate showing
the detected microtubules in green and the SPB in purple; Figure S4: Spindle detection. All images
are maximum intensity projections in Z of the full 3D image. (A) Original image showing the bright
spindle. (B) Iterative thresholding yields regions of interest belonging to the spindle. (C) Axis passing
through the best region of interest. (D) Intensity along the axis. A threshold determines the two
end-points belonging to the the spindle end-points. (E) The spindle estimate; Figure S5: Detection
of curved microtubules. All images are maximum intensity projections in Z of the full 3D image.
(A) Original image showing a budding yeast metaphase cell. (B) The detected spindle found using
the algorithm presented in Section 4. (C) Steerable filtering accentuates pixels where a line passes
through. (D) Detected path of a curve (red) using a combination of a restricted azimuthal sweep, and
a fixed radial step. (E) Curve coordinates generated from the path shown in D. (F) Final estimate of
the curved microtubules (red) along with the spindle (green) and the SPBs (purple). Microtubule
length is reduced based on intensity considerations mentioned in Section 5; Figure S6: S. pombe strain
information.
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