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Abstract: Phospholipase C (PLC) plays pivotal roles in regulating various cellular functions by
metabolizing phosphatidylinositol 4,5-bisphosphate in the plasma membrane. This process generates
two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol, which respectively regulate
the intracellular Ca2+ levels and protein kinase C activation. In mammals, six classes of typical PLC
have been identified and classified based on their structure and activation mechanisms. They all
share X and Y domains, which are responsible for enzymatic activity, as well as subtype-specific
domains. Furthermore, in addition to typical PLC, atypical PLC with unique structures solely
harboring an X domain has been recently discovered. Collectively, seven classes and 16 isozymes of
mammalian PLC are known to date. Dysregulation of PLC activity has been implicated in several
pathophysiological conditions, including cancer, cardiovascular diseases, and neurological disorders.
Therefore, identification of new drug targets that can selectively modulate PLC activity is important.
The present review focuses on the structures, activation mechanisms, and physiological functions of
mammalian PLC.

Keywords: phospholipase C; phosphatidylinositol 4,5-bisphosphate; inositol 1,4,5-trisphosphate;
diacylglycerol

1. Introduction

Phospholipase C (PLC) hydrolyzes phosphatidylinositol 4,5–bisphosphate (PI(4,5)P2)
to generate two second messengers, inositol 1,4,5 triphosphate (IP3) and diacylglycerol
(DAG) [1,2], enabling eukaryotic cells to perform diverse functions such as cell prolifera-
tion, differentiation, and motility by spatially and temporally activating phosphoinositide
turnover. Mammals possess 13 typical PLC isozymes, which can be categorized into six
classes: PLCβ (β1–β4), PLCγ (γ1 and γ2), PLCδ (δ1, δ3, and δ4), PLCε, PLCζ, and PLCη
(η1 and η2) [3–5]. The seventh family of PLC, referred to as PLCXD, has been identified in
various eukaryotic species [6]. Thus, the PLC superfamily in mammalian cells comprises
16 members, with three PLCXDs (PLCXD1, PLCXD2, and PLCXD3). While it remains
unclear why there is a need for such a multitude of PLC isozymes in mammalian cells
despite catalyzing the same reaction, possible reasons could include distinct regulatory
mechanisms and tissue distribution for each PLC isozyme (as described in Sections 2 and 3,
respectively).

Typical PLC isozymes possess a structure characterized by several conserved domains
along with class-specific domains. The active sites and catalytic residues in typical PLC
isozymes are located within the triosephosphateisomerase (TIM) barrel (X and Y) domains.
While PLCζ is the only exception that lacks the pleckstrin homology (PH) domain, typical
PLC isozymes harbor the PH domain, EF-hand motifs, and the C2 domain along with the X
and Y domains. PLCβ possesses the C-terminal domain (CTD) of approximately 400 amino
acids and the PSD-95, discs large, ZO-1 (PDZ)-binding motif. PLCγ bears the multidomain
insertion between the X and Y domains, comprising the split PH domain, the N-terminal
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Src homology 2 (nSH2) domain, the C-terminal SH2 (cSH2) domain, and the Src homology
3 (SH3) domain. PLCε harbors the Cdc25 homology domain and Ras association domains.
Contrary to typical PLC isozymes, the PLCXD family is a group of enzymes that contain a
catalytic domain with a sequence that is similar to the X domain (Figure 1).
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can increase intracellular Ca2+ concentration. IP3 is metabolized to inositol 1,3,4,5-
tetrakisphosphate (IP4) via phosphorylation by inositol 1,4,5-trisphosphate 3-kinase or in-
ositol polyphosphate multikinase (IPMK). IP4 can be further metabolized to inositol 
1,3,4,5,6-pentakisphosphate (IP5) by phosphorylation at the 6-position via IPMK and then 
to inositol hexakisphosphate (IP6) by phosphorylation at the 2-position via inositol 
1,3,4,5,6-pentakisphosphate 2-kinase. IP5 and IP6 serve as substrates for the synthesis of 
inositol pyrophosphates (PP-InsPs) with high-energy phosphate bonds [8–12]. PP-InsPs 
are involved in various cellular processes, including chromatin remodeling, gene expres-
sion, membrane transport, insulin secretion, growth factor/cytokine signaling, apoptosis, 
and dopamine release [8,13,14]. In addition, IP3 is metabolized to inositol 1,4-bisphosphate 
(IP2) by dephosphorylation of the inositol ring at position 5 by inositol polyphosphate 5-

Figure 1. The domain structures of PLC. The active sites and catalytic residues in typical PLC
isozymes are located within the X and Y domains (X and Y). While PLCζ is the only exception that
lacks the PH domain, all typical PLC isozymes also possess the PH domain (PH), EF-hand motifs
(EF), and the C2 domain (C2). PLCβ has the C-terminal domain (CTD), as well as the PDZ-binding
motif. PLCγ features a multidomain insertion between the X and Y domains, consisting of the split
PH domain (PH), N-terminal SH2 domain (nSH2), C-terminal SH2 domain (cSH2), and SH3 domain
(SH3). PLCε has Ras association domains (RA) and a Cdc25 homology domain (CDC25). Atypical
PLC isozymes, the PLCXD family contain a catalytic domain with a sequence that is similar to the X
domain (X).

Upon exposure to various stimuli, typical PLC isozymes hydrolyze plasma membrane
(PM) PI(4,5)P2 to produce two second messengers: IP3 and DAG [1,2]. IP3 binds IP3 recep-
tors present in the endoplasmic reticulum (ER), inducing the release of Ca2+ into the cytosol
from ER stores, while hydrophobic DAG binds proteins, including protein kinase C (PKC),
for its membrane recruitment and activation. In addition, DAG activates transient receptor
potential canonical (TRPC)3, TRPC6, and TRPC7, which are members of the TRP family of
nonselective cation channels [7]. These channels are permeable to Ca2+ and can increase
intracellular Ca2+ concentration. IP3 is metabolized to inositol 1,3,4,5-tetrakisphosphate
(IP4) via phosphorylation by inositol 1,4,5-trisphosphate 3-kinase or inositol polyphosphate
multikinase (IPMK). IP4 can be further metabolized to inositol 1,3,4,5,6-pentakisphosphate
(IP5) by phosphorylation at the 6-position via IPMK and then to inositol hexakisphosphate
(IP6) by phosphorylation at the 2-position via inositol 1,3,4,5,6-pentakisphosphate 2-kinase.
IP5 and IP6 serve as substrates for the synthesis of inositol pyrophosphates (PP-InsPs) with
high-energy phosphate bonds [8–12]. PP-InsPs are involved in various cellular processes,
including chromatin remodeling, gene expression, membrane transport, insulin secretion,
growth factor/cytokine signaling, apoptosis, and dopamine release [8,13,14]. In addition,
IP3 is metabolized to inositol 1,4-bisphosphate (IP2) by dephosphorylation of the inositol
ring at position 5 by inositol polyphosphate 5-phosphatase. IP2 is further dephosphorylated
to myo-inositol by inositol monophosphatase or inositol polyphosphate 1-phosphatase.
Myo-inositol is then re-incorporated into the phosphatidylinositol (PI) synthesis cycle by
binding to CDP-DAG in the ER membrane. On the other hand, DAG is phosphorylated by



Biomolecules 2023, 13, 915 3 of 16

DAG kinases to produce phosphatidic acid (PA) [15]. The specific acyl chain composition
of PI(4,5)P2, with a high enrichment of stearic acid at the sn-1 position and arachidonic acid
at the sn-2 position [16], is retained in the DAG generated by PLC. DAG lipases remove
stearic acid, generating endocannabinoid 2-arachidonoyl glycerol, which acts as an agonist
of endocannabinoid receptors [17,18]. DAG generated by the hydrolysis of PI(4,5)P2 is
recycled into PI to maintain the total pool of phosphatidylinositol phosphates. This process
involves the transport of the generated DAG and/or PA from the PM to the ER, where
the PI synthetic enzymes CDP-DAG synthase and PI synthetase utilize them. This cycle
is spatially confined to the PM–ER contact sites, where lipid transfer proteins transport
lipid intermediates between the membranes. PLC also regulates the levels of its substrate,
PI(4,5)P2. PI(4,5)P2 directly regulates various cellular functions, such as cytoskeletal re-
modeling, cytokinesis, phagocytosis, membrane dynamics, epithelial characterization, and
ion channel activity [19–23]. PI(4,5)P2 also acts as a precursor to phosphatidylinositol
3,4,5-triphosphate (PI(3,4,5)P3), which triggers the activation of several other proteins,
including AKT. This pathway plays a crucial role in numerous signaling processes, such as
cell growth and survival [24]. Therefore, PLC-mediated hydrolysis of PI(4,5)P2 may exert
multiple downstream effects (Figure 2).
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Figure 2. The schematic pathway of PI turnover induced by PLC. PLC isozymes hydrolyze PM
PI(4,5)P2 to produce two second messengers: IP3 and DAG. IP3 binds IP3 receptors (IP3R) present in
the ER, inducing the release of Ca2+ into the cytosol, while DAG activates PKC. DAG also activates
TRPC3, TRPC6, and TRPC7 and increases intracellular Ca2+ concentration. IP3 is metabolized to IP4,
IP5, IP6, and PP-InsPs. IP3 is also metabolized to IP2. IP2 is further dephosphorylated to myo-inositol.
Myo-inositol is then re-incorporated into the PI synthesis cycle by binding to CDP-DAG in the
ER membrane. DAG is metabolized to PA. DAG and PA are transported from the PM to the ER,
where the PI synthetic enzymes utilize them. Thus, DAG generated by the hydrolysis of PI(4,5)P2 is
recycled into PI to maintain the total pool of phosphatidylinositol phosphates. DAG is metabolized
to endocannabinoid 2-arachidonoyl glycerol (2-AG), which acts as an agonist of endocannabinoid
receptors (CB). PI(4,5)P2 is also metabolized to PI(3,4,5)P3, which activates AKT.

Besides PI(4,5)P2, PLC enzymes have been reported to hydrolyze phosphatidylinositol
4-phosphate (PI(4)P) and, to a much lesser extent, PI in vitro [25]. Notably, PLCε could
hydrolyze PI(4)P at the Golgi apparatus [26]. Several isozymes of PLC also hydrolyze
nuclear PI(4,5)P2. Insulin-like growth factor 1 induces the activation of nuclear PLCβ1 and
PI(4,5)P2 hydrolysis, thereby increasing nuclear DAG levels and inducing PKC nuclear
translocation [27,28]. PLCβ1 isozyme has two splicing variants, PI-PLCβ1a and PI-PLCβ1b,
which differ in their C-terminal sequences and intracellular localization [29]. Both variants
carry a nuclear localization sequence (NLS); however, PI-PLCβ1a also possesses a nuclear
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export sequence (NES), allowing it to localize in the cytoplasm. Conversely, PI-PLCβ1b is
primarily localized to the nucleus [30,31]. PLCγ1 induces nuclear generation of DAG [32].
PLCδ1 harbors an NES and an NLS, which contribute to nuclear–cytoplasmic shuttling [33].
Nuclear import of PLCδ1 is induced by increased cytoplasmic Ca2+ concentration [34].
PLCδ4 is primarily localized to the nucleus and responsible for regulating the transition
between the G1 and S phases of the cell cycle [35]. PLCδ4 knockdown in adipose-derived
mesenchymal stromal cells induced cell cycle arrest, with accumulation in the G1 phase [36].

2. Regulatory Mechanisms

Classical PLC enzymes have a shared regulatory mechanism where the enzyme’s
active site is masked by the negatively charged X–Y linker and remains inactive. When
PLC enzymes bind to the PM, the X–Y linker is pushed away by the negatively charged
surface of the membrane, allowing the active site to become accessible and removing its
auto-inhibition [37].

2.1. Regulatory Mechanisms of PLCβ

PLCβ isozymes act as downstream effectors of G protein-coupled receptors (GPCRs)
and can be activated by either the Gαq family or Gβγ subunits [38,39]. The PH domain
of PLCβ is involved in the activation of the enzyme by Gβγ and Rac [40,41]. Rac and
Gβγ interact with the PH domain of PLCβ to optimize its orientation for substrate mem-
branes [40]. PLCβ contains a CTD composed of approximately 400 amino acids, which
bind to its catalytic core and inhibit enzymatic activity under resting conditions [42,43].
The CTD of PLCβ1 increases the curvature of the PM, thereby promoting efficient cleavage
of PI(4,5)P2, which is present in highly curved membranes [44]. The activation of PLCβ by
Gαq also requires the presence of a CTD. The PDZ-binding motif of PLCβmay facilitate se-
lective binding to GPCRs via the PDZ scaffold proteins [45]. Furthermore, PLCβ functions
as a GTPase-activating protein for Gαq in addition to its lipase activity [46]. Thus, PLCβ
isozymes are activated by Gαq, Gβγ, and small GTPases of the Rho family, such as Rac
(Figure 3).
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Figure 3. Activation mechanisms of PLC. PLCβ isozymes are activated by Gαq, Gβγ, and Rac. PLCγ
isoforms are activated by RTKs. PLCδ activity can be stimulated by Ca2+ within the physiological
range through the activation of the other PLC isozymes or influx of Ca2+ through calcium channels.
PLCε can be activated by GPCRs and RTKs as well as by small GTPases. PLCζ and PLCη are highly
sensitive to Ca2+ and respond to small elevations in intracellular Ca2+ levels. PLCη is also activated
by GPCR.

2.2. Regulatory Mechanisms of PLCγ

PLCγ isoforms are regulated by both receptor tyrosine kinases (RTKs) and non-RTKs
(Figure 3) [47–51]. Activation of PLCγ occurs via the binding of its nSH2 domain to phos-
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phorylated tyrosine residues of RTKs, which induces the phosphorylation of a conserved
tyrosine residue (Tyr783 in human PLCγ1 and Tyr759 in human PLCγ2) by RTKs [52]. The
cSH2 domain inhibits PLCγ by interacting with residues around its catalytically active
site under resting conditions. Phosphorylation of the conserved tyrosine residue removes
the cSH2 domain from the active site via interaction with the cSH2 domain, allowing the
binding of the active site of PLCγ to its substrate, PI(4,5)P2 [53,54]. Therefore, the PLCγ SH2
domain plays an essential role in RTK- and non-RTK-mediated PLCγ activation. PLCγ2,
but not PLCγ1, interacts with Rac via the split PH domain, resulting in its recruitment to the
PM and activation [55,56]. PI(3,4,5)P3 also recruits PLCγ isoforms to the PM and activates
them [57–59]. Thus, the multidomain insertion located between the X and Y domains of
PLCγ is essential for regulating its activity.

2.3. Regulatory Mechanisms of PLCδ

PLCδ activity can be stimulated by micromolar levels of Ca2+ within the physiological
range through the activation of the other PLC isozymes or influx of Ca2+ through calcium
channels (Figure 3) [60,61]. Ca2+ induces the translocation of PLCδ from the cytoplasm to
the PM where it is activated. Therefore, PLCδ is thought to amplify elevated Ca2+ levels to
concentrations sufficient for inducing downstream signaling. The PH domain also plays a
critical role in activation of PLCδ. The PH domain of PLCδ binds specifically and with high
affinity to PI(4,5)P2 [62,63], playing a crucial role in both the recruitment and activation
of PLCδ on the PM. In vitro studies have suggested that the PH domain of PLCδ1 has a
higher affinity for IP3 than for PI(4,5)P2 [64]. Since increased cytosolic IP3 levels inhibit the
binding of PLCδ1 to PM PI(4,5)P2 [65], this may function as a negative feedback mechanism.
Two putative positive regulators of PLCδ1, transglutaminase II and Ral, have been also
identified [66,67].

2.4. Regulatory Mechanisms of PLCε

PLCε can be activated by GPCRs and RTKs, as well as by small GTPases (Figure 3) [68–70].
Binding to GTP-bound Rap and Ras results in differential localization of PLCε [68,71–73]. Ras-
activating mutations and stimuli lead to PM localization of PLCε, whereas Rap activation
results in its recruitment to the perinuclear region [74]. RhoA binds to PLCε through
a specific region of the Y domain, resulting in its activation [75]. The Cdc25 homology
domain functions as a guanine nucleotide exchange factor (GEF) for Ras and Rap1 [74,76].
The GEF activity of the Cdc25 homology domain for Rap1 can augment the lipase activity
of PLCε, as activated Rap1 can stimulate PLCε. Thus, PLCε activity is regulated by various
downstream signaling pathways.

2.5. Regulatory Mechanisms of PLCζ, PLCη, and PLCXD

PLCζ is activated by low concentrations of Ca2+, similar to the resting cytoplasmic
Ca2+ concentration (Figure 3). Unlike other PLC isozymes, the X–Y linker of PLCζ exhibits
distinct electrostatic features and is positively charged, which may enable it to bind to the
PM or associate with the anionic substrate lipid PI(4,5)P2. Therefore, PLCζ is constitutively
active [77]. The interaction of PLCζ with PI(4,5)P2 in membranes requires EF hands and
the X–Y linker region, whereas its activity relies on the C2 domain [78,79].

PLCη is highly sensitive to Ca2+ and responds to elevated intracellular Ca2+ lev-
els [80,81]. Since Gβγ also activates PLCη2, it may be activated upon GPCR stimulation
(Figure 3) [82,83].

The regulatory mechanisms of PLCXDs remain unclear.

3. Physiological Functions of PLC
3.1. PLCβ

There are four isozymes of PLCβ (β1–β4), which are predominantly expressed in the
brain and play essential roles in maintaining normal brain function. Several isozymes of
PLCβ also play significant roles in blood cell types. PLCβ1-deficient mice experienced
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epileptic seizures due to impaired inhibitory neuronal circuitry; this was attributed to
attenuated PKC activity, which leads to a deficit in GABAergic inhibition [84]. Similarly,
human patients with PLCβ1 loss suffered from infantile epileptic encephalopathy [85,86].
In addition, PLCβ1 is crucial for glucose-stimulated insulin release in β-cells. Mice with
conditional knockout (KO) of islet-expressed PLCβ1 displayed glucose intolerance, which
is consistent with the observed in vitro defect [87,88]. PLCβ1 expression decreased in
a malignancy-dependent manner in gliomas, and the level of PLCβ1 expression was
significantly correlated with the survival rate [89]. PLCβ2 deficiency was found to inhibit
Ca2+ release and superoxide production induced by chemoattractants in neutrophils of mice
while paradoxically enhancing chemotactic activity via an unknown mechanism [90,91].
PLCβ2 also plays a central role in taste receptor signaling and is activated by βγ subunits
released by various GPCRs [92–94]. In addition, PLCβ2 negatively regulates virus-induced
pro-inflammatory responses by hydrolyzing PI(4,5)P2 and inhibiting PI(4,5)P2-mediated
TGF-β-activated kinase 1 activation [95]. Loss of PLCβ3 inhibited the Src homology region 2
domain-containing phosphatase (SHP)-mediated suppression of Lyn, resulting in defective
Fc epsilon Receptor I (FcεRI) signaling and mast cell-dependent immune responses in
mice [96]. Loss of PLCβ3 impaired the formation of the signal transducer and activator of
transcription (STAT)5–SHP-1–PLCβ3 protein complex, leading to STAT5 hyperactivation,
mast cell hyperproliferation, and atopic dermatitis-like skin inflammation [97]. Interestingly,
the lipase activity of PLCβ3 is not required for STAT5 regulation. In hematopoietic stem cells
(HSCs), loss of PLCβ3 led to STAT5 hyperactivation, thereby increasing the number of HSCs
with a myeloid differentiation ability and leading to the development of myeloproliferative
neoplasms in PLCβ3-KO mice [98]. Mice lacking PLCβ3 exhibited increased sensitivity
to apoptotic induction in their macrophages, which resulted in reduced atherosclerotic
lesion size [99]. In humans, PLCβ3 mutations have been shown to either protect against
cystic fibrosis or cause autosomal recessive spondylometaphyseal dysplasia [100–102]. Loss
of PLCβ4 induced a range of phenotypic defects in mice, including impaired cerebellar
development, which led to ataxia [103] and visual processing deficits [104]. PLCβ4 KO
mice also exhibit absence seizures [105]. Studies involving human patients have shown
that PLCB4 mutations are linked to the development of uveal melanomas, which are the
most common type of eye tumors arising from melanocytes of the uveal tract [106]. Loss-of-
function mutations in PLCB4 have also been implicated in auriculocondylar syndrome [107].

3.2. PLCγ

There are two isozymes of PLCγ (γ1 and γ2). PLCγ isozymes play essential roles
in hematopoietic cell development and functions. Functional loss of PLCγ1 resulted in
defective vasculogenesis and erythrogenesis, and PLCγ1-deficient mice died on embryonic
day 9 [108,109]. Moreover, PLCγ1 is crucial for T-cell receptor (TCR) signaling, which is
required for T-cell activation, development, and homeostasis. T-cell-specific deletion of
PLCγ1 impaired the development of regulatory T cells [110]. PLCγ1 is also involved in the
development of HSCs, as PLCγ1-KO cells failed to differentiate into hematopoietic cells
in PLCγ1-KO chimeric mice [111]. Additionally, PLCγ1 has been implicated in various
cancers in a number of studies, and these studies have highlighted the role of PLCγ1
in tumor progression and metastases [112–118]. Somatic mutations in PLCG1 have been
reported in angiosarcoma [119]. PLCγ1 mutant plays a role in angiosarcoma by promoting
invasiveness and influencing angiogenesis through vascular endothelial growth factor
(VEGF) signaling [119–122]. PLCG1 mutations were also discovered in T-cell lymphomas,
including cutaneous and adult T-cell leukemia/lymphoma. PLCG1 is the most commonly
mutated gene in adult T-cell leukaemia/lymphoma, accounting for approximately 40% of
all cases. Mutant forms of this isozyme are thought to contribute to the development of
cancer by promoting phospholipase activity and subsequently enhancing nuclear factor of
activated T-cells (NFAT)- and NF-κB-dependent transcription [123,124]. Mutations in the
TCR signaling components and PLCG1 have been observed in T-cell lymphoma patients,
and these mutations are associated with poorer overall and progression-free survival rates
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based on several clinical studies [125–127]. In contrast, some studies have indicated that
reduced PLCγ1 expression is conducive to cancer cell survival and proliferation. For in-
stance, PLCγ1 expression is downregulated during hypoxia in KRAS-mutant human lung
adenocarcinoma cell lines, preventing lipid peroxidation, inhibiting apoptosis, and enhanc-
ing cancer cell proliferation [128]. Mice with a specific PLCγ1 KO in neuronal precursors
exhibited deficiencies in midbrain axon guidance, resulting in structural alterations to the
mesencephalic dopaminergic system, wherein axons fail to project to their appropriate lo-
cations [129–131]. Forebrain-selective PLCγ1 KO resulted in behavioral abnormalities such
as hyperactivity [132]. Activation of PLCγ1 is triggered by the activation of tropomyosin-
related kinase B (TrkB) receptors through binding to brain-derived neurotrophic factor
(BDNF), which plays an essential role in the formation and function of inhibitory synapses
that use gamma-aminobutyric acid (GABA) as a neurotransmitter. Selective PLCγ1 KO in
inhibitory GABAergic neurons increased seizure susceptibility in aged mice [133]. In con-
trast, in a temporal lobe epilepsy model, hyperexcitation of excitatory neurons triggered the
activation of cellular signaling pathways, including elevated phosphorylation of PLCγ1 via
the BDNF-TrkB pathway. Uncoupling of the BDNF receptor TrkB from PLCγ1 prevented
epilepsy, suggesting that the effects of PLCγ1 on epilepsy depend on the specific neuronal
population involved [134]. PLCγ2 is a critical signaling effector of the pre-B-cell receptor
and essential for B-cell development and maturation. PLCγ2-KO mice showed impaired
B-cell maturation [135], whereas a gain-of-function mutation of PLCγ2 generated via ENU
mutagenesis resulted in the hyperactivation of B-cells and innate immune cells [136]. Fur-
thermore, PLCγ2 plays a role in the regulation of innate immune cells and platelets through
the signaling of Fc receptors [137]. PLCγ2 deficiency also impaired receptor activator of
NF-κB ligand (RANKL) signaling in hematopoietic cells, leading to defects in lymph node
organogenesis and osteoclast differentiation [138]. Gain-of-function mutations in PLCG2
have been linked to a disorder called PLCγ2-associated antibody deficiency and immune
dysregulation (PLAID), which is characterized by cold urticaria due to the spontaneous
activation of mast cells expressing the mutant form of PLCγ2 when exposed to lower
temperatures [139]. In addition, gain-of-function mutations in PLCG2 have been implicated
in a complex immune disorder called autoinflammation, antibody deficiency, and immune
dysregulation, which are predominantly inherited and resemble PLAID [140–142].

3.3. PLCδ

There are three isozymes of PLCδ (δ1, δ3, and δ4), which play critical roles in the
normal function of the skin, osomosensitive neurons, placenta, heart, and sperm. Mice
lacking PLCδ1 displayed sparse hair owing to an abnormal hair shaft structure and reduced
hair keratin expression [143,144]. In addition, PLCδ1 plays a critical role in nail formation,
as demonstrated by mutations in patients with hereditary leukonychia [145–148]. Further-
more, PLCδ1 is involved in the regulation of inflammatory skin diseases, such as psoriasis
and contact hypersensitivity (CHS) [149,150]. PLCδ1 also plays a key role in the activation
of deltaN-TRPV1 channels and osmosensory transduction in magnocellular neurosecretory
cells [151,152]. Epigenetic silencing of PLCD1 has been observed in several cancers, suggest-
ing its potential tumor-suppressive role [153–156]. Simultaneous loss of PLCδ1 and PLCδ3
in mice led to embryonic lethality due to decreased placental vascularization and excessive
apoptosis of placental trophoblasts [157]. PLCδ1/PLCδ3 double-KO mice also exhibited
impaired cardiac function, fibrosis, and spontaneous cardiac hypertrophy, possibly caused
by excessive apoptosis of cardiomyocytes [158]. Male infertility is observed in mice lacking
PLCδ4 due of their inability to initiate the acrosome reaction, which is essential for sperm
penetration into the zona pellucida and fusion with the egg PM [159,160].

3.4. PLCε

There is only one isozyme of PLCε. Consistent with its high expression in cardiac
tissues, PLCε plays a critical role in the regulation of cardiomyocyte development and func-
tion. Increased PLCε transcript levels were observed in the myocardial tissues of patients
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with idiopathic dilated cardiomyopathy, suggesting the potential involvement of PLCε
in the pathogenesis of human cardiac diseases [161]. Studies on cardiomyocyte-specific
PLCε-KO mice have demonstrated protection against pressure overload-induced hypertro-
phy. Mechanistically, PLCε catalyzes the hydrolysis of the noncanonical substrate PI(4)P
in the perinuclear Golgi apparatus to generate DAG in cardiomyocytes. Subsequently,
DAG activates the hypertrophic kinase protein kinase D [26,162]. PLCε also participates
in cardiac development, as shown in mice lacking catalytically active PLCε displaying
impaired cardiac semilunar valvulogenesis [163]. Furthermore, PLCε has been implicated
in skin inflammation. PLCε overexpression in keratinocytes induced psoriasis-like skin
inflammation [164], whereas lack of PLCε attenuated CHS [165]. Hence, PLCε appears to
positively regulate skin inflammation. PLCε also plays a positive role in neuroinflamma-
tion [166]. Mutations in the X domain of PLCE1 in humans can lead to nephrotic syndrome,
characterized by proteinuria due to disruption of the glomerular filtration barrier executed
by podocytes [167,168].

3.5. PLCζ

PLCζ, which is specifically expressed in the sperm, plays a pivotal role in fertiliza-
tion. It is a key molecule derived from sperm that induces Ca2+ oscillation, which is a
crucial process for egg activation during fertilization [169]. Studies demonstrated that PLCζ
downregulation in mouse sperm impaired Ca2+ oscillations and egg activation [170,171].
Conversely, broad ectopic PLCζ expression led to autonomous Ca2+ oscillations in unfertil-
ized oocytes, resulting in egg activation and parthenogenetic development, highlighting the
direct effect of PLCζ, which is analogous to fertilization [172]. In humans, loss-of-function
mutations in many PLCζ variants found in patients have been identified and linked to the
failure of oocyte activation, which is regulated by Ca2+ oscillations [173–175].

4. Chemical Inhibitors and Activators for PLC

There are several compounds that are known to modulate the activity of PLC. U73122
is a commonly used inhibitor of PLC, although it has been reported to affect other targets,
such as ion channels, calcium pumps, and enzymes [176–178]. Similarly, m-3M3FBS is a
commonly used pan-PLC activator; however, it interacts with unrelated targets in cells
and there is no clear evidence that it directly binds PLC [179]. Thus, currently, no fully
validated small-molecule inhibitors or activators of PLC suitable for research applications
are available. This limitation is largely due to the lack of a powerful high-throughput
screening system and difficulties associated with generating chemical probes based on
the PLC substrate, PI(4,5)P2. Recent advances have been achieved to overcome these
challenges. Although the half-life of IP3, a direct product of PLC, is short, the downstream
metabolite IP1 can be stabilized by introducing lithium chloride (LiCl). Therefore, PLC
activity can be evaluated by measuring IP1 accumulation in the presence of LiCl [180].
Furthermore, there is potential for in vitro assays utilizing PLC, as demonstrated by the
use of fluorescently tagged PI(4,5)P2 analogs such as WH-15, which can be hydrolyzed
by PLC isozymes to produce a fluorescent molecule [181]. A related compound, XY-69,
has also been synthesized and used in vitro [182]. Recent advances in the development of
high-throughput screening systems are expected to facilitate the identification of specific
PLC inhibitors and activators.

5. Perspectives

PLC exerts its physiological functions primarily through generation of the second
messengers IP3 and DAG. However, considering the involvement of PI(4,5)P2 in the regula-
tion of diverse cellular functions, the reduction in PI(4,5)P2 levels caused by PLC is highly
likely to play a role in its physiological functions. Further investigations are warranted to
determine the impact of PLC-mediated PI(4,5)P2 metabolism on PI(4,5)P2 levels in various
cellular contexts. Besides enzymatic activity, some PLC isozymes have multifunctional
roles. For instance, PLCβ1 regulates caveolar invasion and membrane curvature in a lipase-
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independent manner. Future studies should explore the lipase-independent functions of
PLC to elucidate their novel roles. Moreover, since the structure of PLCXD is distinct
from that of typical PLC, investigation concerning its substrate specificity and activation
mechanism would be intriguing. In addition, specific PLC isozymes that play critical
roles in certain organs may serve as viable targets for the development of novel drugs.
Structural data on PLC isozymes and the availability of fluorescent substrates can allow for
the screening of specific PLC activators and inhibitors as potential drug candidates.
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