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Abstract: The tumor microenvironment (TME) plays an important role in the development and
progression of hematological malignancies. In recent years, studies have focused on understanding
how tumor cells communicate within the TME. In addition to several factors, such as growth factors,
cytokines, extracellular matrix (ECM) molecules, etc., a growing body of evidence has indicated
that extracellular vesicles (EVs) play a crucial role in the communication of tumor cells within the
TME, thereby contributing to the pathogenesis of hematological malignancies. The present review
focuses on how EVs derived from tumor cells interact with the cells in the TME, such as immune
cells, stromal cells, endothelial cells, and ECM components, and vice versa, in the context of various
hematological malignancies. EVs recovered from the body fluids of cancer patients often carry the
bioactive molecules of the originating cells and hence can be considered new predictive biomarkers
for specific types of cancer, thereby also acting as potential therapeutic targets. Here, we discuss how
EVs influence hematological tumor progression via tumor–host crosstalk and their use as biomarkers
for hematological malignancies, thereby benefiting the development of potential therapeutic targets.

Keywords: extracellular vesicles; tumor microenvironment; hematological malignancy; immune cells;
stromal cells; endothelial cells; extracellular matrix; lymphatic system; biomarker; drug resistance

1. Introduction

Intercellular communication, an essential biological process of multicellular organisms,
is mediated by three different mechanisms: (1) cytoplasmic bridges; (2) direct interactions
between adjacent cells via membrane proteins; and (3) cellular secretary molecules [1,2].
Recently, a fourth mechanism has been discovered, which includes the intercellular transfer
of extracellular vesicles (EVs) [3–10]. EVs are membrane-bound entities released by almost
all types of cells into the extracellular environment [11,12]. EVs are known to transport
bioactive molecules, such as proteins, lipids, and nucleic acids in the form of DNA, RNA,
miRNA (miR), etc., between cells [13,14]. Detectable levels of EVs are found in nearly
all biological fluids, such as blood, urine, synovial fluid, and saliva, and they are even
found in the interstitial spaces between cells [12,15–17]. Since they are protected from
degradation by extracellular proteases and RNases, EVs can be stably stored for long-
term use [18]. Depending on their biogenesis, size, release mechanism, content, and
function, EVs can be broadly classified into microvesicles, exosomes, and apoptotic bodies
(Figure 1) [11,12,19,20].
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Figure 1. EV biogenesis and uptake by target recipient cells. EVs mainly consist of MVs and exo-
somes. MVs are generated by plasma membrane outward budding, whereas exosomes are of endo-
cytic origin. Both carry mRNAs, miRNAs, proteins, and other bioactive molecules. EVs are taken up 
by recipient cells, either by direct fusion with the plasma membrane or by the endocytic pathway. 
After EV uptake, the EVs’ cargo is released into the recipient cells, hence acting as intercellular com-
municators between cells. 

2. Tumor-Derived EVs 
Tumor-derived EVs are distinguished from normal cell-secreted EVs due to the pres-

ence of unique tumor-specific ‘labels’ [62–65]. Tumor-derived EVs have been shown to 
carry oncogenic proteins or nucleic acids (such as DNA, RNA, miRNAs, etc.) which facil-
itate tumor progression. Oncogenic bioactive molecules are enriched in tumor-derived 
EVs compared to normal cell-derived EVs [66–68]. For example, chromosome segregation 
1 like protein (CSE1L), a transmembrane protein, is enriched in tumor-derived EVs, not 
only triggering Ras-dependent EVs biogenesis but also promoting metastasis of B16F10 
and melanoma cells [69]. Adriamycin-resistant breast cancer cell-derived EVs were shown 
to carry transient receptor potential cation channel subfamily C member 5 (TrpC5) and to 
transfer of EV. TrpC5 confers endothelial cell resistance against chemotherapeutic regi-
mens [70]. On the other hand, the transfer of oncogenic nucleic acids such as miRNAs, 
specifically miR-221 from highly aggressive breast tumor cells to nonaggressive cancer 
cells, via EVs, contributing to the promotion of epithelial-to-mesenchymal transition 
(EMT) [71] and leading to the induction of proliferation and metastasis while preventing 
drug-induced apoptosis of EVs’ fused recipient cells [5]. Therefore, tumor cells more often 
induce oncogenic transformations into normal healthy cells via the transfer of oncogenic 
bioactive molecules through EVs [72,73]. 

3. Hematological Malignancies 
Hematological malignancies are defined as tumors that commence in blood-forming 

tissues, such as bone marrow or cells of the immune system, resulting in leukemias, lym-
phomas, and myelomas [74,75]. Hematological malignancies are considered to be among 
the leading causes of cancer-related deaths worldwide [76–78]. In the United States itself, 

Figure 1. EV biogenesis and uptake by target recipient cells. EVs mainly consist of MVs and exosomes.
MVs are generated by plasma membrane outward budding, whereas exosomes are of endocytic
origin. Both carry mRNAs, miRNAs, proteins, and other bioactive molecules. EVs are taken up
by recipient cells, either by direct fusion with the plasma membrane or by the endocytic pathway.
After EV uptake, the EVs’ cargo is released into the recipient cells, hence acting as intercellular
communicators between cells.

Microvesicles (MVs). MVs are a type of EV generated by direct outward budding of
plasma membrane from cells [13,21]. The formation and release of MVs from cells typically
require the interplay of cytoskeletal components, such as actin and microtubules; molecular
motors, such as kinesin and myosin; and fusion machinery, such as SNAREs and tethering
factors [22,23]. MVs typically ranging from 100 nm to 1 µm in diameter [11,12,15,19,21].
Because MVs are generated from plasma membrane by outward budding, they carry
cytosolic and plasma membrane-associated proteins, e.g., proteins clustered at the plasma
membrane, such as tetraspanins, which could serve as markers for MVs regardless of
the originating cells [24,25]. Other cytoskeletal proteins, such as heat shock proteins,
integrins, and proteins containing post-translational modifications, such as glycosylation
and phosphorylation, have also been shown to be present in MVs [26–28].

Exosomes. Exosomes are the other subtype of the EV of endocytic origin [15,29]
with a typical diameter of 30 to 150 nm [30,31]. Specifically, exosomes are formed by
inward budding of early endosomal membrane, which matures into multivesicular bod-
ies (MVBs) [12,15,32]. MVBs eventually fuse with the plasma membrane, releasing their
content of exosomes into the extracellular space [32–36]. The regulation of MVBs and the
formation and subsequent release of exosomes are mediated by the endosomal sorting
complexes required for transport (ESCRT) pathway [37–39]. Since exosome generation is
mediated by the ESCRT pathway, ESCRT and its accessory proteins (Alix, TSG101, HSC70,
and HSP90β) are believed to be present in all exosomes regardless of the type of originat-
ing cells and hence serve as exosome markers [40–44]. Other than the ESCRT pathway,
exosome generation is also thought to be dependent on sphingomyelinase enzymes since,
in some instances, cells with ESCRT deficiency also produce significant numbers of CD63+
exosomes [45–48]. Both exosomes and MVs have been shown to participate actively in
cell–cell communication, maintenance of cells, and tumor progression by transporting
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their cargo between cells [49,50]. EVs are readily taken up by the recipient cells, either by
direct fusion with the plasma membrane or by fusion with the endosomal membrane after
endocytosis [51–54].

Apoptotic bodies. Apoptotic bodies, which are in general not considered to be a true
form of EV, are larger, ranging from 50 nm to 5 µm in diameter [55–57], and are released
from cells undergoing programmed cell death [19,56]. These bodies are generated by
the separation of plasma membrane from the cytoskeleton due to enhanced hydrostatic
pressure during contraction of cells [58,59]. In contrast with MVs and exosomes, apoptotic
bodies contain cellular organelles, chromatin, and a few glycosylated proteins [19,42,60,61].
Hence, higher levels of nuclear proteins (such as histones), mitochondrial proteins (such
as HSP60), Golgi, and endoplasmic reticulum-associated proteins (such as GRP78) are
expected to be observed in apoptotic bodies.

2. Tumor-Derived EVs

Tumor-derived EVs are distinguished from normal cell-secreted EVs due to the pres-
ence of unique tumor-specific ‘labels’ [62–65]. Tumor-derived EVs have been shown to
carry oncogenic proteins or nucleic acids (such as DNA, RNA, miRNAs, etc.) which fa-
cilitate tumor progression. Oncogenic bioactive molecules are enriched in tumor-derived
EVs compared to normal cell-derived EVs [66–68]. For example, chromosome segregation
1 like protein (CSE1L), a transmembrane protein, is enriched in tumor-derived EVs, not
only triggering Ras-dependent EVs biogenesis but also promoting metastasis of B16F10
and melanoma cells [69]. Adriamycin-resistant breast cancer cell-derived EVs were shown
to carry transient receptor potential cation channel subfamily C member 5 (TrpC5) and
to transfer of EV. TrpC5 confers endothelial cell resistance against chemotherapeutic reg-
imens [70]. On the other hand, the transfer of oncogenic nucleic acids such as miRNAs,
specifically miR-221 from highly aggressive breast tumor cells to nonaggressive cancer cells,
via EVs, contributing to the promotion of epithelial-to-mesenchymal transition (EMT) [71]
and leading to the induction of proliferation and metastasis while preventing drug-induced
apoptosis of EVs’ fused recipient cells [5]. Therefore, tumor cells more often induce onco-
genic transformations into normal healthy cells via the transfer of oncogenic bioactive
molecules through EVs [72,73].

3. Hematological Malignancies

Hematological malignancies are defined as tumors that commence in blood-forming
tissues, such as bone marrow or cells of the immune system, resulting in leukemias,
lymphomas, and myelomas [74,75]. Hematological malignancies are considered to be
among the leading causes of cancer-related deaths worldwide [76–78]. In the United
States itself, an estimated 184,710 new cases of hematological neoplasms were reported
with 57,380 deaths in 2023, and the incidence increases with age [79]. GLOBOCAN 2020
reported non-Hodgkin lymphoma to be the predominant hematological cancer worldwide
with 544,352 new cases and 259,793 deaths, followed by leukemia, with 474,519 new cases
and 311,594 deaths worldwide [80]. The outbreak of COVID-19 further increased the death
rate of patients suffering from various hematological malignancies [81–85].

EVs are known to play an important role in cell–cell communication via the transfer of
bioactive cargo molecules. However, the role of EVs in the crosstalk of tumor cells with
cells in the tumor microenvironment (TME) and other distant cells remains to be completely
determined in the context of the pathogenesis of hematological malignancies. The present
review highlights how hematological cancer cells communicate with the cells in the TME
and vice versa via the release of EVs. The first part of the review focuses on the modern
classification of hematological malignancies, followed by understanding the EVs’ role in
cell–cell and cell–extracellular matrix communication in the TME. The final part of the
review reveals how EVs could be used as biomarkers for hematological malignancies and
their contributions to drug resistance.
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4. Hematological Malignancies: The Modern Classification

Over the years, different classification schemes have been established to define various
hematological malignancies; however, the World Health Organization (WHO) classification
is the most prevalent [86]. Based on features such as morphology, lineage, clinical attributes,
cytogenetics, and molecular pattern, the WHO 5th edition (WHO5) broadly categorizes hema-
tological neoplasms into myeloid neoplasms, lymphoid neoplasms, myeloid/lymphoid neo-
plasms with eosinophilia and tyrosine kinase gene fusions, mastocytosis, histiocytic/dendritic
neoplasms, and mixed myeloid and lymphoid neoplasms [87,88]. In the present section, we
discuss a detailed classification of myeloid- and lymphoid neoplasms, followed by a brief
description of other hematological neoplasms (Table 1).

Table 1. Classification of hematological neoplasms according to World Health Organization, 5th
Edition [87,88].

Type Sub-Class Sub-Sub-Class Characteristics

Myeloid neoplasm MPN CML
Excessive granulocyte proliferation

leading to increased
myeloid maturation

Classic BCR:ABL1-negative
MPN: (1) PV Increased red blood cells

(2) ET Clonal disorder related
to thrombocytosis

(3) PF Polyclonal increase in fibroblasts
leading to BM fibrosis

CNL Overproduction of
matured granulocytes

CEL
Clonal proliferation of abnormal

eosinophils resulting
in hypereosinophilia

Myeloproliferative neoplasm,
unclassifiable

Does not have specific MPN
characteristics or possess overlapping

MPN features

MDS
According to genetic

abnormalities: (1) Low blasts
and isolated del(5q)

5q deletion, BMB < 5% in BM, and
PB < 2%, SF3B1/TP53 mutation

(2) Low blasts and
SF3B1 mutation

BMB < 5% and PB < 2%, SF3B1
mutation, ≥15% ring sideroblasts

(3) Biallelic TP53 inactivation
BMB and PB < 20%; copy number

loss/neutral results in loss of
heterozygosity, complex cytogenetics

According to morphology:
(1) Low blasts BMB < 5% and PB < 2%

(2) Hypoblastic BM cellularity < 20%

(3) MDS-IB

MDS-IB1: BMB 5–9% and PB 2–4%;
MDS-IB2; BMB 10–19% and PB

5–19%; MDS with increased blasts
and fibrosis: BM fibrosis with BMB

5–19% and PB 2–19%

AML AML with recurring genetic
abnormalities

Categorized into characteristic
chromosomal rearrangements and no

karyotypic abnormalities
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Table 1. Cont.

Type Sub-Class Sub-Sub-Class Characteristics

AML with myelodysplasia-
related features

Lacks genetic features of AML but
with history of MDS or MDS/MPN

Therapy-related AML Arises after chemo- or
radiation therapy

AML-NOS
With clinical, morphologic, and
immunophenotypic features but

lacking AML diagnostic karyotype

Myeloid sarcoma Tumor mass outside BM effaces
into tissues

Myeloid proliferation related
to DS DS, associated with increased AML

Myeloid neoplasm with
mutated TP53 MDS-mutated TP53 <10% blasts

MDS/AML-mutated TP53 10–19% blasts

AML-mutated TP53 >20% blasts

Lymphoid neoplasm Precursor lymphoid neoplasm B-cell ALL/LBL Arises from B-cell precursor,
representing most ALL/LBL

T-cell ALL/LBL Arises from T-cell precursor,
representing 15% ALL/LBL

Mature B-cell neoplasm CLL/SLL Small,
mature-appearing lymphocytes

LPL Derived from post-germinal center
of B-cells

Monoclonal gammopathy A type of lymphoid neoplasm for
primary cold agglutinin disease

Plasma cell neoplasm
Associated with terminally

differentiated germinal centers
of B-cells

Hairy cell leukemia Associated with post-germinal
centers of B-cells

MZL Associated with marginal zone of
matured B-cells

FL: (1) Classic FL Proliferation of centrocytes
and centroblasts

(2) FL grade 3B Uncontrolled proliferation
of centroblasts

(3) FL-unusual feature Comprising FL with blastoid features
and FL with diffused growth pattern

MCL Neoplasm of naïve and
antigen-presenting B-cells

DLBCL Neoplasm of matured B-cells

High-grade B-cell lymphoma Comprising aggressive BL and other
high-grade B-cell lymphoma

HL cHL

Germinal and post-germinal centers
of B-cells; again classified as nodular
sclerosis cHL, mixed cellularity cHL,

and lymphocyte rich- or
lymphocyte-depleted cHL
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Table 1. Cont.

Type Sub-Class Sub-Sub-Class Characteristics

NLPHL Associated with germinal
neoplastic B-cells

Matured T-cell/NK-cell
lineage lymphoma PTCL: (1) PTCL-NOS Not fitting the criteria of

T-cell lymphomas

(2) ALCL

According to the expression of ALK,
sub-categorized into “ALCL,

ALK-positive” or “ALCL,
ALK-negative” and “breast
implant-associated ALCL.”

(3) Follicular TH
Comprising AITL and related
follicular TH cell lymphomas

(4) Extranodal EBV-associated neoplasm arises in
lymph nodes

NK/T-cell lymphoma
nasal type

(5) Hepatosplenic
T-cell lymphoma

Aggressive and related to
immunosuppression

(6) Primary intestinal
T-cell lymphoma

Aggressive T-cell lymphoma in
intestinal tract

Primary cutaneous
T-cell lymphoma

Lymphoma of cutaneous
peripheral T-cells

ATL Associated with peripheral T-cells
from HTLV-1 infected CD4+ T-cells

TLGL leukemia Derived from clonally expanded
granular T-cells

T-cell
polymorphocytic leukemia

Highly aggressive, medium-sized
matured T-cells

NKLGL leukemia Aggressive, associated with
malignant NK-cells

Aggressive Aggressive, associated with
malignant NK-cells

Aggressive Nasal type, associated with
EBV infection

NK-cell leukemia

Myeloid and
lymphoid neoplasm

with eosinophilia and
TK gene fusion

HES Primary (or neoplastic)
Clonal eosinophilic expansion

reaching underlying stem cells and
myeloid and eosinophilic neoplasm

Secondary (or reactive)

Polyclonal eosinophilic expansion
mediated by overproduction of
eosinophilic cytokines during

parasitic infections; certain solid
tumor T-cell lymphomas

Idiopathic The underlying cause of HE
remains unknown

Specific syndrome associated
with HE -

Disease complications and clinical
presentation are not fully defined,

e.g., EGPA and
some immunodeficiencies



Biomolecules 2023, 13, 897 7 of 34

Table 1. Cont.

Type Sub-Class Sub-Sub-Class Characteristics

HEUS -

Persistent unexplained HE; difficult
to predict whether the patients will

develop clinical manifestations
leading to HES

Mastocytosis SM Indolent SM

70% of SM is found to be indolent SM,
which may or may not cause skin

lesions of maculopapular cutaneous
mastocytosis (MPCM)

Smoldering SM Rare, shows same phenotypic effects
as indolent SM

Aggressive SM

Highly aggressive, manifesting
round, rather than spindle-shaped,

mast cells with median survival from
month to years

MCL Same phenotypic responses as
aggressive SM

SM-AHN

Similar to SM phenotype but
requiring urgent treatment

depending on the disease stage in BM
and extracutaneous sites

Histiocytic or
dendritic neoplasm Histiocytic sarcoma -

Malignant proliferation of cells with
morphologic and immunophenotypic
features of mature tissue histiocytes

Tumors of Langerhans cells Langerhans cell histiocytosis Malignancies of cells expressing
CD1a, langerin, and S100

Langerhans cell sarcoma
High-grade malignancy with same

features as Langerhans
cell histiocytosis

Indeterminate dendritic
cell tumor -

Rare, involving proliferation of cells,
spindle-shaped to ovoid, similar

to IDC

Interdigitating dendritic
cell sarcoma

Very rare, involving spindle to ovoid
cells resembling interdigitating

dendritic cells

Follicular dendritic
cell sarcoma

Neoplastic proliferation of spindle to
ovoid cells; morphologically and
immunophenotypically similar to

follicular dendritic cells

Inflammatory
pseudotumor-like

follicular/fibroblastic
dendritic cell sarcoma

Neoplastic spindle cells residing in
lymphoplasmacytic infiltrate

involving liver and spleen

Fibroblastic reticular
cell tumor

Very rare, spindle cells with
cytokeratin involving skin, spleen,

and lymph nodes

Disseminated
juvenile xanthogranuloma

Proliferation and dissemination of
small oval histiocytes resembling

dermal juvenile xanthogranuloma of
skin and soft tissues
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Table 1. Cont.

Type Sub-Class Sub-Sub-Class Characteristics

Erdheim–Chester disease

Involving foamy histiocytes of bones
leading to clonal proliferation and

associated with heart, CNS,
and retroperitoneum

Mixed myeloid and
lymphoid neoplasm MPAL Ph+ MPAL With Philadelphia chromosome (Ph)

Ph− categories: (1) MPAL
with t(v;11q23.3);

KMT2A-rearranged

MPAL associated with detectable
t(v;11q23.3) and

KMT2A rearrangement

(2) MPAL B/myeloid NOS
MPAL with B-lymphoblast

immunophenotype lacking Ph
chromosome or t(v;11q23.3)

(3) MPAL T/myeloid, NOS
MPAL with T-lymphoblast

immunophenotype lacking Ph
chromosome or t(v;11q23.3)

Abbreviations not provided in the text nor in the table: BCR, B-cell receptor; ABL1, Abelson murine leukemia viral
oncogene homolog 1; SF3B1, splicing factor 3b subunit 1; TP53, tumor protein p53; EGPA, eosinophilic granulo-
matosis with polyangiitis; HEUS, hypereosinophilia of undetermined origin; SM-AHN, systemic mastocytosis
with an associated hematological neoplasm; IDC, indeterminate cells; CNS, central nervous system; KMT2A,
lysine methyltransferase 2A.

Myeloid neoplasms. This type of neoplasm is obtained from bone marrow progenitor
cells, which differentiate into megakaryocytes, granulocytes, erythrocytes, and monocytes.
Exceptions exist, such as chronic myeloid leukemia (CML), in which the originating cells
are pluripotent hematopoietic stem cells that differentiate into lymphoid cells. Myeloid
neoplasms are further classified as follows.

(1). Myeloproliferative neoplasms (MPNs): MPNs, a type of clonal stem cell disorder,
are caused by genetic mutations, resulting in abnormal activation of pro-growth signaling,
ultimately leading to uncontrolled proliferation of myeloid progenitors, such as megakary-
ocytes, granulocytes, or erythrocytes. MPNs are sub-classified into: (A) chronic myeloid
leukemia (CML)—caused by excessive proliferation of the granulocyte lineage, leading to
increased myeloid maturation, which is associated with the BCR:ABL1 fusion gene; (B) clas-
sic BCR:ABL1-negative MPNs—these neoplasms lack the BCR:ABL1 fusion gene, which
includes polycythemia vera (PV), characterized by increased red blood cells; essential
thrombocytopenia (ET), a clonal disorder associated with thrombocytosis; and primary
myelofibrosis (PF), caused by a polyclonal increase in fibroblasts leading to bone marrow
fibrosis; (C) chronic neutrophilic leukemia (CNL)—caused by overproduction of matured
granulocytes; (D) chronic eosinophilic leukemia (CEL)—caused by clonal proliferation of
morphologically abnormal eosinophils and their precursors, resulting in hypereosinophilia;
and (E) myeloproliferative neoplasm, unclassifiable—these neoplasms are classes of MPNs not
satisfying the criteria to categorize into specific MPN types or having overlapping MPN
subtype characteristics.

(2). Myelodysplastic neoplasms/syndromes (MDS): These neoplasms are caused by
ineffective blood cell production, leading to dysplasia or cytopenia and often resulting in
bone marrow failure. In accordance with WHO5, MDS are classified with respect to genetic
abnormalities or morphology. According to genetic abnormalities, MDS are subtyped into:
(A) MDS with low blasts and isolated del(5q)—5q deletion, bone marrow blasts (BMB) < 5%
in bone marrow and peripheral blasts (PB) < 2%; and SF3B1 or TP53 mutation; (B) MDS
with low blasts and SF3B1 mutation—absence of 5q deletion, BMB < 5% and PB < 2%, SF3B1
mutation, and ≥15% ring sideroblasts; and (C) MDS with biallelic TP53 inactivation—equal
to or more than two TP53 mutations or one mutation with TP53 copy number loss or copy
neutrality, resulting in loss of heterozygosity, complex cytogenetics, BMB, and PB < 20%.
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Morphologically defined MDS can be classified into: (A) MDS with low blasts—BMB < 5%
and PB < 2%; (B) MDS hypoblastic—BM cellularity < 20%; and (C) MDS with increased
blasts (MDS-IB)—these neoplasms include MDS-IB1, BMB blasts 5–9%, and PB blasts 2–4%;
MDS-IB2, BMB blasts 10–19%, and PB blasts 5–19%; MDS with increased blasts and fibrosis;
BM fibrosis with BMB blasts 5–19%; and PB blasts 2–19%.

(3). Acute myeloid leukemia (AML): These neoplasms are characterized by highly ag-
gressive and genetically heterogenous myeloid malignancies. They are further classified as:
(A) AML with recurrent genetic abnormalities—caused by genetic abnormalities and subcatego-
rized into characteristic chromosomal changes due to inversions or reciprocal chromosomal
rearrangements and no associated karyotypic abnormalities; (B) AML with myelodysplasia-
related features—observed in patients with a history of MDS or MDS/myeloproliferative
neoplasms (MPNs) and lacking the genetic features of AML; (C). therapy-related AML—
complications arise after treatment with chemo- or radiation therapy; (D) AML not otherwise
specified (NOS)—having recognizable clinical, morphologic, and immunophenotypic fea-
tures but lacking karyotypic and diagnostic features of AML; (E) myeloid sarcoma—these
neoplasms are masses of tumor blasts outside the bone marrow but effacing into the tissues;
and (F) myeloid proliferations related to Down syndrome (DS)—occurring in Down syndrome,
which is associated with an increased risk of AML.

(4). Myeloid neoplasms with mutated TP53: These neoplasms are new types of myeloid
neoplasms, which are further classified as MDS, MDS/AML, and AML depending on TP53
mutations and blast counts. They are categorized into—MDS with mutated TP53, <10% blasts;
MDS/AML with mutated TP53, 10–19% blasts; and AML with mutated TP53, >20% blasts.

Lymphoid neoplasms. Lymphoid neoplasms are typical types of cancer, affecting cells
that normally give rise to B-lymphocytes, such as lymphocytes; plasma cells; and T-
lymphocytes, such as Treg, TH, and TC. Depending on the B-cell and T-cell/NK-cell
lineage, lymphoid neoplasms can be classified into precursor lymphoid neoplasms, mature
B cell neoplasms, Hodgkin lymphoma, and mature T cell or NK cell lineage neoplasms.

(1). Precursor lymphoid neoplasms: These neoplasms are highly aggressive and are
referred to as acute lymphoblastic leukemia/lymphoblastic lymphoma (ALL/LBL) because
they evolved from either leukemic or lymphatic cells. They are further classified as—B-cell
ALL/LBL—arising from precursor B-cells and representing most of ALL/LBLs; and T cell
ALL/LBL—derived from T-cell precursors comprising 15% all ALL/LBL populations.

(2). Mature B-cell neoplasms: According to WHO5, lymphoid neoplasms of matured
B-cells are further classified as: (A) chronic lymphocytic leukemia (CLL)/small lymphocytic
lymphoma (SLL)—small, matured-appearing lymphocytes; (B) lymphoplasmacytic lymphoma
(LPL)—derived from post-germinal centers of B-cells; (C) ,monoclonal gammopathies—a new
subtype of lymphoid neoplasms for primary cold agglutinin disease, which are further
classified as primary cold agglutinin disease, monoclonal gammopathy of undetermined
significance (MGUS) of non-IgM type, or amyloidosis; (D) plasma cell neoplasms—related to
terminally differentiated germinal centers of B-cells secreting monoclonal IgM; (E) hairy
cell leukemia—tumors related to the post-germinal centers of B-cells with the appearance
of a hairy morphology; (F) marginal zone lymphoma (MZL)—neoplasms associated with a
marginal zone of matured B-cells; (G) follicular lymphoma (FL)—the most common lym-
phoma, which is associated with the neoplastic germinal center of B-cells and further
classified as—classic FL, proliferation of small (centrocytes) and large (centroblasts) neo-
plastic follicular cells; FL grade 3B, uncontrolled proliferation of centroblasts; and FL with
unusual features, comprising FL with blastoid features and FL with predominantly diffuse
growth pattern; (H) mantle cell lymphoma (MCL)—related to neoplasms of naïve B-cells
and antigen-stimulated B-cells; (I) diffuse large B-cell lymphoma (DLBCL)—associated with
matured B-cells; and (J) high-grade B-cell lymphomas—comprising Burkitt lymphoma (BL), a
highly aggressive B-cell neoplasm; and other high-grade B-cell lymphomas associated with
MYC and BCL-2 rearrangements.

(3). Hodgkin lymphoma (HL): These neoplasms are derived from germinal center
and post-germinal center B-cells, comprising the minority population of neoplastic lym-
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phomas and subdivided into: (A) classic HL (cHL)—further classified into nodular sclero-
sis cHL, mixed cellularity cHL, lymphocyte-rich cHL, or lymphocyte-depleted cHL; and
(B) nodular lymphocyte-predominant HL (NLPHL)—these neoplasms are uncommon, retaining
immunophenotypic features of germinal neoplastic B-cells.

(4). Mature T-cell or NK-cell lineage lymphomas: These neoplasms are further catego-
rized into: (A) peripheral T cell lymphoma (PTCL)—comprising peripheral T cell lymphoma
that does not fit the criteria of T-cell lymphoma, NOS; anaplastic large cell lymphoma
(ALCL)—according to the expression of anaplastic lymphoma kinase (ALK), these neo-
plasms are subcategorized into “ALCL, ALK-positive” or “ALCL, ALK-negative”; and
“breast implant-associated ALCL”; and follicular helper T-cell lymphoma—including “an-
gioimmunoblastic T-cell lymphoma (AITL)” and related follicular TH cells; extranodal NK-
/T-cell lymphoma, nasal type—these neoplasms are Epstein–Barr virus (EBV)-associated
neoplasm arises in the lymph nodes; subcutaneous panniculitis-like T cell lymphoma;
hepatosplenic T-cell lymphoma—highly aggressive and related to immunosuppression;
and primary intestinal T-cell lymphomas—aggressive T-cell lymphomas in the intestinal
tract; (B) primary cutaneous peripheral T-cell lymphomas—related to cutaneous peripheral
T-cells; (C) adult T-cell leukemia-lymphoma (ATL)—associated with peripheral T-cells orig-
inating from T-cell leukemia virus (HTLV) type 1-infected CD4+ T-cells; (D) T-cell large
granular lymphocyte (TLGL) leukemia—developed from clonally expanded large granular
T-cells; (E) T-cell prolymphocytic leukemia—highly aggressive and comprising medium-sized
matured T-cells; (F) NK-cell large granular lymphocyte (NKLGL) leukemia—highly aggressive,
associated with malignant NK-cells; and (G) aggressive NK-cell leukemia—considered a nasal
type since more often shown to be associated with EBV infection.

Myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase (TK) gene fusions.
Eosinophilia is defined as an increase in eosinophil count in the peripheral blood and
tissues. More often, myeloid/lymphoid neoplasms are shown to be associated with hyper-
eosinophilia (HE), which is defined as an absolute eosinophil count (AEC) >1.5 × 109/L
in the peripheral blood and hypereosinophilic syndrome (HES) in a situation of HE in
which eosinophil-mediated organ damage or dysfunction is observed. According to the
pathogenic mechanisms leading to the expansion of eosinophils, HES are subclassified
as primary, secondary, and idiopathic. According to the gene fusion and rearrangements of
PDGFRA, PDGFRB, JAK2, FGFR1, ETV6:ABL1, and FLT3, WHO5 defined these types of
neoplasms as a separate class. A brief classification of these hematological neoplasms is
shown in Table 1.

Mastocytosis. These neoplasms are rare, heterogenous forms of neoplasms, resulting
from neoplastic mast cells in tissues and various organs. Constitutive activation of KIT
receptor is shown to contribute to this form of hematological neoplasm. WHO5 classified
this type of neoplasm into cutaneous mastocytosis (CM), in which the disease is limited to
skin only; and systemic mastocytosis (SM), involving extracutaneous organ infiltration. A
brief discussion is provided in Table 1.

Histiocytic/dendritic neoplasms. This type of neoplasm is related to cells that have de-
veloped into antigen-presenting dendritic cells and tissue macrophages, further classified
in Table 1. The MAPK pathway has been shown to play an important role in histio-
cytic/dendritic neoplasms.

Mixed myeloid and lymphoid neoplasms. Sometimes, neoplasms express the markers of
myeloid and lymphoid cells or none, with examples being “acute undifferentiated leukemia”
and “mixed phenotype acute leukemia (MPAL).” A detailed classification is shown in Table 1.

5. EVs in Cell-Cell and Cell-Extracellular Matrix Communication in the TME

The TME is the environment surrounding the tumor cells in the body [89,90]. It consists
of immune cells, stromal cells, fibroblasts, extracellular matrix (ECM), and cells of the blood
and lymphatic vessels [89,90]. Tumor cells and their TME are in constant interaction, thereby
regulating each other either positively or negatively [91]. Dynamic interaction between cancer
cells and TME components not only supports tumor growth and development [92,93] but also
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promotes local invasion and metastatic dissemination of cancer [94,95]. In hypoxic and acidic
conditions, the TME often promotes angiogenesis, a process of restoring nutrient and oxygen
supply, as well as removing metabolic waste [96–98]. Additionally, the infiltration of various
immune cells into the TME performs various pro- and anti-tumorigenic functions [99–102].
EVs play an important role in intercellular communication via the transfer of bioactive cargo
molecules between cells [103]. Tumor-derived EVs also act as a communicating vehicle
between cancer cells and cells in the TME and in some instances also with distant cells. On
the other hand, cells in the TME often release EVs that interact with tumor cells, influencing
tumor development and progression.

Effects of hematological malignancy-derived EVs on immune cells. Immune cells play a
major role in the elimination of tumors through diverse mechanisms, and the evasion
of immune surveillance serves as an important step for developing tumor niches and
successful establishment of tumors. Immune evasion, a strategy facilitated by tumor-
derived EVs is utilized in different ways to target various immune cells (Figure 2). Tumor-
derived EVs, through their receptor-mediated uptake, can introduce several suppressive
factors, e.g., miRNA, DNA, pro-apoptotic factors, metabolites, and various enzymes, into
immune cells (Table 2). They can also alter the activation of immune cells through inhibitory
cell surface receptors [104–107].
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Figure 2. Effect of EVs generated during hematological malignancies on different immune cells. EVs,
derived from tumor cells not only (1) induce apoptosis of T-cells, but also reduce T-cell (2) migration
and (3) proliferation. Moreover, tumor-derived EVs (4) decrease the cytotoxicity of NK-cells and
(5) restrain the processing of antigen by APCs. On the other hand, tumor-derived EVs (6) induce
immunosuppressive functions of MDSCs, as well as (7) promote MDSCs growth. Again, tumor-
derived EVs (8) not only prevent the generation of ROS in macrophages but also (9) promote
macrophages’ pro-inflammatory response. (10) The differentiation of monocytes into dendritic cells
is often perturbed by the incorporation of tumor-derived EVs into monocytes. All of these processes
contribute to the development and progression of the tumor.
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In activated T-cells, tumor-derived EVs induce the down-regulation of CD3ζ and JAK3
expression via transcriptional regulation, thereby facilitating Fas/FasL-mediated apoptosis
of CD8(+) T-cells [108]. Chronic lymphocytic leukemia (CLL)-derived EVs were shown to
down-regulate CD69 expression in T-cells via miR-363 transfer, thereby affecting effector T-
cell migration [109–111]. Tumor cells are often shown to evade the host immune system via
the activation of the PD-L1/PD-1 pathway. PD-L1 is expressed on the surfaces of various
tumor cells, whereas its receptor, PD-1, is present on T-cells. PD-L1 binding to PD-1 results
in the apoptosis of T-cells, thereby evading host immune responses. The upregulation
of PD-1 has been observed in various T-cell populations after exposure to diffuse large B
cell lymphoma (DLBCL)-derived EVs [112]. EVs released from B-cell lymphoma (BCL)
under chemotherapy are enriched with CD39 and CD73, and they hydrolyze ATP, which is
generated from chemotherapy-treated tumor cells and transformed into adenosine [113],
which in turn affects the immune system by inhibiting T-cell activity and proliferation [114].

Table 2. The effect of EVs, derived from hematological malignancy on immune cell function.

Originating Cells Effector Cells Malignancies Functions References

Leukemic cells CD8(+)T-cells Solid tumors or AML

Down-regulates CD3ζ and
JAK3 expression and promotes

Fas/FasL-mediated
T-cell apoptosis

[108]

Leukemic cells CD4(+)T-cells CLL

Down-regulates CD69
expression via miR-363

transfer and affects effector
T-cell migration

[109–111]

Lymphoma cells T-cells DLBCL
Induces PD-1 expression in

T-cells and enhances
T-cell apoptosis

[112]

Lymphoma cells T-cells BCL

Carries CD39 and CD73 and
hydrolyzes ATP to generate
adenosine to inhibit T-cell
activity and proliferation

[114]

Lymphoma cells NK-cells, APCs BCL, TCL

Carries MHC, APO2L, FASL,
TCR, and NKG2D and inhibits

NK-cells cytotoxicity and
antigen processing of APCs

[115–117]

Non-leukemic cells NK-cells CLL

Carries BAG6 and activates
NK-cells, but activated
NK-cells are eliminated

by lymphocytes

[118]

Myeloma cells MDSCs, MM Induces growth and
immunosuppressive activity [119,120]

NK-cells, Reduces NK-cells’ cytotoxicity [121]

Immune cells

Carries ectoenzyme, CD38,
which converts nucleotides
into adenosine to suppress

immune system

[122]

Leukemic cells NK-cells AML EVs’-bound TGFβ1 reduces
NK-cells’ cytotoxicity [123]

Lymphoma cells Monocytes -

Releases TNF-α, IL-1β, and
IL-6 and prevents monocyte

differentiation into
dendritic cells

[124]
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Table 2. Cont.

Originating Cells Effector Cells Malignancies Functions References

Lymphoma cells Macrophages DLBCL
Transfers MyD88 and

stimulates pro-inflammatory
NF-κB signaling pathway

[125]

Leukemic cells Macrophages CML

Polarizes macrophages to
M2-phenotype to induce

TNF-α and IL-10 expression
and down-regulates NO and

ROS generation

[126]

Tumor cells Neutrophils CAT
Promotes NET formation,

reduced generation of
suppressor cells

[127–129]

Lymphoma cells MDSCs Lymphoma Carries HSP72 and promotes
suppressive functions [124]

Abbreviations of malignancies: AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse
large B cell lymphoma; BCL, B-cell lymphoma; TCL, T-cell lymphoma; MM, multiple myeloma; CAT, cancer
associated thrombosis; CML, chronic myelogenous leukemia.

EVs are known to carry surface receptors of the originating cells. For example, EVs
from B- and T-cell lymphomas are capable of carrying cell surface molecules, such as
major histocompatibility complex (MHC), Apo2 ligand (APO2L), Fas ligand (FASL), T-cell
receptor (TCR), and natural-killer group-2 member-D (NKG2D), which not only inhibit the
cytotoxicity of NK-cells, thereby promoting T-cell apoptosis, but also down-regulate the
processing of antigens by antigen presenting cells (APCs) [115–117]. The plasma soluble
ligand, BAG6, in CLL patients binds to the receptor NKp30 on NK-cells, causing NK-cell
inactivation [118]. In contrast, BAG6, carried by the EVs, activates NK cells, which have
the ability to kill tumor cells [118]. Hence, the dysregulated balance between the soluble
form of BAG6 and its EVs’ bound form determines the immune evasion of CLL. EVs from
multiple myeloma (MM) cells suppress the immune system through different mechanisms.
First, MM-derived EVs enhance the growth and immunosuppressive activity of myeloid-
derived suppressor cells (MDSCs) in both in vitro and in vivo MM xenograft murine
models [119,120]. Second, EVs from MM cells reduce NK-cells’ cytotoxic activity [121].
Third, the ectoenzyme, CD38, on MM-derived EVs converts nucleotides into adenosine,
which is a well-known suppressor of the immune system [122].Finally, CD38-positive EVs
were shown to be internalized by FcR-positive cells, such as monocytes, MDSCs, and NK
cells, after binding to an anti-CD38 mAb (daratumumab), although the effects are still
under investigation [123]. TGFβ1, on the other hand, was shown to play an important role
in immune-evasive mechanisms of leukemic EVs [130]. EVs from the sera of acute myeloid
leukemia (AML) patients are enriched with membrane-bound TGFβ1, which significantly
reduces the killing properties of NK-cells [131]. Moreover, TGFβ1 on chronic myelogenous
leukemia (CML) EVs stimulates the proliferation and colony formation of CML cells [130].

Monocytes are the highly dynamic cells differentiated into macrophages and dendritic
cells to effectively protect the body from tumor assault. The fusion of lymphoma-derived
EVs with monocytes results in the release of TNF-α, IL-1β, and IL-6, which in turn impair
monocytic differentiation into dendritic cells [123]. DLBCL-derived EVs readily transfer
MyD88 to the macrophages, thereby stimulating the pro-inflammatory signaling pathway,
NF-κB, independent of TLR and IL-1R activation [125]. Similarly, CML-derived EVs have
been demonstrated to alter the macrophage polarization to a more M2 phenotype within
the tumor microenvironment, hence demonstrating up-regulation of IL-10 and TNF-α ex-
pression while down-regulating macrophage NO and ROS generation [126]. More often, in
a tumor environment, M2 macrophages are converted into tumor-associated macrophages
(TAMs) with the potential of releasing pro-tumorigenic growth factors, cytokines, and
chemokines to enhance tumor progression [132–135].



Biomolecules 2023, 13, 897 14 of 34

Like monocytes, granulocytes, such as neutrophils, are highly plastic cells that can be
readily influenced by tumor-derived EVs. Tumor-derived EV-treated neutrophils have been
shown to promote NET formation and reduce the generation of suppressor cells, which are
beneficial for tumor progression [127–129].

MDSCs, the primary cells associated with reducing the tumorigenicity of T-cells and
NK-cells, have been shown to be modulated by heat shock proteins (HSPs) inside the EVs,
such as HSP70 and HSP72 [124,136,137].

Crosstalk between tumor cells and stromal cells through EVs. Stromal cells refer to a
highly heterogenous population of cells that provide structural and physiological support
for hematopoietic cells. In cancer, stromal cells often contribute to disease progression
by supporting growth, development, and metastasis of tumors (Figure 3). Table 3 also
summarizes interactions between tumor cells with cells in the TME via the release of EVs.
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Figure 3. Crosstalk between tumor cells and cells in the TME through EVs. (1) EVs derived from
tumor cells (tEVs) target stromal cells to release VEGF, which in turn induces growth of the tumor.
tEVs induce the conversion of stromal cells into CAFs, which promote (2) tumor metastasis and
angiogenesis. Moreover, tEV-fused stromal cells (3) induce the rate of aerobic glycolysis in tumor
cells. On the other hand, (4) stromal cell-derived EVs (sEVs) promote proliferation and migration
and confer drug resistance to tumor cells. (5) tEVs, upon fusion with endothelial cells, often promote
angiogenesis, whereas (6) tEV-fused endothelial cells in turn contribute to tumor growth. (7) tEVs
also promote the growth and migration of osteoclasts. More often, tEVs are shown to induce genomic
instability in (8) several mononuclear cells and (9) fibroblasts, resulting in their transformation into
pro-cancerous cells. (10) On the other hand, fibroblast-derived EVs (fEVs) induce the proliferation of
the tumor. (11) Moreover, tEVs are also shown to induce the proliferation of MSCs, which in turn
contribute to the progression of the tumor.

In CLL patients, activation of the tumor microenvironment, thereby promoting disease
progression, is favored by tumor cell-secreted EVs [138]. CLL-derived EVs activate the
AKT survival pathway in stromal cells, in turn releasing vascular endothelial growth factor
(VEGF), thereby contributing to tumor survival [139]. Again, CLL-derived EVs facilitate
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the conversion of stromal cells into cancer-associated fibroblasts (CAFs), promoting tumor
metastasis and angiogenesis [140,141].

In acute lymphoblastic leukemia (ALL), EV-mediated transfer of galectin 3 (GAL3)
from stromal cells to ALL cells stimulates endogenous GAL3 expression, which confers
protection against drug treatment [142]. On the other hand, EVs derived from ALL cells
induce a metabolic shift from oxidative phosphorylation to aerobic glycolysis in stromal
cells [143].

Table 3. Tumor cells communicate with the stromal cells and vice versa via EVs transfer.

Originating Cells Effector Cells Malignancies Functions References

Tumor cells Stromal cells CLL
Tumor-derived EVs induce

stromal cells to release VEGF
to promote tumor survival

[139]

Tumor cells Stromal cells CLL

Tumor-derived EVs convert
stromal cells into CAFs,

thereby promoting metastasis
and angiogenesis

[140,141]

Stromal cells Cancer cells ALL

Stromal cell-derived EVs
induce GAL3 expression in
cancer cells, hence inducing

drug resistance

[142]

Tumor cells Stromal cells ALL

Switch oxidative
phosphorylation to aerobic

glycolysis in favor of
cancer progression

[143]

Stromal cells Tumor cells MM
Stromal cells from MM induce
proliferation, migration, and

survival of tumor cells
[144]

Tumor cells Endothelial cells MM

Tumor cell-derived EVs in
hypoxic conditions affect
miR-135b, targeting HIF-1

pathway to promote
angiogenesis

[145]

Tumor cells Endothelial cells MM

Tumor cell-secreted EVs
activate endothelial STAT3
pathway, which promotes

angiogenesis and
tumor growth

[146]

Tumor cells Osteoclasts MM
MM-derived EVs support

osteoclast growth
and migration

[147]

Fibroblasts Tumor cells MM

EVs carry clBcl-xL, which
helps in EV uptake by the

tumor cells to promote
tumor proliferation

[148]

Tumor cells MSCs ATL

Tumor cell-derived EVs
transfer miR-155 and miR-21

to the MSCs, thereby inducing
MSC proliferation

[149]

Leukemic CD34+ cells MSCs AML

AML CD34+ cell-derived EVs
reduce further development of

CD34+ cells from MSCs
via miR-7977

[150]
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Table 3. Cont.

Originating Cells Effector Cells Malignancies Functions References

MSCs CD34+ cells MPN

EVs carry miR-155 from MSCs,
increasing granulocyte CFU

numbers in neoplastic
CD34+ cells

[151]

Leukemic cells MSCs CML
CML-derived EVs induce IL-8

release from MSCs, thereby
promoting CML survival

[152]

BCR-ABL + tumor cells Mononuclear CML
Induce genome instability,

leading to malignant
transformation of cells

[153]

Tumor cells Fibroblasts TCL, CML

Transfer of hTERT mRNA via
the EVs results in induced
hTERT expression in the

fibroblasts, leading to
genome instability

[154,155]

Abbreviations of malignancies: CLL, chronic lymphocytic leukemia; ALL, acute lymphocytic leukemia; MM, multiple
myeloma; ATL, adult T-cell leukemia/lymphoma; AML, acute myeloid leukemia; MPN, myeloproliferative
neoplasm; CML, chronic myelogenous leukemia, TCL, T-cell leukemia.

In the case of MM, stromal cell-derived EVs from MM induce proliferation, migration,
and survival of tumor cells, whereas normal stromal cell-secreted EVs prevent tumor
proliferation [144]. Under hypoxic conditions, MM-derived EVs were shown to affect
miR-135b, which targets the HIF-1 pathway to induce tumor angiogenesis [145]. In another
study, MM-derived EVs were reported to modulate the STAT3 pathway in endothelial cells,
not only promoting angiogenesis but also inducing tumor growth via the release of VEGF
and IL-6, respectively [146]. Moreover, EVs from MM are also capable of inducing growth
and migration of osteoclasts (OCs), thus promoting the development of bone diseases in
MM patients [147]. Stromal fibroblast-derived EVs actively carry Bcl-xL and its cleaved
counterpart, clBcl-xL, facilitating the uptake of EVs by MM cells, hence promoting tumor
proliferation [148].

Tumor cells from adult T-cell leukemia/lymphoma (ATL) often release miR-155 and
miR-21 through EVs, triggering mesenchymal stem cell (MSC) proliferation and aiding
the development of a friendly environment for leukemic progression [149]. Another study
indicated that AML CD34+ cell-derived EVs efficiently transfer miR-7977 to MSCs to reduce
proliferation of CD34+ cells [150].

miR-155 is found to be selectively packaged in the EVs of MSCs from myeloprolif-
erative neoplasms (MPNs), increasing granulocyte CFU numbers in neoplastic CD34+
cells [151]. Moreover, leukemic cell survival in CML is enhanced by IL-8 production from
MSCs upon incorporation of CML cell-derived EVs [152]. Another study showed that EVs
from BCR-ABL+ CML tumor cells induced genomic instability in normal mononuclear
cells, leading to malignant transformations [153]. Additionally, hTERT mRNA is known to
be transported from TCL and CML cells to fibroblasts via EVs, leading to ectopic hTERT
expression in fibroblasts [154] and a resultant switch to a tumor-like phenotype [155].

Interaction of EVs with the endothelium in the context of hematological malignancies. Hema-
tological neoplasm-derived EVs are believed to communicate with the cells of the endothe-
lium and vice versa. Hematological tumors, endowed with angiogenic-promoting ability,
are dependent on the vascular endothelium for growth, migration, and invasion [156]. More
often, tumor-EVs have been shown to activate the endothelial cells, contributing to tumor
angiogenesis, whereas endothelial EVs in the TME induce tumor cells to remodel ECM com-
ponents, thereby providing supplements for the growth of the tumor [157]. For example,
EV-mediated transfer of VEGF and VEGF receptor from AML to endothelial cells promotes
endothelial glycolysis, leading to vascular remodeling and chemoresistance [158,159]. Mul-
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tiple signaling pathways appear to be regulated in MM, leading to increased viability of
a bone marrow endothelial cell line (STR10), enhanced, angiogenesis and immunosup-
pression, further facilitating the progression of MM [120,159]. Piwi-interacting RNA-823
(piRNA-823), essentially carried by MM-derived EVs, transforms the endothelial cells, in
turn promoting MM growth [159,160]. However, treatment of MM with a protease inhibitor,
bortezomib, bestowed anti-angiogenic properties on MM-derived EVs [161]. CML-derived
EVs induce the expression of VCAM-1 and IL-8 in endothelial cells, thereby promoting
angiogenesis [162]. However, pretreatment of CML cells with curcumin decreases endothe-
lial proliferation and migration via the release of miR-21-enriched EVs [163]. Moreover,
CML-EVs, packaged with miR-126, have been found to negatively regulate the expres-
sion of VCAM-1 and CXCL12 in endothelial cells, thereby restricting CML motility and
adhesion [159,164]. In CLL, tumor-derived EVs are shown to up-regulate the expression of
ICAM-1, CXCL1, and IL-34 in endothelial cells, leading to angiogenesis and CLL prolifera-
tion [140]. In PML, EVs carry a significant amount of retinoic acid receptor-α (RAR-α), and
the transfer of PML-EVs’ RAR-α to the endothelial cells results in the acquisition of tissue
factor, hence imparting pro-coagulant properties to the endothelial cells [159,165].

Interaction of EVs with extracellular matrix (ECM). ECM, the physical scaffold, plays a
pivotal role not only in the communication of cells with nearby cells but also in the growth,
function, and movement of cells [166–168]. Tumor cells often communicate with the ECM
via the release of EVs [169,170]. For example, surface heparan sulfate (sHS)-positive EVs
from MM cells bind to one ECM component, fibronectin, thereby acting as a ligand for
sHS-positive target cells. The binding of EVs’ fibronectin with sHS-positive cells triggers
the activation of MAPKs (p38 and ERK1/2), resulting in the production of MMP-9 and
DKK1, which essentially regulate the invasion of MM cells [171]. Cancer cell-derived EVs
often induce the secretion of EMMPRIN, MMP-9, and IL-6 from human monocytic cell lines,
thereby modulating the ECM to promote migration and inflammation, ultimately leading
to tumor progression [172]. CD30+ EVs have often been shown to stick to long actin or
tubulin protrusions of HL cells grown in 3D-matrigel or tissues, which could be a guiding
mechanism of EVs to reach distant cells, thereby enabling cell–cell communication [173].
Figure 4 illustrates the contribution of EVs to the progression of hematological tumors by
interacting with the ECM.

EVs in lymphatic malignancies. Lymphoma is a hematological malignancy associated
with the lymphatic system [174,175]. A growing body of evidence has indicated that EVs
actively participate in the pathogenesis of various lymphomas [176,177]. The incorporation
of EVs, generated from EBV-associated lymphomas into monocytes or macrophages, trans-
forms the immune regulatory mechanisms, leading to tumor evasion [178]. Lymphoma-
derived EVs have often been shown to promote the angiogenic process by delivering
angiogenic mRNA, miRNA, and proteins such as VEGF [179]. EBV lymphoma-induced
macrophages have been shown to release secreted phospholipase A2 of group X (sPLA2-X),
which hydrolyzes lymphoma-derived EVs’ phospholipids, thereby allowing for better
uptake of EVs and associated lipid mediator signaling in TAMs, contributing to lymphoma
growth [180]. HL-derived EVs were demonstrated to be internalized by TME fibroblasts
and promote the release of pro-inflammatory cytokines, growth factors, and angiogenic
factors, which together contribute to growth of lymphomas [181]. Moreover, HL-derived
large EVs were shown to promote the release of IL-1β from monocytes depending on CD44
transfer, whereas both large and small HL-EVs confer immunomodulatory effects through
eATP [182]. A recent study indicated that plasma EVs of pediatric HL can be used as a
potential biomarker for relapse occurrence of HL [183]. DLBCL-derived EVs were found
to be taken up by the tonsillar cells and stromal cells, which contribute to the progression
of DLBCL [184]. Moreover, the PD-L1+ EV population was shown to be elevated in the
plasma of DLBCL patients and could serve as a biomarker for DLBCL [185]. A recent study
also indicated that DLBCL-tumor-derived EVs carry miR-125b-5p, which is readily taken
up by DLBCL cells and reduces DLBCL sensitivity to rituximab via miR-125b-5p-mediated
targeting of TNFAIP3, reflecting the ability of DLBCL-EVs to influence other cells in the
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TME [186]. Burkitt lymphoma-derived EVs not only inhibit autophagy and apoptosis but
also promote lymphoma growth via miR-106a-mediated targeting of Beclin1 [187].
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Figure 4. The interaction of HM-derived EVs with ECM leads to tumor progression. 1. HL-derived
CD30+ EVs invade through ECM to reach distant innate immune cells (here shown is a dendritic
cell, for example) that are positive for CD30 ligand (CD30L+), leading to tumor cell–immune cell
interaction. 2. HM cells, such as MM-released sHS+ EVs, interact with ECM fibronectin, which
further interacts with other ECM cells, thereby releasing MMP-9 and DKK1, which contribute to
MM invasion through ECM. 3. HC-derived EVs induce monocytes to secrete EMMPRIN, MMP-9,
and IL-6, which not only promote tumor invasion but also influence tumor inflammation, ultimately
leading to tumor progression through ECM.

6. EVs: The Biomarker of Hematological Malignancies: Contribution in Drug Resistance

EVs as biomarkers. Biomarker identification, expressed differentially in different cell
populations, as well as patients, is of prime importance for the diagnostic, prognostic, and
therapeutic relevance of cancer. EVs carrying bioactive molecules such as proteins, DNA,
RNA, miRNAs, etc., of the originating cells serve as excellent biological markers for the
detection of cancer [188]. The release of EVs has been shown to be increased significantly
during the development of cancer; hence, EVs in the body fluids of cancer patients serve
as prognostic biomarkers for cancer [189–191]. The half-life of an EV-based biomarker
is relatively longer since the content of the EVs is protected from extracellular proteases
and nucleases, contributing to biomarker stability [192]. More often, at the disease stage,
response to therapy, tumor burden, and survival are determined by the total protein content
of the EVs from the plasma of melanomas and other solid tumors [131,193,194]. A detailed
discussion about how EVs can be considered biomarkers in the context of different types of
hematological malignancies appears below.

AML. EVs’ protein content in AML reflects the extent of the disease and correlates with
the post-therapy likelihood of relapse. Low protein-containing EVs predict the long-term
disease survival of AML. Moreover, a high level of TGF-β is observed in the EVs of AML
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patients upon diagnosis, which is dramatically reduced following chemotherapy, suggest-
ing that EVs’ TGF-β levels mark the effect of chemotherapy in AML [189]. Moreover, EVs
in the circulation of AML patients have been shown to be enriched with CD13, CD117, and
CD34 [195,196]. EVs from AML cells also carry signature mRNA and miRNA molecules,
thereby plausibly serving as future biomarkers [197].Signature mRNA molecules in the
circulating EVs of AML patients often aid in the diagnosis and treatment of AML patients.
For example, EVs’ FLT3-ITD and NPM1 mRNAs serve for determining AML prognosis;
FLT3-ITD, IGF-IR, and CXCR4 mRNAs help in AML treatment, whereas IGF-IR, CXCR4,
and MMP4 mRNAs aid in understanding the behavior of the tumor niche [197]. Moreover,
miRNAs, such as miR-155, have been shown to be over-expressed in the serum EVs of
AML patients compared to healthy individuals [198]. Therefore, AML-derived EVs could
serve as diagnostic and prognostic biomarkers [131].

CML. CD13+ EVs were found to be up-regulated in the sera of CML patients compared
to healthy individuals [195]. miR-215 is up-regulated in the plasma EVs of CML patients,
and after successful treatment with imatinib, EVs’ miR-215 level is significantly reduced,
serving as a predictor of successful treatment and discontinuing the drug [199].

MM. In the case of MM, plasma EVs, enriched with CD38, CD138, and superfi-
cially CD147, are considered to be biomarkers at different stages of the diseased con-
dition [66,195,200]. For example, CD38+ EVs are associated with the clinical stages, and
CD138+ EVs are correlated with disease stages and therapeutic response, whereas CD147+
EVs are related to the progression of MM. Moreover, CD44 enriched plasma EVs of MM
patients are considered to be novel biomarkers for MM [201]. On the other hand, de-
creases in let-7b and miR-18a in the plasma EVs are associated with poor survival of MM
patients [202].

CLL. Total EV populations in the plasma of CLL patients not only positively corre-
late with the advanced stages and overall patient survival but also with the duration of
treatment in the initial stages of CLL [203]; these EVs are positive for CD19 and CD37.
Another group reported that the level of plasma CD52+ EVs is increased in CLL patients
and can be used as a predictive biomarker for CLL [139]. Furthermore, a moderate to
high level of CD19, CD5, CD44, CD31, CD55, CD82, CD62L, HLA-A, B, C, and HLA-DR
expression and a low level of CD49c, CD21, and CD63 expression was observed in CLL-EVs,
which could be used as biomarkers for CLL [204]. A separate report indicated that EVs’
miR-155 could be considered a biomarker for patients suffering from B-cell CLL [205].
Chemotherapy-resistant individuals were found to high higher miR-155-laden EVs in
the plasma, whereas their population was dramatically reduced in patients experiencing
complete response [205].

HL. Patients with higher HL stages were shown to have a reduced level of CD30+
[a marker for Hodgkin and Reed–Sternberg (HRS) cells] EVs in the plasma [195]. The
presence of miR-155, miR-127, miR21, and let-7 in the plasma EVs of HL patients often
serves as a diagnostic tool for the detection and therapy of tumors in HL patients [198,206].

WL. In Waldenstrom macroglobulinemia (WM), a higher level of EVs and associated
miR-155 was reported in the plasma compared to healthy controls, which could be used as
a potential biomarker for WL [195,198]. However, EVs’ miRNA composition may change
depending on the disease stages [207]. Table 4 summarizes how EVs act as a biomarker in
different hematological malignancies.

Table 4. EVs as biomarkers of different types of hematological malignancies.

Disease EVs’ Biomarker Up-/Down-Regulation References

AML TGF-β Up [189]

CD13, CD117, CD34 Up [195,196]

FLT-ITD, NPM1, IGF-IR, CXCR4, MMP4 mRNA - [197]

miR-155 Up [198]
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Table 4. Cont.

Disease EVs’ Biomarker Up-/Down-Regulation References

CML CD13 Up [195]

miR-215 Up [199]

MM CD38, CD138, CD147 Up [66,195,200]

CD44 Up [201]

let-7b, miR-18a Down [202]

CLL CD19, CD37 Up [203]

CD52 Up [139]

CD19, CD5, CD44, CD31, CD55, CD82, CD62L,
HLA-A, B, C, HLA-DR Up [204]

CD49c, CD21, CD63 Down [204]

miR-155 Up [205]

HL CD30 Down [195]

miR-155, miR-127, miR-21, let-7 Up [195,206]

WL miR-155 Up [195,207]

EVs in drug resistance. Cancer cells often acquire resistance by decreased accumulation
of drugs inside the cells, increased drug efflux outside the cells, compartmentalization
of drugs, and alteration of cellular pathways targeted by specific drugs [208]. EVs have
been shown to play an important role in modulating the drug resistance properties of
various hematological neoplastic cells by various novel mechanisms. For example, BMSC-
derived EVs confer resistance on MM cells against the chemotherapeutic drug bortezomib
via the activation of diverse survival pathways, such as AKT, NOTCH1, NF-κB, and
STAT3 [209]. Similarly, GAL3+ EVs from stromal cells confer anti-apoptosis and drug
resistance to ALL cells by activating the NF-κB survival pathway [142]. In another study,
BCL-derived EVs were found to express surface CD20, which helps BCLs to escape the
humoral immune system by intercepting the chemotherapeutic drug rituximab [210].
The authors also indicated that sequestration of rituximab by EVs may contribute to
the reduction in efficacy of pharmacological treatment [210]. Cancer cells often exert drug
resistance properties by expelling the drugs into the extracellular space with the help of
ATP binding cassette (ABC) transporter. ABCA3 transporters, highly expressed in leukemic
cells, are localized on the exosome membrane within the MVBs, where drugs are effectively
sequestered [210–213]. The release of exosomes is accompanied by the expulsion of drugs
from the cancer cells, thereby contributing to drug resistance [210,214–216]. Furthermore,
lymphoma cells, treated with chemotherapeutic drugs called anthracyclines, were shown
to efflux the drug outside the cells through the release of EVs [217]. However, treatment of
the cells with ABCA3 inhibitor increased the susceptibility of the drug via the suppression
of EV biogenesis [217]. EV-mediated evasion of humoral immunotherapy was also reported
to be dependent on ABCA3 in BCLs [210]. In the case of AML, exosomes from normal or
AML bone marrow stromal cells (BMSCs) protect the leukemic cells owing to FLT3-ITD
mutations against cytarabine; however, only AML-BMSC-exosomes impart protection
against FLT3 inhibitor treatment [218]. Moreover, AML cells transfer their chemo-resistant
properties to sensitive PML cells via the release of EVs [219].

In contrast to the above findings, EVs also effect potentiated chemotherapy-mediated
elimination of cancer and other TME cells. For example, treatment with the anti-CD30 Ab
drug conjugate Brentuximab Vedotin (SGN-35) in HL patients resulted in the binding of
SGN-35 with HRS-derived CD30+ EVs and SGN-35/CD30+ EVs, not only killing the CD30+
tumor cells directly but also targeting CD30- cells in the TME, such as eosinophils and mast
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cells, resulting in severe damage to EV internalization [220]. Figure 5 describes how EVs
influence chemotherapeutic treatment in the context of various hematological malignancies.
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Figure 5. EVs influence chemotherapeutic drug treatment in various hematological malignancies.
1. Stromal cells contributing to the survival of hematological malignant (HM) cells. Bone-marrow
stromal cell (BMSCs)-derived EVs activate the survival pathways in MM cells; stromal cell-derived
EVs also activate the survival pathway in ALL cells. 2. EV-mediated humoral immune escape.
BCL-derived EVs help BCL cells to escape humoral immune responses of the host. 3. EV-mediated
expulsion of chemotherapeutic drugs. Lymphoma cells expel the administered chemotherapeutic
drugs, anthracyclines, via the release of EVs. 4. EV-dependent chemoresistance transfer. Chemo-
resistant AML cells transfer their chemo-resistant properties to chemo-sensitive PML cells via EV
secretion. 5. and 6. HM-EV-mediated mast cell and eosinophil damage in the TME and killing of
tumor cells. Treatment with an anti-CD30 bound drug conjugate, Brentuximab Vedotin (SGN-35), in
HL patients results in the binding of SGN-35 with CD30+ HL-EVs, which in turn either is internalized
by the CD30- eosinophils and mast cell in the TME, resulting in cellular damage, or directly kills
CD30+ tumor cells. Green dotted arrow indicates the survival of the tumor, whereas red dotted arrow
represents death or damage of the tumor cells.

In summary, these studies indicate that EVs play a pivotal role in the regulation of
hematological malignancies by modulating therapeutic resistance and tumor progression.
Advancement of our understanding of cancer-associated EVs’ biology and novel techniques
for isolating and characterizing the EVs will certainly help in predicting biomarkers for
different hematological malignancies and in developing suitable targets.

7. Conclusions

A growing body of evidence indicates that EVs play a master role in cell–cell commu-
nication by delivering important messages among different types of cells. In recent years,
the pace of EV research has been tremendous, and the ease at which EVs can be isolated
with minimally invasive procedures has opened up possibilities for liquid biopsies and
associated EVs to be used for real time monitoring of disease progression and treatment
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responses [221–223]. A recent multi-omics approach to longitudinally characterize EVs has
been successful in elucidating hallmarks of COVID-19 throughout its progression [224].
Multi-omics studies have opened up avenues for quick, detailed characterization of EVs
using new high-throughput techniques, as well as strict standardization, which could serve
as an important benchmark for proper identification and could resolve potential problems
arising due to the heterogeneity of EVs across patient population [225]. Some of the chal-
lenges could be overcome by utilizing EVs as an additional source of information when
multiplexed with presently used biomarkers for better delineating disease mechanisms.

EVs have also shown promising results in drug delivery because of their inherent
physiological stability and better immunological tolerance. They have been utilized to
deliver different payloads ranging from onco-therapies to biologics and RNA therapeutics.
Moreover, the growing body of evidence indicates the use of EVs as directed therapeutics
or indirectly by stimulating immune cells [226,227]. Despite their therapeutic potential,
several challenges remain to be overcome before the mass adoption of EV-based drugs.
Roadblocks include several aspects of manufacturing, including heterogeneous production,
which suffers from low yield and increasing complexity for scaling up production. On
the bright side, there has been significant progress toward addressing these issues using
microfluidic devices, along with bioreactors, to expedite production, as well as utilizing EV
mimetics to address the problem of heterogeneity [228].

The findings reviewed here have raised new questions with plausible interpretations
for understanding how cancer cells communicate with other hematologic cells in the TME
and vice versa via the transfer of EVs. Moreover, EVs can be considered biomarkers for
hematological malignancies, thereby helping not only in the diagnosis and prognosis but
also in the development of therapeutic strategies against such malignancies.

Therefore, it is only a matter of time before the widespread adoption of EVs for
multiple strategies. The increasing wealth of biological knowledge would only increase
their potential applications, but future standardization practices across different fields
must not be avoided to achieve a uniform approach to transforming EVs from bench to
bedside applications.
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Abbreviations

EV extracellular vesicle
MV microvesicle
SNARE soluble N-ethylmaleimide-sensitive factor activating protein receptor
MVB multivesicular body
ESCRT endosomal sorting complexes required for transport
TSG101 tumor susceptibility gene 101
HSC70 heat shock cognate 70-kDa protein
HSP90β heat shock protein 90 beta
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CD cluster of differentiation
GRP Golgi and endoplasmic reticulum associated protein
CSE1L chromosome segregation 1 like
TrpC5 transient receptor potential cation channel subfamily C member 5
EMT epithelial to mesenchymal transition
JAK Janus kinase
PD-L1 programmed death ligand 1
PD1 programmed cell death protein 1
CLL chronic lymphocytic leukemia
DLBCL diffuse large B cell lymphoma
BCL B-cell lymphoma
ATP adenosine triphosphate
MHC major histocompatibility complex
APO2L Apo2 ligand
TCR T-cell receptor
NKG2D natural-killer group-2 member-D
APC antigen presenting cell
NKp30 natural killer protein 30
BAG6 Bcl2-associated athanogene cochaperone 6
MM multiple myeloma
MDSC myeloid-derived suppressor cell
TGFβ1 transforming growth factor beta 1
AML acute myeloid leukemia
NK natural killer
TNF-α tumor necrosis factor α
IL interleukin
MyD88 myeloid differentiation primary response 88
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
TLR Toll-like receptor
IL-1R interleukin-1 receptor
CML chronic myelogenous leukemia
NO nitric oxide
ROS reactive oxygen species
TAM tumor-associated macrophage
NET neutrophil extracellular trap
VEGF vascular endothelial growth factor
CAF cancer-associated fibroblast
ALL acute lymphoblastic leukemia
GAL3 galectin 3
HIF hypoxia inducible factor
STAT signal transducer and activator of transcription
OC osteoclast
clBcl-xL cleaved Bcl-xL
MSC mesenchymal stem cell
ATL adult T-cell leukemia/lymphoma
MPN myeloproliferative neoplasm
CFU colony forming unit
BCR B-cell receptor
hTERT human telomerase reverse transcriptase
TCL T-cell lymphoma
sHS surface heparan sulfate
MAPK mitogen-activated protein kinase
ERK extracellular signal-regulated kinase
MMP matrix metalloproteinase
EMMPRIN extracellular matrix metalloproteinase inducer
NOTCH neurogenic locus notch homolog protein
ABC ATP binding cassette
GLOBOCAN Global Cancer Observatory
WHO World Health Organization
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ABL1 Abelson murine leukemia viral oncogene homolog 1
PV polycythemia vera
ET essential thrombocytopenia
PF primary myelofibrosis
CNL chronic neutrophilic leukemia
CEL chronic eosinophilic leukemia
MDS myelodysplastic neoplasms/syndrome
BMB bone marrow blasts
PB peripheral blasts
SF3B1 splicing factor 3B subunit 1
TP53 tumor protein 53
IB increased blasts
NOS not otherwise specified
DS Down syndrome
SLL small lymphocytic lymphoma
LPL lymphoplasmacytic lymphoma
MGUS monoclonal gammopathy of undetermined significance
IgM immunoglobulin M
MZL marginal zone lymphoma
FL follicular lymphoma
MCL mantle cell lymphoma
BL Burkitt lymphoma
HL Hodgkin lymphoma
cHL classic HL
NLPHL nodular lymphocyte-predominant HL
PTCL peripheral T-cell lymphoma
ALCL anaplastic large cell lymphoma
ALK anaplastic lymphoma kinase
AITL angioimmunoblastic T-cell lymphoma
EBV Epstein–Barr virus
HTLV human T-lymphotropic virus
TLGL T-cell large granular lymphocyte leukemia
NKLGL NK-cell large granular lymphocyte leukemia
TK tyrosine kinase
HE hyper eosinophilia
AEC absolute eosinophil count
HES hypereosinophilic syndrome
PDGFR platelet-derived growth factor receptor
FGFR1 fibroblast growth factor receptor 1
ETV6 ETS (erythroblast transformation specific) variant transcription factor 6
FLT3 FMS-like tyrosine kinase 3
CM cutaneous mastocytosis
SM systemic mastocytosis
MPAL mixed phenotype acute leukemia
piRNA Piwi-interacting RNA
VCAM-1 vascular cell adhesion molecule 1
CXCL chemokine (C-X-C motif) ligand
PML progressive multifocal leukoencephalopathy
RAR-α retinoic acid receptor α
sPLA2-X soluble phospholipase A2 of group X
TNFAIP3 tumor necrosis factor alpha-induced protein 3
ITD internal tandem duplication
IGF-IR insulin-like growth factor 1 (IGF-1) receptor
NPM1 nucleophosmin gene 1
HLA human leukocyte antigen
HRS Hodgkin and Reed–Sternberg
WM Waldenstrom macroglobulinemia
BMSC bone-marrow stromal cell
HM hematological malignant
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